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The differential cross section for coherent scattering of thermal neutrons by a liquid is given in general by
the Fourier transform of a time-displaced radial density function. It is suggested here that, to an adequate
degree of approximation, this time-displaced function can be expressed as a convolution of the ordinary
radial density function with a self-diffusion function describing the wandering of an atom from an arbitrary
initial position. The neutron scattering cross section then becomes the product of the Fourier transforms
of these two functions. One of the transforms is the differential cross section for x-ray scattering and describes
interference effects, the other governs the energy changes upon scattering. Irl this development the scatterer
can be treated either quantum mechanically or classically. Recoil effects are not provided by the classical
treatment, but this is a significant deficiency only in liquids of low atomic weight. Several models for
calculating the self-diffusion function are considered, and from these it is suggested that a Gaussian function
with a time-dependent width is a reasonable approximation for the case of a simple liquid. The principal
features of the width are deduced. Quantization of the scatterer effects the width at small times. At large
times the width depends only on the coeKcient of self-diffusion of the liquid, and inelastic scattering is
suggested as a means of determining this coe%cient, as well as other features of atomic movement. The
accuracy of the static approximation for determining liquid structures by neutron diffraction is assessed
by considering the typical case of liquid lead near its melting point, and is found to be moderately good.
The extension of the entire formalism to the case of polyatomic liquids is outlined.

1. INTRODUCTION

HK scattering of slow neutrons by a system of
atoms is sufhciently well understood on an

abstract level. In the case of solids and dilute gases it
is possible to go further and make accurate detailed
calculations. In liquids, on the other hand, the atomic
dynamics are so complex that specific calculations of
the scattering have only been possible with the aid of
rather drastic approximations. The simplification
that has been commonly used is the so-called static
approximation, ' in which the change of energy of the
neutron on scattering is assumed to be negligible
compared with the initial energy of the neutron. In
this approximation the differential scattering cross
section is found to depend only on the ordinary radial
density function of the liquid, in complete analogy
with the case of x-ray diffraction. No prediction of the
spread in energy produced by the scattering can be

made by this method, however, and thus no attack i.s
provided on the problem of determining atomic motions
in a liquid through observation of neutron inelastic
scattering.

Van Hove' has shown that the neutron scattering by
an arbitrary system of atoms can be related to a time-
displaced distribution function for pairs of atoms.
The ordinary radial density is a special case of this
function for zero time displacement. The usefulness
of this relation has been limited because of the great

difhculty of calculating the time-displaced distribution
function from first principles. In the present paper a
basic approximation is suggested by which the time-
displaced function can be calculated from the ordinary
radial density function and a self-dift'usion function
which describes the wandering of an atom away from
an arbitrary initial position. The approximation
relates the time-displaced function to the convolution
of the self-diftusion function with the radial density

* Work supported by the U. S. Atomic Energy Commission.' G. Placzek, Phys. Rev. 86, 377 (1952); G. C. Wick, Phys. Rev.
94, 1228 (1954).

~ L. Van Hove, Phys. Rev. 95, 249 (1954).See also R. J. Glauber,
Phys. Rev. 98, 1692 (1955).
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function, and will be referred to as the convolution
approximation. With its aid the cross section for
neutron scattering into an arbitrary direction and
energy will be found to be a product of two functions,
one expressing the eGect of interference and giving the
di6'erential cross section with neglect of energy change
(as determined, for example, by x-rays), the other
describing the spread in energy and arising directly
from the self-diffusion function.

The development to this stage can be carried out by
treating the scatterer on a quantum-mechanical basis,
or by treating it on a classical basis. The resulting
formulas look the same, but in one case their terms
have quantum definitions, in the other case they have
classical definitions. The meaning of the convolution
approximation is more readily apprehended from the
classical development, and therefore this approach
will be taken up first. The results should be reasonably
accurate for scatterers of intermediate or high atomic
weight. The quantum development, given in a sub-
sequent section, introduces the e8ect of recoil during
the scattering, and this plays an appreciable role for
scatterers of low mass. The approximations employed
will not be valid for liquids exhibitirig quantum
degeneracy, and thus nothing will be said about He
II.'

As with the time-displaced correlation function, the
self-diffusion function cannot be calculated rigorously
for a liquid. Instead, this function will be evaluated for
a number of simple models, general features of its
behavior at small and large times will be demonstrated,
and plausible approximations valid for all times will

be inferred. These approximations lead to simple
expressions for the cross section for scattering with
energy and momentum change.

The chief aim in this work is to discover simple
formulas which approximate the cross sections reason-
ably well and depend on a small number of parameters
having physical meaning. Such formulas will expedite
the use of inelastic neutron scattering as a tool for
investigating details of atomic dynamics in liquids. 4

They will also help to give a much needed estimate of the
accuracy of radial density functions determined by
neutron diGraction through use of the static approxima-
tion, ' and may be of practical value in reactor engineer-

ing. The final justification of the approximations
employed must be left to experiment.

' The highly degenerate quantum liquid is a special case which
has recently yielded to treatment. See M. Cohen and R. P.
Feynman, Phys. Rev. 107, 13 (1957), and Palevsky, Otnes,
Larsson, Pauli, and Stedman, Phys. Rev. 108, 1346 (1957).

4 See also B. N. Brockhouse, Nuovo cimento (to be published).
~ Such determinations have been reported in the following

papers: O. Chamberlain, Phys. Rev. 77, 305 (1950);P. C. Sharrah
and G. P. Smith, J. Chem. Phys. 21, 228 (1953);Milligan, Levy,
and Peterson, Phys. Rev. 83, 226 (1951);Henshaw, Hurst, and
Pope, Phys. Rev. 92, 1229 (1953); D. G. Henshaw, Phys. Rev.
105, 976 (1957); Breen, Delaney, Persiani, and Weber, Phys.
Rev. 105, 517 (1957); G. H. Vineyard, J. Chem. Phys. 22, 1665
(1954).

