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It is shown that the first two terms in the series expansion of the differential bremsstrahlung cross section
{in powers of the energy loss) may be calculated exactly in terms of the corresponding elastic amplitude and
the electromagnetic constants of the participating particles.

I. INTRODUCTION term in this case. The coefficient O.p contains all electric
multipoles whereas cr1 contains all magnetic multipoles
as well as electric ones. The usefulness of Eqs. (1.3) and
(1.4) depends on how close one must come to k=O
before the limit is approximately reached. Barring
accidentally strong energy dependence, one expects, for
the case of strong coupling, that the most important
parameter be k/E. Thus we must have

"'T is well known that the cross section for brems-
.- strahlung in a finite-range force Field has a dk/k
dependence on the energy k of the radiated photon as
k —&0. Except for trivial factors associated with the
current producing the radiation, the coefFicient of 1/k
is, in the limit of k=0, just the square of the elastic
amplitude for the scattering that produced the radia-
tion. (Elastic, as used here, refers to the absence of
energy loss to the electromagnetic field rather than to
the identity of the initial and final constituents of the
collision. ) It will be shown in this paper that not only
the 1/k term but also the term of order zero in k in the
bremsstrahlung cross section may be exactly calculated
as a function of the corresponding elastic amplitude.

This result is a consequence of electric charge con-
servation. It appears to have a wide range of validity:
it was originally proved for systems interacting through
a potential by using the Lippmann-Schwinger for-
malism, but it can equally well be derived using the
formalism of quantum field theory. In this paper we
shall restrict ourselves to the latter case since algebraic
manipulations are thereby reduced to a minimum,
particularly in the relativistic region.

We may imagine the cross section to be expanded in
powers of the energy loss k for small k (we use units
h=e= 1 throughout):

(1.5)k/E«1.

In a normal radiation problem one expects that the
(1+1)st multipole amplitude will have the ratio kd to
the t'th, where d is a length characteristic of the source,
either its linear dimension or, for close collisions, the
wavelength of the scattered particles. The brems-
strahlung problem is peculiar in that one finds, instead,
the ratio ~. The explanation is that there exists another
length, that is, the distance a particle can move with
energy imbalance AE=k. This length is d'=htv=v/k,
so that d'k=n. Furthermore, unless d'))b, where b is
the range of the force producing the scattering, it must
be impossible to separate the scattering from the radia-
tion; we must therefore have, in addition to (1.5),

d'/b =v/kb&)1, or kb/v«1. (1.6)

For a sufBciently singular potential, presumably b

may be replaced by 1/p, leading back to our condi-
tion (1.5).

For a nonrelativistic system the electric dipole ampli-
tude is (ev/k)T where T is the scattering amplitude.
We here calculate the k/E (or kb/v, as the case may be)
correction to it. The electric quadrupole amplitude is v

times as small; we calculate it and also its k/E cor-
rection. The magnetic dipole is k/p= (k/E)v times as
small as the electric dipole; it is calculated here only in
lowest order.

We state in this section our result for two special
systems. Formulas for other systems may be derived
easily using the methods developed in Secs. 2 and 3.

Case A.—Two spin-zero bosons, with initial four-
momenta pi and pi, final four-momenta pi' and p2'.
Particle one carries charge e, particle two is neutral.
The S-matrix element is

Op
o.=—+oi+ko.g+

k
or

(1 2)ko.= o o+ko-i+k'o. 2+

The results just stated predict a unique value for

(1.3)0-p ——lim ko.
k—+p

and

o.i——lim —(ko),
'dk

provided the corresponding scattering amplitudes are
known. The term 0-1 in the cross section arises from an
interference between a term of order 1/k and one of
order 1 in the amplitude. Unlike the situation in the
scattering of light, where there is no interference be-
tween the Thompson and magnetic amplitudes for
unpolarized targets, there is in general an interference

9

(kpi'p2'ISI pip2) =—(2~)4~b(pi'+p2'+k —pi —p2)

&( (32kE,'E2'E,E2) ~M„~„,
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with

(Plv Plv )
M„=el — IT(V,A)

&pi' k p, k& (1.7)

plvp2 ' k $ BT(vqA)
P2„—'+ P—pr I +O(k),

pl'k ) Bv

(Pl'P2' k
+el

pl' k

Where v=pl p2+pl' p2', A=(P2 p2')'—, T iS the in-
variant scattering amplitude, and pl p2 ——pl„p2„. The
photon polarization is e„. For a nonrelativistic system v

is proportional to the average (of the initial and final)
kinetic energy and Qd, is the momentum transfer of
the neutral particle.

