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I

The structure of the S states possible for a system consisting of a A particle and two nucleons is discussed,
and criteria are laid down for a trial wave function suitable for describing the orbital motion. In order to
obtain an upper bound for the A-nucleon interaction strength, variational calculations are carried through
for the hypertriton with a simple trial function. Following the discussion of the results, it is concluded that
it is very unlikely that there should exist bound states for the hyperdeuteron or for .&He'.

I. INTRODUCTION

HE simplest system consisting of nucleons and a
A. particle for which a bound state is known to

exist is the hypertriton &H'. Nine clearly identified
examples of +H' decay events are listed in the world
survey of hypernuclei recently given by Levi Setti,
Slater, and Telegdi. ' The binding energy Bz for the
A particle in the hypertriton is still subject to consider-
able uncertainty. Its value is obtained from the ex-
pression

Bs——Qg —T+Br- Bd,

where Bd and B~ denote the deuteron binding energy
and the total binding energy of the nuclear fragments
resulting from a m. -mesonic decay of zH', T denotes the
total kinetic energy released in the decay, and Qz is the
energy released in the charged mode (a. +p) of free
A decay. At present the straggling in T, due to the
causes discussed by Levi Setti et al. , contributes &0.31
Mev to the uncertainty in Bz. There is also some doubt
about the value of Qz. The B& values given by Levi
Setti et a/. ' were obtained by using an early Qz value
obtained in an emulsion study by Friedlander et al. ':
Q&=36.9+0.21 Mev. Application of the range-energy
relation used to calculate T for the hypernuclear decay
events to the A-decay data of Friedlander et a/. leads to
a value' of 36.75&0.2 Mev for Qq. Further emulsion
data obtained by Barkas et a/. ' have led (with use of
the same range-energy relation) to the value 37.45
&0.17 Mev. The average of these last two values,
weighted by the number of events (9 for the former,
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18 for the latter), is

Qq= 37.22&0.22 Mev. (2)

With this value (2), the identified hypertriton events
correspond to the binding energy

Bg(gH') =0.6&0.4 Mev. (3)

At present the only definite statement which can be
made is that 8& for the hypertriton is positive and
almost certainly less than 1 Mev. Fortunately the
qualitative conclusions to be reached in the present
work remain the same for any value of 8& within this
range.

The low value of the total binding energy Bd+Ba =2.8
Mev for the hypertriton means that this system has a
very open structure, the mean separation between any
pair of particles being at least of order tt/[M(Bd+Bq)] l

3)&10 " cm, which is large compared with the range
of their nuclear interaction. This means that, while the
nuclear interaction is effective between two of the
particles, the third particle is on the average relatively
distant from them, so that it has no important e8ect
on their mutual interaction. ' The interaction of each
pair of particles therefore takes place under circum-
stances closely related to those of free two-body collision
at low relative energy. For this reason the analysis of
the hypertriton is of special interest in the study of
the nuclear interaction of the hyperon, since it may be
expected to lead to a reliable estimate of some of the
low-energy properties of this interaction which do not
depend on its detailed form. For example, this analysis,
taken together with other evidence on the spin-de-
pendence of the A-nucleon interaction, ' leads to the
conclusion that there is no hyperdeuteron (i.e., there is
no bound system consisting of a A particle and one
nucleon), and this is consistent with the absence of any

' This is also the reason why any three-body forces which may
exist between a A particle and two nucleons will play a very small
role in the hypertriton. Such three-body forces could arise, for
example, from the pion-pair interaction A~A. +7i-+w allowed by
charge independence Lsee R. H. Dalitz, Phys. Rev. 99, 1475
(1955lj, a pion being transferred to each of two neighboring
nucleons.

'R. H. Dalitz, Reports on Progress in Physics (The Physical
Society, London, 1957), Vol. 20, p. 163.
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hypernuclear event which requires the existence of a
hyperdeuteron for its interpretation.

The A particle is an isotopic-spin singlet state (2'=0).
Charge independence then requires' that the A.-neutron
and A.-proton interactions be identical for a given state
of spin and relative orbital motion. In terms of the
interactions which are known to exist, contributions to
these forces may arise from (a) the exchange of two
or more pions between the A. particle and the nucleon
(the exchange of a single pion is forbidden by the
charge symmetry of the interactions), (b) the exchange
of one or more E mesons between the A and the nucleon,
and (c) the exchange of both pions and E mesons.
Each of these contributions gives rise to an interaction
whose range is It/2rtt c=0.7X10 " cm or less, which is
shorter than the range of the nucleon-nucleon interac-
tion. The exchange of pions alone (or with an even
number of E mesons) would lead to an ordinary force
between A. and nucleon, whereas the exchange of an
odd number of E mesons (with or without additional
pions) transfers "strangeness" between the A. and
nucleon and will therefore contribute an exchange term
to the A-nucleon interaction. This difference between
these two mechanisms for the A.-nucleon force may be
seen clearly by considering the simplest contribution of
each type, namely