2. BASIC FORMALISM IN THE CLASSICAL CASE

Consider first a homogeneous classical Quid containing
an indefinitely large number of atoms, chemically
all alike. The following distribution functions will be
of interest: g(r), G(r, t), G, (r, t), and Gq(r, t) g(.r), the
ordinary radial density function, is defined as the
probability that, if an atom is at the origin, a distinct
atom will be found simultaneously within unit volume
at r G.(r, t), the time-displaced pair distribution
introduced by Van Hove, is defined as the probability
that, if an atom is at the origin at time 0, an atom will
also be found within unit volume at r at time t. Note
that the atom at r must be distinct from the one at
the origin in the definition of g(r), but need not be in
the case of G(r,t). It is further convenient to subdivide
G(r, t) into a "self" and a distinct" part G, (r, t) and
Gz(r, t), respectively, where the former gives the
probability of finding at r and time t the atom that was
at the origin at time 0, the latter gives the probability
of finding at r and t an atom distinct from the one
that was at the origin at time 0. Thus, one has

G(r, t) = G, (r, t)+Gg(r, t) (&)

G, (r,t) will be called the self-di6usion distribution
function. It describes the wandering of an atom away
from an arbitrary initial position. Also, from the
definitions, one has

G.(r,o) =g(r),

G, (r,0) =5(r)

As t or r approach infinity, ' the pair correlations
vanish in a liquid, and g(r) and G(r, t) approach the
mean number density of atoms in the Quid, go. Also
G, (r,t) approaches zero.

Now suppose an atom, say atom number 1, is at the
origin at time 0, and simultaneously atom number 2
is at r'. There exists a certain probability Hs(r, r', t)
that in an elapsed time t, atom 2 will wander from r'
into a unit volume at r, suGering a net displacement
r—r'. The time-displaced probability G(r, t) can be
expressed by the identity

G(r, t) =G, (r, t)+)"g(r')Hs(r, r', t)dr',

where dr' stands for the volume element dx'dy'ds'
and the integration is over all space. The first term on
the right of (4) gives the probability that the molecule
at the origin at time 0 has migrated to r in time t,
g(r')Hs(r, r', ()dr' is the probability that any other
atom is in dr' at r' at time 0 and migrates to r in time t,
and the integration sums this over all volume elements
dr'.

' The symbol r stands for ( r~. In most cases to be dealt with,
the various distribution functions will have spherical symmetry
and will thus depend only on r. The arguments of the functions
will be kept as vectors, for the most part, however, because this
unifies many of the formulas and increases their generality.
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The probability Hp(r, r, t) is actually conditioned by
the known presence of an atom at the origin at time 0,
but can be approximated by the probability that an
atom starting at r' will migrate to r in time t in the
absence of knowledge about positions of any other
atoms. The latter probability is the self-diffusion
distribution function, and hence

Hp(r, r', t)—G, (r—r', t).

As shown by Van Hove, the differential cross sections
per atom, in Born approximation, for the scattering
of neutrons from a system of atoms into unit solid
angle 0 and unit range of energy e are given by

d Ocph Qcpg k f
")G(r,t) gp—]expLi(sc. r rot—)]drdt, (8)

dQde hko»
and

Inserting (5) into the integral of (4), one has

G(r, t)—G, (r, t)+ g(r')G, (r r', t—)dr' (6)

~ 0'inc +inc k
G, (r, t) exp[i(x r tot)—]drdt (9.)

dod6 hko

This is the convolution approximation, the basic
approximation of the present paper, and relates the
time-displaced distribution function for pairs to the
ordinary radial density function and a self-diffusion
distribution function.

It is dificult to know the error in this approximation,
but qualitative considerations suggest that the chief
difference between Hp(r, r', t) and G, (r r', t)—occurs
when t and also r or r' are small. However, when r' is
small, g(r') is small, and the effect of the difference
is minimized. When r is small at small times, G, (r,t)
is large, and the second term on the right of Eq.
(6) is overshadowed by the first. Errors will also be of
both signs in different regions of r', so there will be some
cancellation of errors with integration, g (r') being
always non-negative. Consequently the approximation
seems promising, but its ultimate justihcation will
have to depend on experimental test of formulas
derived with its help.

The radial distribution function g(r) has been
studied extensively, and a number of theoretical
schemes for its approximate computation have been
developed. ' ' The distribution g(r) may also be deter-
mined by x-ray diffraction. " No simple analytical
expression for it of sufhcient generality for our present
purposes has been found. The self-diffusion distribution
G, (r, t) has not been studied very much, although
Van Hove has given its general features and has
calculated it rigorously for the case of a perfect gas.
Its determination for an atom in a liquid would be a
matter of considerable interest. G, (r, t) starts as 8(r)
at t=0 (Eq. (3)j, and, considered as a function of r,
spreads and Battens as t increases, having spherical
symmetry about the origin. It also obeys the relation"

G, (r, —t) =G, (r, t).

Several approximate forms of G„depending on a small
number of parameters, will be discussed subsequently.

'H. S. Green, The hf'olecmlar Theory of Ftetids (Interscience
Publishers, Inc. , New York, 1952), Chap. 3.

G. H. Vineyard, in Iittttid 3fetals and Solidificatio LAmerican
Society for Metals, Cleveland (to be published)g.' N. S. Gingrich, Revs. Modern Phys. 15, 90 (1943).

p For quantum systems G, may be complex, and then (7) takes
the form G, (r, —t)=G,*(r,t) if one assumes that the mean
momentum of the Quid is zero.

Here the subscript coh refers to coherent scattering, the
subscript inc to incoherent scattering (i.e., scattering
that is incoherent by virtue of spin or isotope effects);
a„~ is the bound coherent scattering length, u;„, the
bound incoherent scattering length, per atom; the
incident neutrons have wave number kp and energy
ep, the outgoing neutrons have wave number k and
energy e; sc is the scattering vector, ic= kp —k; Aro is the
energy loss of the neutron upon scattering, Ace= eo—e.

For future use it may be noted that

ep= trt'kp'/2rtt,

e= lit'k'/2trt

(10)

G, (r, t)dr = 1,

K= kpL1+ (e/ep) —2(e/ep) ' cospji, (12)

where es is the mass of the neutron, q is the angle of
scattering (the angle between k and kp), and all wave
vectors include a factor 2sr, so that kp ——2sr/Xp, etc.

The cross section (8) has been modified slightly
from Van Hove's expression by the subtraction of go
in the integrand. This is an artifice to hasten the
covergence of the integral, and allows G(r, t) to be
de6ned for an infinitely large sample. The arti6ce is
similar to that commonly employed in the x-ray
theory. ' lt changes the cross section by subtraction of
a product of 6 functions in x and co which are nonzero
only in a region of angles inaccessible to experiment.

Equations (8) and (9) were first derived for a
quantum-mechanical system, and G and G, are properly
defined as averages of certain operators related to
the scatterer (see Sec. 5). The classical definitions of
G and G, given above follow directly from the operator
definitions when classical behavior is attributed to
the scatterer. It is also possible to derive equations
of the same form by a semiclassical development in
which the scatterer is treated classically from the outset.
G and G, then possess the classical meanings ascribed
above as soon as they appear in the formalism. The
matter is discussed further at the end of this section.