Case B.—One neutral spin-zero boson, of four-
momenta qo and qf, and one spin-one-half fermion of
charge e, anomalous moment X, mass m, and four-
momenta pp and pf .

Pl+P2 Pl +P2 + (2.1)

The bremsstrahlung matrix element may be written

p„M„(32kE,'E2'ElE2) (2 2)

where M„=M "&+M &" and M "' consists of the sum
of all Feynman diagrams in which the photon is emitted
before or after the interaction; M„(" consists of all
other diagrams. As k-+0, Mo& 1/k, M"& constant,
independent of how k„~0.

The current that emits a final photon (let particle 1

carry the charge) is

charge exchange scattering, etc. , is obvious; the
generalization to the case where at least one of the
particles has spin ~ is less obvious and will be discussed
in the next section.

Let Pl, P2 be the initial and Pl' and P2' the final four-
momenta of the two particles. The photon has energy-
momentum k, so that

M„=M(pr) (icy„+Ra „„k,) T
iy (pr+k)+222 J &r&=eP '/P, ' k

whereas the current that emits an initial photon is

(2.3)

+T (i ey„+iXo „„k„)
iy (po —k)+222

J &o= —epl„/pl k. (2 4)

(qr ' kprv qqo' kp pv

+el qrv+ — qo.—I
—

i
N—(Po)

pf k pp k ) gv I

+0(k), (1.8)

where T is the invariant scattering amplitude, ex-
pressed in the form T=A(V, A)+2iy (qp+qf)B(V, A),
and where v=po qo+pr qr and 6= (qo —qf)'. Equa-
tions (1.7) and (1.8) are correct to order k.

In general, the methods developed in this paper
make it clear that, given the amplitude for any radia-
tionless process, the amplitude for the process accom-'

panied by radiation may be calculated to order k' in
terms of it.

We give finally the nonrelativistic limit of Eqs. (1.7)
and (1.8). In this limit A= (p2 —p2')'= (pl —pl')'
= (pl —yl')' and v= —(222l+2222) (E+E'), where y, and

yl are the initial and final momenta of particle 1 in the
c.m. system and E and E' are the initial and final
energies of the particles in the c.m. system. One finds
easily:

(P2—Pi).~.(P2,Pl) = —e, (2.6)

where J„(P2,Pl) is the final current and where

P2'+222'=0, i.e., J„=T„(p2,pl)», (p,). (2.7)
Now

J,= (P2+pl)„f(P2'+222', pi'+222', (p2 —pl) )
+ (p2 pl)„g(P2'+222', pi'+222', (p2 —pl)'). (2.8)

In our application, p2
——pl', pi=pi'+k, so that the

coefficient g multiplies k„and may be ignored. Equa-
tion (2.6) tells us that

—2k pl'f(0, 2k pl', 0)= —e,

Equations (2.3) and (2.4) are exact. To prove this, we
use the relation

»e (p2) (p2 pl)vTv (P2)pl)AF c (pl)
=eLAv, (p,)—», (p2)], (2.5)

where Az, is the exact renormalized boson propagation
function and T„ the exact renormalized electromagnetic
vertex operator. It follows from (2.5) that

(Pi —Pi) (E+ETl—
222, k E 2

BT—
2 (Pl+ Pl') —(E,~)

BE
(1.7 N.R.)

or f(0,x,0)=e/2x so that (2.3) holds. The proof for
(2.4) is identical.