(a) x+x~x+~+~+x~x+ x,
(b)ft+x~x+E+x~x+tt

The contributions from the two mechanisms could be
most readily distinguished by comparison of the inter-
actions between A and nucleon in S-wave and I'-wave
relative motion of given total spin, since the exchange
term has a sign proportional to the parity of the relative
motion, the ordinary force having a sign independent
of the parity of this motion. In a system as lightly
bound as the hypertriton, however, the interactions
between each pair of particles take place almost entirely
in relative S states, so that the distinction between
these two types of force has little effect.

The S-wave interaction between A and nucleon may
still have spin dependence, the strength of the inter-
action depending on whether the spins are coupled
parallel or antiparallel. These interactions may also
contain tensor terms, as does the nucleon-nucleon inter-
action. The short range of the A.-nucleon forces means,
however, that any A-nucleon tensor forces would con-
tribute much less to the D state of the hypertriton than
does the neutron-proton tensor force, since the cen-
trifugal barriers effective in the D state will prevent
the very close A-nucleon approach necessary in this
state before the short-range A.-nucleon tensor force
comes into play. It is therefore reasonable to expect
that the D state of the hypertriton will be considerably
smaller in magnitude than the (already small) com-
ponent of D state in the normal triton. In this situation,

R. H. Dalitz, Phys. Rev. 99, 1475 (1955).

2. POSSIBLE STATES OF A A. PARTICLE
AND TWO NUCLEONS

The A.-nucleon interaction will be represented by an
equivalent central potential as discussed above. This
potential is denoted by V„ for the parallel spin con-
6guration where the A-spin 5 and the nucleon spin
co'uple to a total spin S+s, and by V, for the anti-
parallel con6guration with total spin S——,'. With this
notation this potential may be written generally

tr S+S+1 S—rr S
Vo+ —V„

2S+12S+1

where the coefFicients are the spin projection operators
for states of total spin S+rs and S—rs; S denotes the
A-spin operator, and —,'c the nucleon-spin operator.
With this assumption of equivalent central forces, the
wave function for the system will be the product of a
spin wave function and a coordinate wave function.
In this section we discuss the possible spin wave func-
tions and their properties.

The system of a A. and two nucleons can exist in

e D. Glaser, Proceeds'Ngs of the Severtth Artrtttat Rochester Confer
ence on High-Energy ENclear Physics, 1957 (Interscience Pub-
lishers, New York, 1957), Sec. 5, p. 24; L. Leipuner and R. K.
Adair, Phys. Rev. 109, 1358 (1958); Alvarez, Sradner, Falk-
Vairant, Gow, Rosenfeld, Solmitz, and Tripp, Nuovo cimento 5,
1026 (1957).' M. Rudernran and R. Karplus, Phys. Rev. 102, 247 (1956);
Schneps, Fry, and Swami, Phys. Rev. 106, 1062 (1957)."T.D. Lee and C. N. Yang, Phys. Rev. 109, 1755 (1958).

the effect of a tensor component in the A-nucleon force
will be indistinguishable from that of an additional
central interaction in this force. What is important for
the binding of the hypertriton are the low-energy
scattering characteristics of the A-nucleon interaction,
the zero-energy scattering lengths, and the effective
ranges; the central potentials to be used are to be
considered only as equivalent potentials giving the
same low-energy scattering as the actual A-nucleon
interaction.

It is now generally accepted that the A. particle has
spin ~. This is consistent with all of the evidence ob-
tained to date' on the angular correlations in A-particle
decay following the m +p reactions, although much of
the data does not really exclude a spin value of —', . This
is also true of the Ruderman-Karplus argument' based
on analysis of the internal conversion coefFicient for
nonmesonic decay of helium and of heavier hyper-
fragments. Also Lee and Yang" have pointed out that
the large up-down asymmetry recently observed in A

decay following the s +p production reaction excludes
high spin values for the A. particle, being consistent only
with a A-sPin value of sror (Possibly) ss. Since a t1 sPin
of ~~ turns out to be slightly exceptional in the dis-
cussion of the &H' system, we shall give the formulas
for a general A.-spin 5, although it is now most probable
that 5=—,'is the physically relevant case.
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states of isotopic spin T=0 or T= 1. The T=0 states
occur only for (Anp) systems and require parallel spins
for the neutron and proton. The A.-spin S can then
combine with the spins of these two nucleons to give
states of total spin 5+1, S, 5—1. The expectation
values of the interactions effective in these states are
the following:

j=S+1: Vi, (ep)+2V„(AK),

the magnetic moment equals that of the A particle,
p+ say, since the nucleons are in the singlet state. For
T=0, the magnetic-moment operator reduces to