The convolution approximation for G, Eq. (6),
will now be employed to evaluate the coherent cross
section as given by Eq. (8). From the fact that
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Eq. (6) can be rewritten

G(r, t') g—p=G, (r, t)+ ~[g(r') —gp)G, (r—r', t)dr'. (13)

6—
gp is thus a convolution of g

—
gp with G, . Since

the desired cross section is a Fourier transform of
G—

gp, the usual theorem on the Fourier transform of a
convolution leads at once to the result

where

d Ocoh ~coh ~
r, (x,pp) [1+y (lc)),

dQd6 Akp
(14)

r, (xpi) = f
G, (r, t) exp[i(x r pit)$—drdt, (15)

and

~(~) =J"[g(r) —gol exp(~~ r)dr (16)

Also the incoherent cross section can now be written

d 0'inc Cjnc k
I', (x,p)).

dQde hkp
(17)

f
I",(x,pi) = ' e 'dt=2mti(pi)— (18)

The scattering is then purely elastic,

Equations (14) and (17) express the cross sections in
very simple form in terms of Fourier transforms of
the ordinary radial density function and the self-
diffusion function. The former contributes a kind of
form factor [1+y(x)$ which is present in the coherent
cross section but not in the incoherent, and expresses
the interference eRects arising from simultaneous
correlations in atomic positions. F, (x,&u), the transform
of the self-diRusion distribution, describes the spread
of scattered energies caused by motions of the atoms.
Equations (14) and (17) are the central equations of
this paper.

At this point it is helpful to consider what happens
if each atom is rigidly fixed in position, or moves very
slowly compared with the velocity of the neutron.
G, (r, t) may then be replaced by G, (r,0)=ti(r) [see
Eq. (3)7 in the integration of Eq. (15), leading to the
very simple result

The differential cross sections are found by integrating
over e, and in the static approximation can be written
at once, since dp/A=des,

d(r.,h/dQ= a„h'[1+y(xp) $,

dp'inc/did= itinc

(22)

(23)

Equation (22) gives a good description of the x-ray
diRraction of a monatomic liquid, with a„h replaced
by the atomic structure factor, and shows that 1+&(x)
is simply the (normalized) x-ray scattering from the
Quid at scattering vector x. The assumption that the
atoms move slowly compared with the velocity of
the neutron is the so-called static approximation
referred to earlier. When the scatterers are treated
classically, this is equivalent to the assumption that
the energy change upon scattering is negligible.

A final remark is desirable at this point. As already
noted, the cross-section Eqs. (8) and (9) were derived
by Van Hove by treating the scatterer as well as the
neutron quantum-mechanically. The physical meaning
of the classical limit of these equations can be made
more evident by giving a different development in
which the scatterer is treated by classical mechanics
from the beginning. To do this one writes the time-
dependent Schrodinger equation for the neutron, with
the potential energy depending on the coordinate of
the neutron and the coordinates of the atoms of the
scatterer. The latter are assumed to be prescribed
classical functions of time, describing a classical motion
of the scatterer uninQuenced by the neutron. Upon
treating this potential-energy term as a time-dependent
perturbation, the Schrodinger equation for the neutron
can be solved to first order with the aid of the time-
dependent Green's function of the equation. Such a
process has already been used by Wick" to discuss
neutron scattering by a lattice. One can now resolve
the scattered wave into components corresponding to
particular energies and momenta. The square of a
component, averaged over an ensemble of motions of
the scatterer, gives the diRerential cross section, and
can be manipulated into the form of Eqs. (8) and (9)
where G(r, t) and G, (r, t) have precisely the classical
definitions by which they were introduced at the
beginning of this section. From this derivation one
sees that the scattering has been computed by adding
wavelets contributed by each atom of the scatterer
at each instant of past time, the frequency of each
wavelet being the frequency of the incident wave

A2d Ocoh &coh
2

~( )[1+~(.)j,
dQde

a2 . . 2d &jnc +inc
&(~),

dQd~

where up= kp —lr., with k= kp,' from Eq. (12),

kp= 2kp sin(q/2).

(19)

(20)

(21)

modified by a Doppler shift occasioned by the velocity
of the scatterer at that instant. With a classical G(r, t),
the time-displaced correlation formalism predicts a
distribution of scattered energies precisely because of
the Doppler eRect, and it calculates this without
allowing any back reaction of the neutron on the
scattering system. Such a back reaction would produce
recoils of the scattering atoms, thus biasing the Doppler
I "G. C. Wick, Physik. Z. 38, 402 (1937).
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shifts in the direction of lower frequencies. To calculate
this recoil e6'ect properly, one has to go to the fully
quantum-mechanical formalism, and the semiclassical
treatment does not seem capable of leading to useful
approximations.

3. SELF-DIFFUSION FUNCTION IN THE
CLASSICAL CASE

The self-diffusion function G, (r, t) and its Fourier
transform I', (x,pp) will now be considered in more
detail. It is possible to calculate G, rigorously from first
principles in only a small number of cases. In the
perfect gas an atom maintains its velocity indefinitely,
and hence will be displaced by r in time t if its initial
velocity is r/t The

p. robability of such initial velocity
is given by the Maxwellian distribution function, and
hence one finds

G.(r, t) =~ '» 'ltl 'expl: —r'/(»t)'7
(perfect gas) (24)

where pp
——(2ksT/M) l, with M the mass of an atom, 7

the temperature of the gas, and k~ Boltzmann's
constant. The Fourier inversion of (24) gives

I', (~,~) = P~I/(~pp) 7 «pP —~'/(~i p) '7,
(perfect gas) . (25)

In a somewhat similar manner, the isotropic, three-
dimensional classical simple harmonic oscillator of
frequency co&, considered to be in equilibrium at
temperature T, is found to possess the self-diffusion
function

3
2

G, (r, t) = exp
2if'vp (1—cos(oit) 2vp (1—coscoit)

(oscillator) (26)

where co; is the angular frequency of the jth normal
mode of the lattice and e, is the x-component of the
amplitude of displacement of the atom by the jth
mode; normalization is such that P;=P(e,*)'=1, the
total number of modes being X. On the basis of the
simple Debye model with a single Debye frequency
~pi) (a)i) ——k+OD/A), (29) can be readily evaluated:

w'(t) = L12ksT/(M~&') 7/1 —sin~iit/(~inst) 7
(Debye lattice). (30)