The coe%cients of J„(f' and J„")are the appropriate
invariant scattering amplitudes, which we shall call T:
thus

2. DERIVATION FOR TWO SPIN-ZERO PARTICLES

We shall for simplicity consider here radiation by a
system of two spin-zero bosons, of which only one is
charged. The generalization to two charged particles,

1p,

, &p'+k, p.'ITIP,P.
pl' k

lp
(P.',P.'ITI p.-k, P.) (29)

1 k
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The T matrices in Eq. (2.9) conserve momentum and
energy but not mass. I.et us call the initial and final
masses of which the T matrix is a function 3fi and
M&', respectively; the actual masses of the two particles
are m~ and m~. The T matrices with which we have to
deal depend on the two mass values assumed by m~ as
well as on two other variables, essentially energy and
angle. It is convenient to choose these last to be
v=p, p,+p, ' p, ' and 6=(p2' —.p2)'. At Ml=Ml'=ml
the T matrix is a known linear function of the scatter-
ing amplitude. Ke write

T= T(M2'2 Mlo, v, 'h).
Then

M„&"= T(ml2 2k—pl' ml2,
i' k

pl'p2+pl 'p2 +k'p2 r (p2 p2 ) )

Ip
T(ml2, ml2+2pl k,

j'k
pl'p2+pl 'p2 k'p2) (p2 p2) )~

although the details of the correction terms depend on
the system under consideration, the cancellation of the
derivatives of the T matrix with respect to the masses is
a very general result. Thus, although we shall only give
the result for two special cases, the procedure is suffi-
ciently straightforward so that it can be applied to
bremsstrahlung in any kind of process. As our second
example, we consider a boson-fermion collision.

3. DERIVATION FOR ONE SPIN-ZERO AND
ONE SPIN-ONE-HALF PARTICLE

Here, again for simplicity, we consider scattering of
a charged spin ——,

' fermion of four-momentum p, mass
ns, and anomalous magnetic moment P by a neutral
boson of four-momentum q, mass p, and spin zero. The
case of a charged boson may be treated by the same
methods as were introduced in Sec. 2. Although the
case of fermion-fermion scattering is considerably more
complicated, it will be clear that the same methods can
be applied there as here.

Our procedure parallels that of Sec. 2. As before, we
write the radiation matrix element as

Since the over-all current is conserved, we have
ovM ~ (32kEfEool yol o) (3.1)

so that
k„M„=O, (2.12)

M„=e~ — ~T(mlo, ml2 v a)
(pl' k pl k)

Plv Plv
+e — p2 k —p2„+ p2' k —p2„'

plk pl'k
BT

X—(ml', ml', v, D)+0(k), (2.16)
Bp

Where v=Pl P2+Pl' P2' and 6= (P2 —P2')'. It Will be
seen that the derivatives with respect to M' have dis-
appeared from the final formula; that is, the matrix-
element has been expressed, to order k', as a function
of the (mass-shell) scattering amplitude and its deriva-
tives with respect to energy and angle. Before going on
to more complicated processes we may emphasize that

=eLT2(2p, k)+T,{2p,' k) —To(p, +p2') kj
+0(k'), (2.14)

where T„means differentiation with respect to the nth
of the four arguments given by Eq. (2.10). The deriva-
tives in (2.14) may be evaluated at k=0 to give us the
necessary accuracy. From (2.14) and the absence of
singularities of M„") as k —+0, we have

Mv"' =ek2pl„T2+ 2pl„'T 2 (p2„+p2„')To—j. (2.15)

If we now expand Eq. (2.11) in power of k, and add
Eq. (2.11) and Eq. (2.15), we find, keeping only the
first two terms:

where M„=M '"+M &2& with

M„"'=J„' '(pf+k, qr ~

T
~ po, qo)

(p., V. l Tl po -k, Vo)~. '~,-(3 2)

and 3II„&2& again to be determined by Eq. (2.12). Here
we can no longer calculate the J„'s exactly; however,
we can still calculate that part of the J„'s which has a
singularity as k —+ 0; it is, for J,'f),

1
J„&»=u(pf) (icy„+iso„„k„). (3.3)

iy (py+k)+m
and for J ('&

J„"'= (iey„+ihr„.k„)u(p;) (3.4).
iy (p;—k)+m

Now consider the operator

where
Pf Pr+k, Mro= Pgo——m-" 2PI k. — —— —(3.6)