M=s(r .+I -)(~.+~-)+(~~/5)S (7)

In the state j=S+1, the total magnetic moment is
simply the sum (p„+p„+pz), while in the configuration
j=S—1,

j=S:
25

V„(rrp) y V„(AX)
2S+1

2(5+1)
V.(Am, ), (5b)

25+1

1q t 1q
p(s —1)=l 1——

lt ~—11—l(~n+t -)s) & 5)
In the intermediate configuration j=5 (of interest
only for S=-', ), the magnetic moment is

j=S—1: V„(esp)+ 2V.(Aat). (5c)

For the &He' system there is an additional Coulomb
repulsion between the protons. From (6) it is clear that
both the nucleon-nucleon attraction" and the A-nucleon
attractions are weaker in a T= 1 state than in the
lowest T=O configuration. For this reason it is natural
to identify the observed zH' system with the T=O
configuration of lowest energy. This is consistent' with
the absence of experimental evidence for a ~He' state
corresponding in total energy with the observed hyper-
triton.

It is also of interest to list the magnetic moments
associated with each of these states, since Goldhaber"
has pointed out the possibility of measuring the mag-
netic moment of hyperons and hypernuclei by observing
the e6ect of a strong applied field on the axis of any
anisotropy in their decay. For the T=1 configurations

"G. H. Derrick, Nuovo cimento 5, 565 (1956).
"This has been emphasized by J. T. Jones and J. K. Knipp,

Nuovo cimeirto 2, 857 (1955)."M. Goldhaher, Phys. Rev. 101, 1828 (1956).

In these expressions advantage has been taken of the
symmetry of the space wave function with respect to n

and p, so that V(An)= V(Ap)=V(AK). Generally the
lowest state for which T=O has spin 5+1 if parallel
A-nucleon spins are favored (V„)V ), or spin 5—1 if
antiparallel A-nucleon spins are favored (U )U~). For
5=—'„however, the state j=5—1 does not exist; and
with V,&V„, the lowest state will have j=5=-', , the
mean A-nucleon potential being a combination of both
V and V„. The case with V & V„and 5=—,

' must
therefore be regarded as an exceptional case. This
situation has been remarked also by Derrick. "

In the 7=1 states, the two nucleons have unit
isotopic spin and form a singlet spin system. These
states therefore have spin j=5 and appear as charge
triplets in pe, pH', and pHe'. The expectation value of
the total interaction is here

2(S+1) 25
V„„,(np) y V„(AX)+ —V.(AX). (6)

25+1 25+1

1 q 1
~(5) =

l
1— l~~+ (~.+t -).

s(s+1)f s+1
3. TRIAL WAVE FUNCTION AND VARIATIONAL

CALCULATION FOR pH'

Since the low binding energy of the A particle in the
hypertriton means that the A particle is distant from
the nucleons for a large fraction of the time, it is tempt-
ing to consider a product form,

p =y„„(r)g(s), (8)

as being appropriate for this system, where r is the rs-p
separation and s is the distance of the A. particle from
the rs-p center of mass. This has the advantage of giving
the correct asymptotic form to f for large s if g„~ is
chosen to be the free-deuteron wave function; in this
case only the small separation energy 8& is left to be
accounted for by the A-nucleon interactions. If this 1t is
taken as a trial function for a variational calculation of
the A-nucleon interaction to produce a given B~, then
it is clear that this will lead at least to an upper bound
for the actual strength of the A-nucleon interaction;
a variational calculation of this kind has been made by
Derrick. "The upper bound obtained in this way will,
however, be a poor estimate, becoming increasingly
worse the shorter is the range of the A-nucleon inter-
action. The wave function (8) does not have sufficient

flexibility to allow strong correlation in position between
the A. and a nucleon. The A-nucleon interaction is
effective only when these two particles are close to-
gether, so that the function (8) does not lead to a
sufficiently large estimate of the attraction due to the
A-nucleon interactions. This defect becomes increasingly
serious with decreasing range for these interactions.
This may be seen in the following way. Taking the
form Uf(r/a) for the A-nucleon potential, the average
potential seen by the A. particle in the motion described
by the function (8) is obtained by folding this A-nucleon
potential with the probability distribution p„„(r) for
the rr-p separation. When a is sufFiciently small, it is
clear that this effective potential is given by p„~ (2s)
multiplied by a factor proportional to the volume
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integral Va' of the A-nucleon interaction. For a given
Bq, therefore, the trial function (8) requires a potential
strength V proportional to a ' for small a. On the other
hand, it is known that the correct potential strength V
has the asymptotic form Ca ' for small a, '4 the correct
wave function having strong correlations between the
particles. The upper bound for U obtained with (8)
therefore becomes increasingly worse as a decreases;
this was already realized by Derrick. ."

