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New Method in the Theory of
Superconductivity

P. W. ANDERSON

Bell Telephone Laboratories, Murray Hill, New Jersey
(Received February 24, 1958)

REVIOUS work! has shown that plasmon effects
play an important, if hidden, role in the Bardeen-
Cooper-Schrieffer theory? of superconductivity: they
are essential for understanding the zero-momentum
pairing condition. For this reason, at least, a deeper
justification of the B.C.S. theory must be good enough
to treat plasmon (long-range Coulomb) effects correctly.
Our method obtains the ground state and elementary
excitations of the B.C.S. superconductor while including
the Coulomb forces and the higher-order corrections
from the phonon forces by a method equivalent to the
Sawada-Brout theory of correlation energy® (which is
exact in the high-density limit).
One way of expressing the Sawada-Brout theory is to
write down the full equation of motion of the quantity*

Pk, gQ=Ck+Q, a*Ck, 2 (1)
which is, with only Coulomb interactions,

[H px, «%]= (exrq— €x)pr, 2+ 4me? Q0
X220 G2 2w, o (prer, or D ¥ (pr, 09— prcyq, o). (2)

In the sum almost all of the terms are products of two
ox¥; terms which are not involve products cg, .*cx, o
=nyg, and are of two types: the terms q=Q, and
exchange terms. Sawada shows the exchange and non-
linear terms to be negligible in the high-density limit
(this is the random-phase approximation) by comparing
with the Gell-Mann—Brueckner theory,® so that the
equation of motion simplifies to

[H,pk, aQ] = (€k+Q - ék)pk, 2
+4re? Q22 p% (nk, o — Nkt 0);  (3)

where pQ = Zk, 7 Pk, ,,Q.

This leads to the plasma oscillations as well as giving
the Coulomb corrections to the energies of the individual
particle modes. An observation which is trivial here
but will not be in our generalization is the presence of
nonphysical modes, for example | k|, |k+Q|>%r, for
which (3) gives the correct energy but which, when
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applied to the Fermi sea or to anything derived via (3)
from it, are zero identically. The absence of these modes
is a subsidiary condition on the theory.

Our method generalizes this by observing that in the
B.C.S. ground state of the superconductor not only the
7k, - have finite averages, but also the quantities

b1 =iy it b * = et *c_iy *. “4)

When the equations of motion (3) are generalized to
include terms which are linear when the 4’s as well as
n’s are finite, they involve the quantities

b =crror¥e ¥, bl=c_r_qicxt; (5)

and including the extended form of the attractive
phonon interaction used by B.C.S.,? the equations of
motion are

[H,pxt¥]= (ex1q— €x)pxt®
+4re B Q0 p% (it — nxiqQt)
Y GV —2mel k=K | )
X [bx 0 (0x®— (b—r—q~9)*)
F 0 (b~ *—bx10"bi %], (6)

(where we neglect Q relative to k—k’ wherever per-
missible) and

[H,ka:l = - (ek+Q+ ek)ka— 27r62ﬁ29’1Q“2
X (004 b0, ) — L GV — 2m?Q7 | k—K' | 2)
X [0k (pxt+poi—i®)+bi(ntn_1q)].  (7)

There are additional equations for the deviations
0bx® and ny, , of the b”’s and #’s from their ground state
values. These contain constant terms unless a certain
condition for equilibrium is satisfied, which for V=0
leads trivially to the Fermi sea but in the supercon-
ducting case is the B.C.S. integral equation determining
the ground state. The linear terms then give equations
similar to (6) and (7) with Q~2p? terms absent.

Equations (6) and (7) become manageable only when
the auxiliary conditions which eliminate nonphysical
modes (single-particle excitations which do not jump
the energy gap) are used. In this step it was necessary
to use Bogoliubov’s description of the ground state in
terms of a transformed set of fermions.® We find the
following types of excitations:

I. A set of individual particle modes displaced by an
amount of order 2~ from the continuous spectrum with
energy gap of the Bardeen theory.