Finally, consider an atom that suGers random
alterations of velocity in brief collisions occurring at
random times. This atom undergoes a random walk.
It has a displacement probability obeying the classical
equation of diffusion, in which a single parameter D,
the coe%cient of self-diffusion, enters:

DV'G, (r,t) = BG,(r,t)/Bt. (31)

The solution of (31) that corresponds to a point source
at the origin at t =0 is

G, (r, t) = (4irDt) ' exp/ —r'/(4Dt) 7
(diffusing atom) . (32)

This applies for t &0. The solution for negative times
is found from the condition that G, (r, t) is symmetric
in t [Eq. (7)7. The Fourier transform of (32) is

result. In the case of a lattice with cubic symmetry,
one finds

G, (r, t) = Pprw'(t)7 l expf —r'/w'(t)7 (lattice). (2&)

The time-dependent width of the distribution, squared,
ls

4kiiT ~ t'e, *~ '
w'(t) = P l

—
l (1 co—spp, t) (lattice), (29)

M ~=i &cp, J

and this has the Fourier transform I', (ip, &v) = — (diffusing atom).
(D~2)2+ ip2

(33)

t'zap)
r, (x,pp) =m exp —-,'l —

l

E co]i J

00 ICVp)'
X P (2—8p )I- pl

—
I

B=p ( @pi 3'

It is a remarkable fact that all of the foregoing distribu-
tions, in spite of the variety of models involved, are
simple Gaussian functions of r, with widths that
depend only on the time. Defining a width w(t) as
the radius at which G, has dropped by e ', the following
values occur:

XP(~—n, )y|'(~+rishi)7 perfect gas, w(t) =»ltl;
oscillator, w(t) = (wp/&pi) (2—2 cosppt) '*;

(34)

(35)
(oscillator). (27)

In this equation, I„(s) is the Bessel function of complex
argument and Bo„ is the Kronecker delta.

The case of an atom that is in a crystal lattice and
whose motion is thus a superposition of a great many
simple harmonic vibrations corresponding to the normal
modes of the lattice, is a little more complicated but
can also be worked out, and gives an essentially simple

Debye lattice, w(t) = (12kT/(Ma&') 7'*

XL1—sin&pipt/(&pat) 7l; (36)

diffusing atom, w (t) = 2 (D l
t

l ) '*. (37)

For all cases except the last, w(t), at small t, reduces to
This occurs because during very small time

intervals the classical particle always behaves as if
it were free. The diGusing atom model does not represent
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FIG. 1. Square of the width of the self-diffusion function,
plotted vs time for several models. Parameters have been chosen to
give the best representation for liquid lead at its melting point.
Debye period = 6)&10 "sec; oscillator period =8&(10 "sec.

any physical situation at short times because it assumes
that collisions occur with infinite frequency. In the
perfect gas and in the diffusing atom model, the width
of the distribution increases without limit as

l
t

l

increases; in the oscillator and lattice models, on the
other hand, the width remains bounded as

l
t

l
increases,

and this represents the fact that every atom has a
well localized neighborhood in which it always moves.
An important consequence is that the scattering from
such a model always contains an elastic component,
that is, integration of d'o/diode with respect to e over
a region of width D~ about a=0 gives a contribution
that remains finite as Ae—+0. For the oscillator this can
be seen in Eq. (27) as the term in 8(cu). A similar term
in &(~) will arise in the Fourier transform of G, for the
lattice. For the perfect gas and the diffusing atom, on
the other hand, F, contains no delta function.

To aid in visualizing the various width functions
(34)—(37), their squares have been plotted against
time in Fig. 1. Parameters have been chosen in this
plot to give an approximate representation of liquid
lead near its melting point. Corresponding to a Debye
temperature of 88'K for solid lead, the Debye tem-
perature for liquid lead has been chosen, somewhat
arbitrarily, to be 80'K, and the frequency of the
simple harmonic oscillator has been taken to correspond
to a characteristic temperature of 60'K. The coefhcient
of self-diffusion for liquid lead at its melting point is
about 3X10 ' cm'/sec" The horizontal dotted line
shows the asymptotic value approached by the Debye
lattice model at large t.

An atom in a classical liquid is not free nor is it
bound like a harmonic oscillator, although it may be
bound in this way to a certain degree of approximation
for limited periods. Whatever its binding, its displace-
ments must be distributed like that of a free particle,
Eq. (24), during very short time intervals. This
approximation can only be valid for times that are

~L. D. Hall and S. Rothman, Trans. Am. Inst. Mining Met.
Engrs. 206, 199 (19561.

small compared to a period rD related to a kind of
Debye frequency &uz& for the liquid: rD=2m/coD. The
quantity 7-D would be expected to be of the order of
10 "sec. At the opposite extreme of large

l
3 l, an atom

will have suGered many collisions and its displacement
probability must be well approximated by that of the
diffusing atom, Eq. (32).

It will now be proposed that a plausible form of
G, (r,t), valid at all times for the classical liquid, is a
Gaussian function of r with a width that varies with
time and passes between these two extremes. Thus one
should attempt to understand experimental data with
the trial function

G, (r, t) =m=l[w(/) j-' exp[ —r'/w'(t) j. (38)

The factor m '*[w(t)j ' is required for normalization.
w(t) must be a function of time satisfying the require-
ments

w(&) ~»l&l,
w(&) ~ 2(BI~I+~)',

(39)

(40)

F,(x,ar) = t exp[ —nut ——,'z'w'(f)]df.

If F, (~,~) is determined experimentally as a function
of ~ for one value of x, then w(t) can be determined from
the Fourier inversion of Eq. (41):

4
w'(t) =—ln —

i
cos(cut)F, (x,co)dko

K 2'7f'
(42)

In using (42) the proper normalization of F, (L,&u)

must be observed. This can be insured by using the
fact that, from the de6nitions, F, (O,co) = 2~8 (co) .
Although the point += 0 is inaccessible to experiment,
this condition can be applied at small x, where the
distribution I', will be very sharply peaked about
~=0. Also the fact that the experimental upper limit
of cu is eo/A instead of ~ will not matter in applying
(42) unless the distribution is much broader than

"C. Christow, Acta Phys. Acad. Sci. Hung. 6 (1956); 7, 51,
67 (1957), has considered the distribution of subsequent positions
and velocities of a molecule with known position and velocity.
His results to date are limited to the case of the nearly perfect
gas, however,

where c is an undetermined constant. The mean square
displacement of the atom after time t is —',w'(t), and
because of the complicated behavior at intermediate
times the asymptotic value of mean square displace-
ment may differ by a constant from the ideal value 6Dt.
The constant c has been introduced to allow for this
possibility. Unfortunately no practical theoretical
method for determining the precise form of w(t) at
intermediate values of 3 is presently available. "

With the Gaussian choice (38) for G„ the spatial
stages of the Fourier transformation can be carried out
at once, glvlng
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normally expected. In the integration cosset has been
substituted for exp(i~pt) because I', on the present
theory must be symmetrical in co at constant x. Since
zt (I) is overdetermined by (42), an important check on
the assumptions made to this point would be a6orded
by applying (42) for several different values of
to see if the same function to(t) is obtained each time.