The wave function (8) may also be used allowing dis-
tortion of g „(r) from the deuteron form. This can be
advantageous despite the corresponding increase in the
m-p relative energy, since the more concentrated average
potential seen by the A particle can give the increased A

binding necessary for a given total Bz+Bz with a
smaller value of U. If both p and g are permitted to
vary, however, it is essential that a finite range be
used for the A-nucleon potential, which corresponds to
some physically reasonable mechanism. As was first
shown by Thomas, "a zero-range interaction allows the
system to collapse, as small a volume integral Va' as
desired being obtained for a fixed 8& by considering
sufhcient collapse. On account of the ease with which
the n psystem ma-y be distorted, not even a local
minimum in any physically reasonable region will be
found for the volume integral of the A-nucleon potential
corresponding to a given Bs (see Appendix).

The following features appear to be necessary in a
variational calculation in order that the upper limit
obtained be reasonably close to the physically correct
value:

(i) It is essential that finite-range interactions, which
are appropriate to the physical situation, should be
used (although it will be shown that there are certain
parameters whose determination seems relatively in-

sensitive to the range assumed, in the region of physical
interest).

(ii) The trial wave function must have sufficient

flexibility to allow strong correlations in position be-
tween the A particle and each nucleon; this is necessary
in order that the contribution of the strong short-range
A-nucleon interactions to the total potential energy
should be estimated adequately. The wave function
should also have a long tail for separation of the A par-
ticle, corresponding to the low separation energy 8&, in
order that the A kinetic energy should not be over-
estimated.

(iii) The separation energy (Bd+8&) of each nucleon

being considerably larger than the A separation energy

Bg, an appropriate trial function must clearly allow a
lack of symmetry between the A particle and the
nucleons; this is also required by the rather different

ranges of the A-nucleon and nucleon-nucleon inter-
actions.

"L. H. Thomas, Phys. Rev. 47, 903 (1935); N. Svartholm,
thesis, Lund, 1945 (unpublished).

Sx ridrgr2dr2r3dr3
It'(M+Mg)

2MMg

2

X P
~ ~

+t(123)+t(231)+t(312)
'=r &ar, )

ts'(Mg —M) 8$
i

—t (123)+ t (231)+ t (312)
2MMp (Brs)

—Uy(2", )lb' —0 Lg(2~r, )+g(2~r, )]P

(B.+B~)4' —&~ o, (1o)

(r,s+r,' rj,s) Bp Op-
t(sjt't) =

~

2r,r; ) ar, ar;

This inequality (10) will be used here to provide a
variational principle for the strength U of the A-nucleon
potential effective in the configuration considered. The
masses of A and nucleon have been denoted by M&
and M, respectively.

Calculations have been carried through only for
exponential and Yukawa shapes for f and g, the forms
of the nucleon-nucleon and A-nucleon potentials. For
Yukawa shape these functions are written e '""/21rr,

where 2m=2. 1196/b in terms of the intrinsic range b;
for the exponential shape, e '"" where 2~=3.5412/b.
The parameters for the nucleon-nucleon potentials
were taken from the low-energy p-p scattering data"

E. P. Wigner, Phys, Rev. 43, 252 (1933).
"See, for example, R. D. Present, Phys. Rev. 50, 635 (1936);

Frohlich, Huang, and Sneddon, Proc. Roy. Soc. (London) A191,
61 (1947).

J. D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 77
(1950).

One form of trial function which allows these condi-
tions to be met makes use of the triangular coordinate
system (rr, r2,rs) appropriate to a three-particle system.
Here r3 will be taken to be the neutron-proton separa-
tion, r-i and r2 being the distances of the A particle
from each nucleon. These coordinates are subject to
the usual triangular inequalities, rr+rs&~rs, &s+rs&~&r)

r,+r, &~r, . With these coordinates an appropriate trial
function,

lt =u (rs)t (r,)s (r,),

was proposed by Wigner" for three-particle systems,
and this has been used by a number of authors' for
the study of the H' and He' systems. According to the
discussion in the Introduction, these functions I and v

should be expected to have substantially the same form
as the low-energy scattering (or bound state) wave
function for the appropriate pair of particles, at least
over the region of their nuclear interaction.

With triangular coordinates, the variational principle
for the bound state system takes the form
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TABLE I.A-nucleon interaction in the T=0 pH' configuration.