II. A set of plasma modes with a dispersion relation
very like that of Bohm and Pines.* In the absence of
the plasma (Q~?) terms, these occupy the energy gap
and obey some of the relationships given in reference 1,
but have a phonon-like dispersion law.”

IIT. A single Q=0 mode at w=0 which corresponds
to a coordinate conjugate to the total number of elec-
trons N. The zero-point motion of this mode auto-
matically fixes IV ; this feature is what allows us to work
with the b operators, which do not conserve this number.
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From this the following conclusions may be drawn:

(1) By calculating the zero-point energies and
motions of these modes as in reference 3, the next
higher-order corrections to the B.C.S. theory could be
obtained. We justify this theory in that we show that
these reasonably large corrections do not change the
excitation spectrum in essentials.

(2) Collective and plasma effects indeed reinforce
the B.C.S. theory in the way predicted in reference 1,
even though the exact matrix elements in B.C.S. are
incorrect because of the neglect of collective effects.

I am indebted to H. Suhl for help with some of the
calculations and for many conversations. A more
complete description of the method will be published
later.
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Sign of the Cubic Field Splitting
for Mn*+ in ZnS

G. D. WATKINS

General Electric Research Laboratory, Schenectady, New York
(Received April 1, 1958)

HE electron spin resonance of Mn*+ in cubic
ZnS has been studied by Matarrese and Kikuchi.!
They report that in the spin Hamiltonian

H=g8H-S+1a(SA+S,445.9441-8,

one has ¢=-—8.357F0.06 gauss and 4=-68.4F0.1
gauss. Actually, since the measurements were made at
room temperature, a change of sign for both the cubic
field splitting constant ¢ and the hyperfine interaction
constant 4 would also produce the same spectrum. In
order to distinguish between the two possibilities, it is
necessary to measure the relative intensities of the
transitions at low temperature.? We have made such a
measurement® at 4°K and at a frequency of 20 kMc/sec,
and find that the signs reported were in error. They
should be a=+8.3570.06 gauss, 4 = —68.4F0.1 gauss.

This is of interest because of a recent theoretical
treatment of Mn*+ in cubic fields by Watanabe.* He
concludes that a should be positive regardless of the sign
of D in the cubic potential —eV =D (ax-+y*+2t—3r%).
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Most measurements for manganese have been in solids
where the ion is surrounded by six negative ions in
approximate octahedral symmetry. In these solids D is
positive, and the sign of ¢ has been found to be positive
also.’ In ZnS, the ion is presumed to be surrounded by
a tetrahedron of four negative sulfur ions and the sign
of D would therefore be negative. As a result, this
system provides an important test for the theory, and
the positive sign for ¢ appears to confirm Watanabe’s
result. Similar agreement has been found for manganese
in germanium, where the sign of a has also been deter-
mined to be positive.$

However, the crystalline model does not predict the
correct sign of the g shift in these substantially covalent
solids. Watanabe’s result states that the g value should
always be less than the free electron value (2.0023).
The measured values are 2.0025F0.0002 in ZnS! and
2.0061F0.0002 in germanium.® Positive g shifts are
also indicated in powders of CdS, ZnSe, and CdTe.”
As a result, the agreement in the sign of a does not
necessarily indicate that the crystalline field model can
be successfully applied to such highly covalent solids.
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International Business Machines Watson Laboratory at
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HE low-temperature electrical conduction of

n-type germanjum as a function of applied
electric field is characterized by an ohmic region for
fields less than ~0.2 v/cm, a region of steadily in-
creasing conductivity, and finally a critical “break-
down” field at which the current rises ‘“‘vertically”
with the applied electrical field.! The large variation of
conductivity is due mainly to an increase in carrier
density as, with increasing electric field, the mean
carrier energy increases from its equilibrium value. The
breakdown is associated, in a general way, with ioni-
zation of neutral donors by the impact of “hot”
electrons.! In Fig. 1, data obtained by pulse techniques
are presented to illustrate the behavior at high current
densities.? The essential feature to be noted is that after
a significant ‘“‘vertical” rise the j-E curve becomes
concave downwards.