Since m Mf= (pf k)/m—, the m Mf in Fq. (3.5—)
cancels the 1/k singularity, so that its effect may be
included in 3f„&'&. Thus for the purpose of calculating
M„&" we may let

(iey„+iX(r„„k„)J."'=u(pf) ( 2~ P~+Mf), (3 &—).
2pf k

with a similar equation for J„"'.The point now is that

t. 2y PfyM~+m M—rf, (3.5)—
ly (Pr+k)+m 2Pf k
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iy. Pf acting to the right of J„&f' gives —Mf, since Therefore

Mv = eu(pf) 2pfvT1+2ppvT2(—ip Pf+Mf)zp Pf P——fz+Mr(zy Pr)
Mf'+Mfi r Pf = ( i r —P~+My) ( —Mf)

1
+(iy T+Tiy ) —(qf+qo) Tz u(po), (3.14)"2mTherefore the T matrices in Eq. (3.2) have the same

number of independent functions as the real T matrix,
that is, two:

T=A+ ',iy (q&-+qp)B

where, exactly as in Eq. (2.10),

A =A(Mf Mp v, A), B=B(Mg,Mp, v, A),

v=ps qr+pp qo, A=(qr qo)'. —

We now write out M„&'):

M„&'&=u(pf) (iey„+iho„„k„).

where, as in Sec. 2, subscripts refer to differentiation,
and all quantities in (3.14) may be evaluated at k=0.

We turn now to M„('). We may replace
( ip —Pal+Mr)/2pf kby( iy—Pr+m)/(2pr k) 1/2m—

(3 9) The second term, —1/2m, will cancel the next to
the last term in (3.14) and may be ignored. Also, we
expand A and 8 in powers of k; associated with the 6rst-
order term we may set (—ip P~+m)=( —iy pr+m)
since the difference is of erst order and will result in a
second-order product. Finally we note that

zp Pr+M—r)
I [A(M,'m'v+q, kA)

2pr k

zy (qp+qr)+ B(Mr', m', v+qg k, 6)

i~ (qp+qr)—A (m'-, Mp', v —qp. k, 6)+
2

t' iy Pp+M—p&

!XB(m', Mo'-, v —
qo k, 5)

I

2pp k

X (iep„+iho„„k„) u(Pp). .(3.10)

In Eq. (3.10), we have Pt&
——pp —k, Mp' ——m'+2pp k,

v =p, q,+pf qf, and A = (qp
—qf)'. We proceed exactly

as in Sec. 2 by calculating k„M„&')=—k M "). The
only new algebraic points included are the following:

u(pf)iy„( ip p—g+m) =u(pr) 2pf„,

and, of course, that

iy —(pr+k)+m

2pf k zy (pr+k)+m

With these remarks, (3.10) becomes

M„"&=u(pf) (iey„+zha„,k.) T
zy (pf+k)+m

We now add (3.14) and (3.15) to get M„:

+T (iey„+iho.„„k„)
iy (pp —k)+m

(qr'kprv qp'kpppl aT
+eI —+

py k pp k ) Bv

e(2pfvT1+2popT2) u(po) (3 13)

u(pg)iy kI
2pf'k

ol
M„=M„o&+M„"&,

iy k
=u(pr) — iy (pf+k)+m ——

2pf k

pf k

iy kl
=u(P,)I1—

I, (3»)
2m i '

/ zq Pp+Mpq —
/ iq kq

lz~ ku(po) =I 1+ lu(po).) 2m )2po k

( iy ky
k M&'&=eu(pr)

I
1— !T(Mfz,m', v+qf k, 6)

iy kq—T(m', Mp', v —qp'k A)l 1+—l u(po) (3 13)
2m )

The calculation of k Mo) is now straightforward and
yields

M„= u (pf) (icy„+iho „„k„) T
iy (pr+k)+m

+T (icy„+A&r, „k„)
zp (po —k)+m

(qf k qp'k ) l9T
+el p~. qf.+ —po—. qo.—

I

—u(po)—

&peak

ppk )Bv

+O(k). (3.16)
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