(a) Yukawa
potential

shapes
(ad+a~) Mev

(i) Intrinsic range 0.8411 )&20-» cm
U2 LMev

a (1013 cm 1) p (10» cm 1) s )&(20-» cm)3$ g (10-» cm)

(ii) Intrinsic range 1.4843 )(10» cm
U2 [Mev

a (10» cm 1) P (10» cm 1) s X(20» cm)3j a (10» cm)

2.226
2.626
3.226

0.62
0.64
0.67

0.69
0.71
0.71

0,76 489
0.77 494
0.78 501

—1,8—2.9—2.0

0.36
0.39
0.43

0.65
0.65
0,66

0,68 766
0 70 786
0.72 813

2 02—2.4—2.6

(b) Exponential
potential

shapes
(Bd+Bg) Mev

(i) Intrinsic range 0.8411)&20» cm
U2 )Mev

n (10» cm ') P (10'3 cm ') s &((20» cm)3j a (10» cm)

(ii) Intrinsic range 1.4843 )&20» crn
U2 LMev

n (10» cm 1) P (10» cm 1) s g(20-» cm)3] z (20-13 cm)

2.226
2.626
3.226

0,52
0.55
0.58

0.52
0.53
0.53

0.75 492
0.76 500
0.77 510

—1,9—2,0
2 ~ 1

0.29
0.33
0.37

0.52
0.52
0.52

0.64 742
0 66 772
0.70 810

—2.0
202—2.6

and from the deuteron binding energy" Bd=2.226 Mev.
For the Yukawa shape the intrinsic range was taken
to be 2.4995&10 " cm, the volume integral of the
potential then being 1404 MevX(10 " cm)' for the
triplet state and 952 MevX (10 " cm)' for the singlet
state. For the exponential shape an intrinsic range of
2.4938)&10 " cm was taken with volume integrals of
1533 MevX(10 " cm)' for the triplet state and 962
MevX (10 "cm)' for the singlet state. Two cases were
considered with each shape for the A-nucleon potential:
an intrinsic range 6=0.8411)(10 " cm, corresponding
to a Yukawa potential with range parameter 2X
= (b/mxc) ' such as E exchange would produce; and
an intrinsic range b=1.4843)&10 " cm corresponding
to a Yukawa potential with range parameter 2X
= (h/2m c) ', appropriate to the exchange of two pions.

In these preliminary calculations a very simple form
has been used for P:

1b
—Qc a(r 1+r2)c pr3— — (12)

= 16s'/L(a+b) (b+c) (c+a)). (13)

For example, the normalization factor X is expressed as

XsJ(2n, 2n, 2P) = 1)

where J(a,b, c) = —B'I(a,b, c)/BaBbBc The kinetic ene. rgy
terms may be written down explicitly:

It '(M+ Ms) (n+P) (16n'+ 9n'P+4nP'+P')

8n'+5np+ p'

lt'(Mg —M) P(n+P) (5n'+4nP+P')
(14)

2M' 8n'+5nP+P'
's J. M. Blatt anct J. D. Jackson, Phys. Rev. 76, 18 (1949).

This form of trial function has been used" in variational
calculations for the normal triton, where it has provided
much better results than other trial functions of com-
parable simplicity which have been explored. The
integrals required to form the expression (10) may all
be expressed in terms of the basic integral

r
I(a,b, c) =8m', dr&dr&drs expL —(ar&+brQ+crs)$

For exponential potentials, the expectation value may
be written down in terms of the function J; for example,
the two A-nucleon potential terms are each

Us J(2n+2X, 2n, 2P)/J(2n, 2n, 2P) (15)

"It is of interest to note here that, in the present case, s (for
Yukawa shape) cannot exceed 1.15 for 2P = (A/m~c) ' nor 1.27
for 2)I, = (A/2m~c) '. This follows from the stability of &H' against
disintegration to pH2+n.

Expectation values for Yukawa potentials may be
expressed in terms of K=B'I/BaBb; for example, the
two A-nucleon potential terms are then each

UrE(2P, 2n, 2n+2X)/2XJ(2n, 2n, 2P). (16)

The expression thus obtained for U from (10) has been
minimized with respect to the parameters n and p.
The Anal results for the T=O configuration are given
in Table I.