It would be very interesting to know the true
dependence of m on t for an atom in an ordinary
liquid. Intuition suggests that a function about like
the dashed curve in Fig. 1 should be correct for a
typical liquid, since the lattice and oscillator models
restrict the atom too severely and the behavior of the
extremities of the curve has already been ascertained
LEqs. (39) and (40)j.Mott and Gurney" have suggested
from consideration of the magnitude of self-diBusion
coeKcients in liquids that successive vibrations of an
atom in a liquid are very little correlated with one
another, and the dashed curve of Fig. 1 is in agreement
with this assumption. The curve, as drawn, requires
c of Eq. (40) to be —10 i7 cm%ec. If the atom were
to vibrate in a well correlated way for several Debye
periods, making occasional diffusion jumps of greater
length, c would have to have a much larger negative
value.

It has been noted that the coeKcient of self-diAusion
for liquid lead is about 3&(10 ' cm'/sec, and it is of
interest to inquire about this coefficient for other liquids.
Unfortunately the coeKcients of self-diffusion have
been measured for only a rather small number of
liquids, but it is noteworthy that those reported cluster
quite closely together, showing far less diversity
than self-di6usion coefFicients in solids. For monatomic
metallic liquids near the melting point, D is almost
invariably within the range 10 ' to 5X10 ' cm'/sec.
Thus one would expect the spread of scattered neutrons
to be rather similar for a variety of liquids. An increase
in temperature of a few hundred degrees centigrade
should produce a marked increase in broadening of

2.0—

TABLE I. Positions of principle diffraction peaks in lead and
approximate energy spread for scattering of neutrons at these
positions.

Peak number Ke, cm I

2.16X10'
4.00X10'
5.92X10'
7 80&(10'

b, e (ev)

0.0020
0.0064
0.0146
0,0240

the energy distribution. The increase of breadth with
temperature should be governed by the activation
energy for self-diffusion, which is typically in the range
1000 to 4000 calories/mole for simple metallic liquids.

0 godet CgPiI k 2DK

t I+~(~)j.
hk p (DK')'+~ps

The factor I+y(x) can be taken from x-ray measure-
ments. A typical curve, for liquid lead at 375'C
(observed by Hendus"), is shown in Fig. 2. Unfor-
tunately, the experimental accuracy of this curve is
not known, but determinations by other investigators
are in general agreement with it. For observations at a
constant angle of scattering p, neither k nor K is strictly
constant. However, the principal cause of energy spread
is the term in &p, and Eq. (43) thus predicts that the
neutrons diffracted at angle p will be distributed in

energy about a most probable energy very near ep and
with a width in energy at half-maximum, Ae, given by

4. STATIC APPROXIMATION AND STRUCTURE
DETERMINATION

It is now possible to assess the accuracy of the
static approximation for determining liquid structures
by neutron diffraction. To do this it is only necessary
to have a theory that gives the inelastic effects in
Arse approximation. From the foregoing discussion the
di6using atom approximation to the self-di6usion
function seems reasonable, and has also the great
advantage of analytic simplicity. We thus consider
the coherent cross section obtained by employing
Eq. (33) with Eq. (14):

~~=2'hDKo2,

where Kp is K for ~=6p, namely

(44)

" I.o—

5

I

0 I

I I I I I I -I
2 3 4 5 6 7 8 9

z IN A

FIG. 2. 1+y(K) 'vs K for liquid lead near its melting point,
after x-ray measurements of Hendus. "

'4 N. F. Mott and R. W. Gurney, Reports orI, Progress ie Physics
(The Physical Society, London, 1938), Vol. 5, p. 46.

Kp= 2kp sin(y/2). (45)

The values of Kp for the first four peaks of I+y(Kp)
for liquid lead are given in Table I. Also listed are the
energy spreads Ae at these positions, calculated from
Eq. (44). Compared with an incident energy of 0.0820
ev, common in di6raction experiments, this spread is
seen to be very small at the position of the first peak,
but. increases rapidly with scattering angle and is
quite broad at the position of the fourth peak. It should

' H. Hendus, Z. Naturforsch. 2a, 505 (1947).
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Fio. 3. Energy distribution of neutrons scattered from liquid
lead at angle of fourth peak in Fig. 2, as calculated from Fig. 2
and simple diffusion theory.

be borne in mind that this width is independent of the
incident energy 6p in the approximation being considered.

Because of the factor k/ko in Eq. (43), and because
a also depends on e at constant q, the energy distribution
at a particular angle of scattering is not quite sym-
metrical and the width is not quite as given by Eq.
(44) . These complications are more important at
high angles than at low. The actual energy distribution
of neutrons scattered by liquid lead at an angle corre-
sponding to the fourth peak (~o ——7.8X 10' cm '),
assuming eo ——0.082 ev, and employing Eq. (43) and
the data of Fig. 2, is shown in Fig. 3. The differential
cross section, made dimensionless by the factor eo/a„i, ',
is plotted against e/eo. The asymmetry is appreciable
only in the wings of the distribution, and the width at
half-maximum is about 4% less than the value given
in Table I.

To compute the differential cross section do„i,/dQ,
Eq. (43) must be integrated with respect to e at constant
q. Here a di%culty is encountered: the integral diverges
as e approaches ~. This comes about because of the
incorrect behavior at small t of the width function
io(t) that has been used. There should be no discon-

tinuity in slope of w(t) at t=0, and correct behavior
here leads to a F, which vanishes exponentially at
large e. Consequently the integrations must be broken
off at a finite e if Eq. (43) is to be used. Analytic work
is not feasible at this stage anyway, and we shall be
content to point out qualitative and semiquantitative
results. In the present formalism, integrating d'o.„i,/

dQd& over ~ is crudely equivalent to viewing the function
1+y(ii) through a resolution function, (k/ko)1', (l~,co),
whose width is strongly dependent on ~. Where the
resolution function is narrow (small z), it is nearly
equivalent to a delta function, and this converts
1+y(i~) into 1+y(iio). Where the width is greater, the
resolution function tends principally to level out
1jy(i~), lowering the peaks, filling in the valleys, and
leaving points of inAection almost unchanged. The
question of when. the resolution function is effectively
a delta function is somewhat delicate, because at lower
angles the peaks and valleys in 1+y(i~) are also much
sharper. Furthermore the sharpest peaks in 1+y(l~)
may already have been rounded by instrumental
effects in the x-ray determinations.