In Table I the upper bound for the A.-nucleon poten-
tial as a function of Bz has been specified in three ways:
(a) by the volume integral U& for both A-nucleon inter-
actions in the system, (b) by the zero-energy scattering
length for the A-nucleon potential, and (c) by its well-

depth parameter s. This well-depth parameter s is the
ratio of the potential strength to the strength necessary
to give a bound A-nucleon system at zero energy.
Although U'2 has considerable range dependence, the
well-depth parameter and also the scattering length a
vary relatively little with variation of range and shape
for a given B~. Apart from the exceptional case S=—,

'
and V )V„, the value obtained for a may therefore
be regarded as a reliable upper bound (in magnitude)
for the scattering length a appropriate to zero-energy
A.-nucleon scattering in the most strongly attractive
spin configuration. These results imply that it is rather
safe to conclude that the hyperdeuteron does not form
a bound state, with the possible exception of the case
S=2, V,& V„. In the latter case the amplitude a no
longer has direct physical significance, the mean A-nu-

cleon interaction being the combination (3U +U~)/4.
The well-depth parameter" s, for the potential V, can
be deduced only with knowledge of the relative strengths
of V, and V„. There is evidence' from the analysis of
the binding energies for light hypernuclei that there is
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some spin dependence in the A.-nucleon interaction,
but with V,& V„ it appears very unlikely" that V„
should be less than V,/3. In this case s, will not exceed
0.9 in any of the possible situations, and the existence
of a bound hyperdeuteron is excluded.

It is of interest to compare brieRy the results of this
paper with calculations in which other simple wave
functions for &H' have been used. Comparison may be
made with Derrick's result" s=0.94 for B~=O and a
Yukawa potential of range parameter (5/mxc) ', a
value which is about 24% higher than given in Ta,ble I
for this case. Jones and Keller" used an Irving wave
function exp) n(ris+r—ss+rss) ij; for Bs=0.5 Mev and
a Yukawa potential of range parameter (jib/mz. c) ', they
find a well-depth parameter 16% above the corre-
sponding value in Table I.

The simple wave function (12)has a number of obvious
defects. For small Bs the volume integral Us(Bs) should
have the expansion Us(0)+CQBs+O(Bs), whereas the
tabulated U2 is almost linear in B~ itself. This defect
may be traced to the incorrectness of the asymptotic
form of (12) for large separation of the A. from the
nucleons, especially for very small 8&, the value of o.

obtained represents a compromise between the small
value of n appropriate to small B~ and the large value
of n required to give adequate probability for the A

and nucleon to be found within the range of their
nuclear interaction. For this reason the upper bound
obtained for Ul from (12) may be expected to be at its
poorest for 8~=0. Moreover, the neutron-proton wave
function in (12) is simply e ~" when the A particle is far
distant, and a simple exponential function gives a very
poor estimate of the relative neutron-proton energy in
the deuteron. In fact, with a Yukawa potential and
the nuclear parameters given above, this function gives
at best 1.626 Mev for the deuteron binding energy.
The energy of relative motion between the A. particle
and the n-p system, being the difference between
(2.226+BE) Mev and the internal tb Penergy, is the-re-

fore required to be much too large with this choice of
trial function; this also results in a serious defect for the
asymptotic form, especially for the low 8& of physical
interest. These are criticisms which do not apply to
the use of this wave function for H', where the neutron
binding energy is much larger (about 6.3 Mev) and
comparable with the proton binding energy (about
8.5 Mev). It appears that a substantial improvement in
these upper bounds for s, U2, etc. , should result from
the use of a more flexible trial function for qH'. For
example, the wave function (17) given below" would

have sufhcient Rexibility to avoid the defects just dis-

cussed and would also allow the integrati. ons of ex-

pression (10) to be carried through in terms of the

"R.H. Dalitz and B.W. Downs, Phys. Rev. (to be published).' J. T. Jones and J. M. Keller, Nuovo cimento 4, 1329 {1956).
~ It is of interest to note that the function {e ~"3+ye I "3) leads

to a deuteron binding energy of 2.221 Mev for the nuclear param-
eters given above, with +=0.38, P = 1.12, and y= 2.27.

same functions J, E, and other derivatives of I:
Q (e ar—1+~C bn—) (C orb+—~e br2—) (C arb+—ye Prb) — (17)

The possibility of excited T=O states of +H' should
also be considered. This will be discussed brieRy here
for the case S=-,' only. If V,& V„and spin -', holds for
the ground state of qH', then the spin 2 excited state
will be bound only if the potential V„has well-depth
parameter exceeding s(0), the potential (3V,+V„)/4
effective in the ground state corresponding to s(Bb).
Even in the most favorable case possible (Bs=1.0
Mev), this requires V~ to have at least 86% of the
strength of V, . (This figure refers to h/2m c range; for
A/m&c range V~ is required to be at least 95% of V,.)
This appears very unlikely on the basis of the present
evidence from other hypernuclear binding energies. "
Similarly with V„)V, the spin —, excited state could
be bound only if the potential (3V,+V„)/4 had well-

depth parameter exceeding s(0), the potential V~
corresponding to s(B&). This requires V, to have
strength at least 85% of V„ for Ib/2m„c range (95%
again for h/mKc range), whereas the binding-energy
data require that V, be repulsive for this case. Even if
such excited states did exist, they would be expected to
decay to the ground state of &H' with emission of an
M1 photon (energy 2 Mev) in a time of order 6 '10 '4

sec, a time generally short relative to the hypernuclear
decay time.

4. DISCUSSION OF THE T=1 HYPERNUCLEAR
CONFIGURATIONS

There have not been any hypernuclear decay events
observed to date whose interpretation requires the
existence of a bound T=1 hypernuclear configuration
of mass 3. This situation is particularly clear for &He'

whose decay should involve a relatively high branching
ratio for the mode

sHe'~z +p+p+p,
an event which would readily allow a unique identifica-
tion for this hypernucleus. Stability of this &He' complex
against nuclear disintegration would require only that
its total binding energy 8 be positive; with very small 8,
however, the formation of this hypernucleus might well
be relatively rare. This same remark applies to the
neutral counterpart gv', whose detection would be
more dificult since it would generally decay in Right
with decay modes z. +P+e+tb and, less frequently,
z. +H'. A corresponding T=1 state would then exist
for &H' also; however, this state would generally have
a rather short lifetime for radiative Mi decay to the
ground state qHs or for dissociation to Hs+A if B(Bd.
(This dissociation is forbidden by the selection rules
based on charge symmetry, but it would still compete
successfully with radiative decay as a result of nucleon
mass differences and virtual electromagnetic effects in
the A.-nucleon interaction, for which charge symmetry
does not hold. )
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TAm. E II. A-nucleon interaction for zero binding in the T=1
systems. U&' is given in units Mev&((10 "cm)'; a and P are in
units of 10'3 cIn '.

Potential
shape Intrinsic range U2' U2' (Coulomb)

Yukawa

Exponential

0.8411)&10»cm
1.4843)&10» cm
0.8411)(10»cm
1.4843)&10» cm

0 84 0 51 584
0 49 041 973
0.71 0.39 594
0.41 0.34 973

596
1008
608

1014

An upper bound for the strength which must be
exceeded by the mean A-nucleon potential effective in
the T= 1 configuration in order to produce a positive
binding energy 8 may be obtained by use of the varia-
tional principle (10). In this case, the nucleon-nucleon
potential appropriate to the singlet state must be
inserted and the total energy of the system replaced by
zero. Calculations have been made using the simple
trial function (12), and the results have been listed in
Table II for the various potentia, l shapes and ranges
considered. The volume integral U2' for both A-nucleon
interactions is given both for ~He', including the
Coulomb repulsion betwe'en the protons, and for the
case where there is no Coulomb repulsion. (The param-
eters n and P refer to the latter case.) Quite considerable
reduction in these estimates may be expected with the
use of a trial function more flexible than (12), because
the criticisms made in the last section concerning its
application to the hypertriton apply even more strongly
here where the binding energy is zero for each particle
of the system. In each case, the estimate obtained for
U2' greatly exceeds the volume integral U2 for the
A-nucleon interaction effective in ~H . This means that,
even if the A-nucleon interaction were spin-independent,
the low binding energy for zH' excludes the possibility
of a bound T=1 system for +m', &H', &He', in which
the nucleon-nucleon attraction is considerably less than
in T=0 ~H'. In fact, with spin dependence in the
A-nucleon potential, the potential strength available
for U2' is necessarily less than that for U2, since only
the spin-average potential is effective in the T=1
system, whereas full advantage can be taken of the
spin dependence of the potential only in the T=O
ground state.

APPENDIX. USE OF A PRODUCT WAVE FUNCTION
WITH 6-FUNCTION POTENTIALS

The use of a product wave function P„„.~„,g(s) for
the representation of a large hypernucleus Ands con-
siderable justification as a result of the successes of
shell-model wave functions for the ground states of
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K=ISO Mev

500,

450

400
LO I.2 l.4 l.6

Radial Compression Factor a

Fto. 1. The volume integral U(n) [in units of Mev (10 "cm)s]
of the total A-nucleon interaction for given binding (Bp=1,44
Mev) of ah particle to a nuclear core (radius R0=1.37X10 "cm)
is plotted as a function of o=RO/R for compression of the core to
radius R for four values of E, the stiffness of the nuclear core.

factor o.. For this case the core nucleus was chosen to
be of Gaussian form with radius appropriate to H' for
tr=1; the Schrodinger equation for g(s) was solved
numerically to compute U(n) for each n, the distortion
energy of the nuclear core being represented by E(ct)
=E(1)+-,'E(n —1)'. It is apparent that there is a
well-defined minimum near o, =1 for su%ciently large
stiffness E, but that this disappears as E is reduced in
strength.