An idea of the magnitude of the effects in question
can be had by considering further the example of
liquid lead. The peak in Fig. 3 can be integrated
numerically, assuming that the cross section is negligible
beyond the energy limits of the drawing. The result is
that the actual diGerential cross section for neutrons is,
in this direction, about 10%%uo lower than the value given

by the static approximation. The error of the static
approximation diminishes with decreasing angle, and at
the first peak, in spite of the greater sharpness of the
peak, the static approximation is found to be too large
by only about —',%. The latter number is dependent on
the second derivative of the x-ray differential cross
section at the first peak, a number which certainly is
not very accurately known. Thus the figure ~"% should
be considered as only an illustrative estimate.

S. BASIC FORMALISM IN THE QUANTUM CASE

The foregoing development has been based entirely
on the classical approximation to the Uan Hove
time-displaced pair distribution, G(r, t). It is only in this
approximation that G can be interpreted as the prob-
ability of finding an atom at r and t after an atom has
been observed at the origin at time zero. Consequently
it is only in this context that the basic convolution
approximation, given by Eq. (6), has been shown to
make sense. The classical development has been
presented erst because it is more easily visualized and
most of the desired results can be got from it. The
theory can actually be generalized, however, and the
convolution approximation can be developed on a
purely quantum basis, in which the functions G and G,
are given their proper, nonclassical, definitions. The
chief physical interest of such a development is this:
In the classical approximation, the behaviors of G
and G, are incorrect at small t and, moreover, no recoil
effects in the scattering are accounted for. This is so
because the classical approximation results only when
A/M is made to approach zero, where M is the mass
of a scattering atom. Thus, going to the classical
approximation means assuming that the scatterer is
very massive, and this is precisely the case in which
recoil is absent. For atoms of intermediate or high



SCATTERING OF SLOW NEUTRONS BY A LIQUID 1007

atomic number, M is sufficiently large that the recoil
eGects are very small and their neglect is unimportant
in most respects. For very light atoms and neutron
energies of interest in diffraction experiments, recoil
appears to play an observable role. Thus, for liquid
helium at O'K Hurst and Henshaw" have found that
0.076-ev neutrons are scattered with about the same
average energy loss as if they had been scattered from
He gas at the same temperature, and this amounts to
0.002 ev at a scattering angle of 20' and 0.017 ev at
an angle of 60'. The latter energy loss is sufhcient to
reduce the differential cross section quite appreciably,
essentially because of the state-density factor k/ks
Lsee Eq. (14)). It would be highly desirable to extend
the development given in the first part of this paper so
as to include such eGects in a unified way.

In the fully quantum mechanical treatment, the
functions G and G, are Fourier transforms of the
expectation values of certain operators. Thus, if
the scatterer consists of 1V atoms and r~(t) denotes the
Heisenberg operator representing the position of the 1th
atom at time 3, one defines the operators

Q„(~,t)=expf —iv. .r~(0)]exp[i'. r, (t)]. (46)

Then, as shown by Van Hove, ' the functions G and G„
to be used in Eqs. (8) and (9) for determining cross
sections are found from the 0 operator as follows:

At this stage one has, rigorously,

G(r, t) =G, (r, t)+ I Ch
(2s.)sE

Xexp( —ir. r) P (QE;(x,o)n;;(x, t)). (51)
Z& j=l

The basic approximation that corresponds to Eq. (6)
of the classical development is to assume that

(n„(~,0)n, , (~,t))=(n„(~,0))(n,, (~,t)), (52)

i.e., the expectation value of a certain product can be
set equal to the product of expectation values. This is
the way in which the quantum mechanical de6nition of
G can incorporate the assumption that the occurrence
of a second atom at r' from a given atom and the
migration of the second atom to r in time t are statis-
tically independent events. Next, inserting (47) in
the right-hand side of Eq. (49), one finds

N

g(r)=
~

Ch exp( —ix r) g (Q~;(x,o)). (53)
(2s)sX~ Z&j=l

Using the basic approximation (52) in Eq. (51) and
remembering that all E atoms are alike, (53) and (48)
can now be employed to produce the result

G(r, t) = Cr. exp( —ix r) p (Q(, (x, t)); (47)
(2s.)slV Z, j=l G(r, t)—G, (r, t)+ g(r')G, (r—r', t)Cr', (54)

1
G, (r, t) =

~

Ch exp( —ix r) Q (Q()(x, t)). (48)
(2s-)'X" L=l

The angular brackets in these expressions denote
quantum mechanical expectation values. The quantum
mechanical definition of g(r) is obtained from the
relation

g(r) =G(r, O) —&(r) (49)

Because of the commutativity of r&(0) and r, (0),
g(r) is purely real and retains exactly the physical
significance already ascribed to it.

To obtain a quantum mechanical derivation of the
convolution approximation, one splits the summation
in Eq. (47) into two parts, one part in which l= j,
and a second part in which // j. The first part gives
G, (r, t), by Eq. (48). The operator Q~, (x,t) in the second
part is rewritten with the help of the relation

n„(~,t) =n„(~,0)n, , (~,t),

which follows from the insertion of the identity operator

exp| ix r, ( )]0exp( ix r, (0))— .

between the two factors on the right of Eq. (46).

"D. G. Hurst and D. G. Henshaw, Phys. Rev. 100, 994 (1955).

w (t) = ssLt' —iht/ (kn T) )'*, (55)

and for the isotropic, three-dimensional simple harmonic
oscillator of frequency col, a special case of the atom in a

which is of precisely the same form as Eq. (6), but here
G, G„and g have all been defined quantum mechanically,
by Eqs. (47), (48), and (49). Thus the convolution
approximation for G in terms of G, and g has been
derived without appeal to any classical concepts.
The classical version, Eq. (6), can be derived afresh by
considering the limit of Eq. (54) when the de Broglie
wavelengths associated with the scatterer become
sufficiently small that G, G„and g acquire their classical
meanings.

The g(r) defined for a quantum mechanical system
by Eq. (49) or Eq. (53) is the same function that is
found from x-ray diffraction, and hence is the same as
that considered earlier. G„on the other hand, is complex
for a quantum mechanical system, and the relative
importance of its imaginary part is greatest at small
values of t.

It is illuminating to consider the exact form of G, for
some simple quantum mechanical systems. Van Hove'
has shown that for a perfect gas and also for an atom
in a crystal lattice the quantum mechanical G, functions
are again Gaussian in r. For the perfect gas, the width is



1008 GEORGE I-I. VrNE Y~RD

lattice, the width works out to be

t 2A ) l-exp(b(or/keT)+1
~(t) =

I (1 coscoit)
I Mcsrh .exp(ha)r/kaT) —1

—i sinor~t

re '(t) =-ss
i

r'G, (r, t)dr (58)

One can then show, under the assumption that the
system is isotropic on the average, that

2A 2
w, '(t) = i t+ (p') t—s+—

M 3M'
(59)

where y is the operator representing the momentum of
any one atom. The term linear in t, which dominates at
small t, is thus of purely quantum mechanical origin,
while the term quadratic in t survives in the classical
limit.

Since the atom undergoing a random walk (diffusing
atom) has been suggested as a model for calculating
the self-diffusion function to first approximation in
the classical case, we will next inquire into the possibility
of carrying this model into the quantum realm. In the
classical model a particle moves under the inQuence of
a viscous force and a driving force, the driving force
being of a stochastic nature, fluctuating so that its
average values in time intervals ht are independent of
one another and such that its long time average is

The imaginary components distinguish these widths
from the values computed classically, Eqs. (34) and
(35). For times large compared with ts/(keT) the
perfect gas width (55) becomes identical with the
classical value (34), while for times large compared
with ft/(keT) and for temperatures high compared with
the characteristic temperature Acur/ke the oscillator
width (56) assumes its classical value (35) . The
additional requirement on the temperature, in the case
of the oscillator, arises because it is necessary for many
quantum states of the system to be excited in order for
it to assume classical behavior. At small enough times
the imaginary term dominates these expressions,
because the imaginary part of ie'(t) becomes propor-
tional to t while the real part becomes proportional to
t'. Indeed this can be shown to be a general property of
any system described by a time-independent Hamil-
tonian and possessing no mass transport. One expands
the operator 0~~(x, t) in powers of t after writing

exp[i' r~(t)7=expLit&/tt7 expLi~ rg(0)7
XexpL —itH/A7, (57)

where H is the Hamiltonian of the system. A generalized
width of the distribution, w, (t), is defined by the
relation

p(0)
r(t) —r(0) = (e &'—1)

3fg

P—-)' dt' (t')Ee-«- '& —17, (61)
g 0

where p(0) is the momentum operator for the atom
at t=0.

From (61) one evaluates the commutator

Lx r(0), x r(t)7=ihM —'rt-'C( —rtt)~',
where

C(x) =e*—1.

(62)

(63)

Since the commutator is a c number, the product of
exponentials in Q~~(x, t) can be rewritten by the rule

gAgB g~s [A,BI/(A/B)

Setting 2 =ix r(0) and 8=ix r(t) one finds

(Qn(, t))=expI -,'i7zM-'rt-%( —rtt) '7
X(expL —iM 'g 'C( —gt)x. p(0)7)

X(exp' —iX(t)7), (64)
where

X(t) =rt ')" dt'x. f(—t')4 (itt' —rtt). (65)

The second factor on the right of (64) is evaluated in
a straightforward manner. In the third factor the
angular brackets designate an average over the Quctua-
tions in f(t). From the stochastic assumptions concern-
ing f and the central limit theorem, X(t) is known to
be normally distributed about the mean value 0. Its
standard deviation can be calculated from (65) and is

(X'(t)) =-'s~'g '(f')htL:,'rt 'C (—2rtt)
—2q-'c (—~t)+ t7, (66)

"S.Chandrasehhar, Revs. Modern Phys. 1S, 1 (1943).

zero. The stochastic driving force represents the
"random" impacts of other atoms, while the viscous
force represents the correlated retarding impacts of
other atoms which develop when the atom has a
Rnite velocity. One postulates that the position of the
atom r(t) obeys the Langevin equation"

d'r/dt'+rtdr/dt= f(t),

where rt is a coeKcient of viscous damping, and Mf(t)
is the stochastic driving force. As a model for our
purpose, we shall now suppose that r(t) and its time
derivatives are to be interpreted as Heisenberg operators
in the standard way, and r(t) will be used for r~(t) in
Eqs. (46) and (48). f(t) will be supposed to be a c
number subject to the same stochastic behavior as in
the classical theory of the Brownian motion. '~ The
operator Eq. (60), being linear, is integrated in the
same way as the corresponding classical equation:
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where (f') is the mean square value of f and At is a
small interval of the order of the autocorrelation time
of f(t). With this information the third factor in (64)
can now be evaluated. When the result is inserted in
Eq. (48), the self-diffusion function G, (r, t) is again
found to be a Gaussian in r with the width

which is the same as the form (40) describing the simple
classical diftusing atom except that the constant c is
complex. Equations (67) and (68) have been derived
on the implicit assumption that t&0. For negative t
one may determine m from the relation

w( —t) =w" (t). (69)

Assuming the validity of the Einstein relationship

q= kT/MD, (70)

which insures that the velocity distribution of the atom
becomes Maxwellian after a long time, the asymptotic
width (68) may be simplified to

w(t)~t —2iAM 'r+4D(t —r) $I, (71)

(72)r = 1/g.