Reasons why this product wave function should give
a poor approximation to U for the hypertriton when
P„„„,„,is taken to be the normal deuteron wave function
have already been discussed in Sec. III. In view of the
remarks above, it is reasonable to expect that, on
account of the small energy required to deform the
deuteron, not even a local minimum in U will be found
if radial distortion of the deuteron wave function is

nuclei. It is then plausible to go on and obtain an
estimate of the volume integral U of the A-nucleon
potential by representing this potential as a 5 function,
because the range of the interaction is small compared
with the radius of a large core nucleus. Caution must
be exercised in the use of 6-function interactions since
there is then no (nonzero) absolute minimum for U
corresponding to given B~, the value U =0 being
attained for complete collapse of the system. There is,
however, still the possibility that a local minimum may
exist provided the distortions permitted for the core
nucleus are sufficiently limited. The existence of such a
local minimum will depend on the stiffness of the
nuclear core in resisting deformation. This point is
illustrated by Fig. 1, which shows a plot of U(n) as
function of a compression of the core nucleus by a radial

600
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TABLE III. Values of Us LMevX (10 "cinl'g as a function of
the parameters y, X for a Hulthen n —p function, using a product
wave function and 5-function potentials.

2.0
2.5
3.0
3.5

0.20

742
652
600
547

0.25

540
487
459
442

0.30

441
415
400
389

0.35

390
372
360
350

allowed with the use of 8-function potentials. In order
to show this, a calculation has been carried through
using a Hult, hen form e &"(1—e '"&")/r for the deuteron
core, for various values of y and X. The n Pp-otential
was chosen to be of Yukawa form with the parameters
previously given. The A-function g(s) was obtained by
direct integration of the Schrodinger equation; for
this it was most convenient to consider the equation

I"+Be '(1 e"')'u—/x'= tf'e,

the eigenvalue B(~f,X) being computedss as a function of

These numerical computations were performed at the Com-
puting Center of Brookhaven National Laboratory, and we are
pleased to thank Dr. M. Rose and Mr. P. Mumford for their
assistance.

tf and X. The value of the volume integral U, (y,X)

appropriate to B~——0.3 Mev is readily obtained from
this as a function of y and A. Table III gives values
of Us(y, X) in the relevant region and shows that
Us(y, X) decreases monotonically with increasing y or ),.
No local minimum appears (this can be shown analyti-
cally for the case X=O); this is in contradiction with
the result of the hypertriton calculation reported by
Brown and Peshkin. '4

In conclusion, it should be emphasized here that,
although the use of 5-function potentials (without dis-
tortion of the nuclear core) allowed a convenient dis-
cussion of the qualitative features of the A-nucleon
interaction from the binding energies of light hyper-
nuclei, ' the use of potentials with physically approp'riate
ranges is essential not only for the case of the hyper-
triton but generally for complex hypernuclei if
quantitatively reliable estimates of the interaction
strength are to be obtained.

'4L. M. Brown and M. Peshkin, Phys. Rev. 107, 272 (1957).
(Vote added in proof. —Dr. Peshkin has informed us that he has
recently carried out more accurate calculations with the product
wave function, which agree with the above remarks in giving no
local minimum for the case of 8-function potentials. )
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The analytic extension of the Schwarzschild exterior solution is given in a closed form valid throughout
empty space-time and possessing no irregularities except that at the origin. The gravitational field of a
spherical point particle is then seen not to be invariant under time reversal for any admissible choice of time
coordinate. The Schwarzschild surface r =2m is not a singularity but acts as a perfect unidirectional mem-
brane: causal influences can cross it but only in one direction. The apparent violation of the principle of
suKcient reason seems similar to that which is associated with instabilities in other nonlinear phenomena.

I. INTRODUCTION

' '0 define a gravitational universe we must give an
analytic manifold and an analytic quadratic form

g„, of correct signature.
For the manifold 5R associated with a universe con-

taining one point particle, one takes all of 4-space
lx") less the line x'=0. (Greek indices=O, 1, 2, 3;
Latin=1, 2, 3.) We might subject the gravitational
field g„„(x) to the following requirements:

t xo~ xo=xo
R " r"r= 1, detr= 1. (1.3)"

x' x=r'x
Jl

(d) Asymptotic to the Lorentz metric

g„„(x)—& f„„i' xx+ ~. (1 4)

(c) Invariance under the connected three-parameter
group

(a) The free space equation of Einstein:

R„„(x)=0.

(b) Invariance under the one-parameter group

x' —+ xo=x' —t

(e) Not extendable to the line x'=0 (true singu-
(1.1) larity). This excludes the trivial case g„,(x)=if„,.

(f) Invariant under the discrete group generated by

x' —+ xo=x'
~t ~

'

x' ~ x'= x'.
(1.2)

x' ~ x'= —x'.