It would be desirable to have the Fourier transform
of the self-diffusion function with width given by
Eq. (67), but the time integration therein is intractable.
As a useful approximation, bringing out the major
features of the model, (67) can be replaced by two
separate forms valid in the realm of small and large t,
respectively. For t small compared. with the character-
istic time v the linear quantum term predominates in
zv'(/), and for t large compared with r the linear classical
term and the constants predominate. Thus, as a very
rough description of the quantum mechanical diffusion
model, we choose

w'(t)= —2iAM 'i, 0&3&v,

m'()) = 2iAM '7+4D() —7), I.)r. —
(73)

(74)

2ivl 2k~T
w(i) = c {—qt)+ 4'( —qt)

Mq Sf''
2 8

+D 4(—-2gt)—+ 4( -qt)+—4t . (67)
'9

Here iq '(f')At has been replaced by D, the diBusion
coeKcient in this model. For small times C (—qt) =—

g&,

and the first term on the right of (67) gives an imaginary
contribution to w'(/), of purely quantum mechanical
origin. The second term is essentially classical, and
commences as t'. These terms are in agreement with
the first two terms of the generalized series (59). The
final term in (67) is proportional to I' at small t. At
large t, C (—iIt)—+1 and

2i7i 2k' T 6D
w.(t)~ ~ — + — +4DI

I

«.= (ksT/MD2) '*. (76)

The two types of behavior occur in the regions ~((~,
and «))«., respectively In t.he former 7&(1/(«'D), in
the latter 7)&1/(«'D). In the region of small «, the first
term of (75), considered as a function of a&, is low and
broad, the second is high and narrow. The numerator
of the second term is approximately 2~'-D for co in the
range of the peak, hence the peak is almost symmetrical
about cv =0, and has a width ~'D and a Lorentzian shape,
just as in the classical diffusion model )see the middle
factor in Eq. (43)7. Here there is essentially no recoil
e8ect. In the region of large f~, on the other hand, the
roles of the two terms in (75) are reversed, the 6rst
being high and narrow, the second low and broad.
The high peak is symmetrical about coo, where

~0=A«'/(2M). (77)

It is seen that here there is an average loss of energy on
scattering, which is caused by recoil of the scatterer,
and the magnitude of the loss, oro, is precisely the same
as for a free atom or a Maxwellian gas. This agrees with
the observations of Hurst and Henshaw on liquid
helium. "The detailed shapes of the peaks are certainly
not reliable in the present approximation. In particular
Eq. (75) predicts fine structure in the cross section
which can be traced to the discontinuities in slope of
the w(I) employed, and which is undoubtedly spurious.
Also the width of the peak in the case of large ~ is
independent of ~. If one improves the approximation
(73) by including higher powers of I the width of this
peak becomes an increasing function of ~, although the
extent of its dependence on ~ can be determined only
by more detailed calculations.

The transition from bound-particle to free-particle
behavior at about f~:, is entirely reasonable, and rep-
resents the fact that, for large momentum changes of
the neutron, the recoil is sufhcient to outweigh the
binding of the atoms in the liquid. For liquid lead near
its melting point, a.=5.4&10' cm ', which occurs in
about the middle of the scattering pattern for neutrons

Transforming the Gaussian defined by (69), (73),
and (74), one finds

2 sin(~r —A«~v/2M)
I', (x,(o) =

M —AK /2M

2«'D cos(&or —A«'r/2M) —2&v sin(cur A«—'r/2M)

(«'D)'+co'
(75)

The first, term on the right of Eq. (75) comes from the
small time region ~t~ &r, the second term from the
large time region ~t~) 7.. Considering this expression
as a function of co at fixed I~:, one discerns two distinct
types of behavior, depending on whether ~ is small or
large. Define a critical parameter
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of wavelength 1 angstrom. From (77) it is seen that the
amount of energy shift varies inversely with the mass
of the scattering atom. For lead, this shift at ~, is only
about 3% of the peak breadth at this point, and hence
is negligible. For atoms ten times lighter than lead,
the recoil shift is beginning to be appreciable and should
not be neglected for atomic masses much below 20,
except in cases of abnormally small momentum change.

6. GENERALIZATION TO POLYATQMIC SYSTEMS

The time-displaced formalism and the convolution
approximation are easily generalized to apply to the
case of a liquid made up of several atomic species. For
completeness the basic formulas will be presented here.
Previously used symbols will be given a suffix I (or m)
to refer to the nth (or mth) atomic species. Summations
over these indices will always run from i to J, where J
is the number of species present. G(r, t) must be general-
ized to a set of functions G" (r, t), the classical limit of
which is the probability of finding an e-type atom at
r and t if an m-type atom was at the origin at time zero.
The quantum mechanical definition in terms of
operators 0;; follows from an obvious generalization
of Eq. (47). The self-diffusion function for the eth
species will be written G, "(r,t), and we let g" (r)
= G" (r,0). The convolution approximation is expressed
by the relations

e, m=1. J. (78)

The coherent and incoherent scattering cross sections
are

d'O-„i,
P g„a,."a,.~

l [G"~(r,t) g,"]-
h~p~ m

)&exp[i(~ r —~~))drd~ (79)

d &inc
Qx.(a;„,")') G."(r,t)

dOdc hkp ~

Xexp[i(v. r—a&t)$drdt, (80)

where x is the fraction of the atoms that are of type m.
Defining the Fourier transform of G, "(r,$) as F,"(x,M)

and the transform of g" (r) —go" as y" (v), in analogy
with Eqs. (15) and (16), the convolution approximation
leads to the simplified expressions for the cross sections

~ gine
Qx (a;„,")~I',"(x,(u).

~0~~ h&p ~
(82)

p,"(x,M) =
(D ~')'+a&'

(83)

The general physical content of these relations
seems to require no further discussion at this stage.

j. SUMMARY AND CONCLUSIONS

Expressions for the coherent scattering cross sections
of simple liquids for slow neutrons have been derived
on the basis of two types of approximations: (a) the
convolution approximation, which expresses the time-
displaced pair distribution in terms of the radial
density function and a self-diffusion function for a
single atom; (b) a Gaussian approximation for the
self-diGusion function. The width of the Gaussian is
time-dependent and has certain general properties at
large and at small times, and a behavior at intermediate
times which can be inferred from simple models.
The most sophisticated model considered in detail
here has been the quantum analog of Brownian motion.
A slightly cruder model is afforded by the classical
Brownian motion. The neutron scattering is seen to
involve a spread in outgoing energies with a width that
increases rapidly with increasing scattering angle, and
with a reduction in average energy attributable to
recoil. The recoil is greater for light substances and
large momentum changes, and is unimportant for atoms
of intermediate or high atomic mass. The formulas
derived here do not show the recoil effect unless the
scatterer is treated quantum mechanically. The spread
in energy produced by scattering at any given angle
appears to be determined primarily by the coefficient of
self-diffusion for the liquid, and may well afford a
useful independent method of measuring this coefficient.

The development presented here has the merit of
giving simple results which contain a good deal of
physical meaning and appear to possess the right
qualitative features. Because of the several approxima-
tions employed, the accuracy of the Anal formulas can-
not be stated with certainty, and it is highly desirable
that they be subjected to experimental tests.

In the classical diffusing atom model, species e has
the self-diffusion coeScient D„, and the function F,"
is given by

2D„&'


