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Polarization of Nucleons from the D(~,p)n Reaction at Medium Energies
W. CZYZ AND J. SAWICKI*
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(Received August 15, 1957)

The polarization of nucleons from the D(y, p)N reaction is investigated under the assumption of tensor
coupling in the n-p interaction potential, Electric dipole, electric quadrupole, magnetic dipole, and magnetic
quadrupole transitions are taken into consideration. The polarization is estimated for Ace=65 Mev with the
help of recent nucleon-nucleon scattering phase shifts. These estimates indicate the dominant role of the
electric dipole and the magnetic dipole transitions from 'S1+'D1 ground state to the 'P0, 'P1, 'P~, 'P~, and 'S0
final states. The advantages of the measurement of the polarization are indicated.

the isotropic to the sin'8-dependent part of the diGer-
ential cross section Li.e. , a/b, where o.(8) =a+ b sin'8], It
should be noted ho~ever, that the phase shifts as given
by Clementel and Uilli, ' for example, seem to produce a
reasonable value for the ratio a/b at Ace=40 Mev,
assuming the conventional theory of the D(y, p)n reac-
tion (see I). Austern's' recent analysis provides a theory
of the deuteron photodisintegration at medium energies
with the assumption of violation of Siegert's theorem
for the E1 transition to the final 'Po state, and shows the
importance of the previously omitted E1 transition
'D1—+'F2. The exceptional role of the 'Po state is con-
sistent with the assumption of a two-step process:
virtual production of an 5-wave pion and disintegration
by re-absorption of the meson. ' 4 The 'P~, ~ 6nal states in
E1 transitions are assumed to be reached via ordinary
photon absorption according to Siegert's theorem
(Austern's "rigid nucleon theory"). This assumption is
believed to be valid at the energies considered here, -i.e.,
"medium" energies (up to Ace =100 Mev).

Consequently, all radial integrals involved are com-
puted in the present analysis using the usual radiative
interaction potentials and neutron-proton forces (phase
shifts are examined for various particular theories). The
only radial integral for the E1 transitions leading to the
Po state is computed, semiempirically from the experi-

mental total cross section data, using theoretically
calculated values for all other E1 radial integrals.

I. INTRODUCTION

ECENTI,V the theory of the polarization of
nucleons from the D(y, p)ts reaction was presented'

(hereafter referred to as I). In the derivation of the
polarization formulas only E1 (to the 'I'q states), Mi
(to the 'Ss state), and E2 (to final free D states) transi-
tions were assumed effective and taken into considera-
tion. The polarization was shown by means of several
examples to be sensitive to the m-p interaction potential
assumed. Even this oversimplified analysis was satis-
factory to demonstrate that the polarization is much
more sensitive to the system of the e-p phase shifts
than is the angular distribution of the outgoing nucleons
(compare, e.g. , papers by Hsieh' and Austern'). No
experiment on the polarization has been performed as
yet, so that the motivation for the present study is to
indicate the usefulness of such an analysis.

Recently Austern' mentioned that polarization meas-
urements would be necessary to provide the additional
equations required to determine the unknown E1 radial
integrals from the experimental data. Further, the 3f1
transitions, which do not disturb the angular distribu-
tion, could thus be more carefully investigated, since the
polarization is most seriously influenced by interference
with the large E1 transitions.

The most recent results of the analysis of the D (y,p)ts
differential cross section data' ' provide a new critical
revision of the current conventional theory. This fact
and the necessity of the investigation of the corrections
coming from all the hitherto neglected radiative transi-
tions assuming multipoles up to E2 and M2 require the
re-examination of the analysis carried out in I. The
nucleon-nucleon potential recently derived at Los
Alamos' should also be applied to the present problem.

It was suggested in references 3 and 4 that a certain
new meson effect seems to be the only reasonable ex-
planation of the large experimental values of the ratio of

II. NOTATION

J, JI/Ig, the total angular momentum of a Anal state
and its s-axis projection.

j, m, the total angular momentum of an initial state
and its z-axis projection.

7fi"'(o), the triplet state spin eigenfunction.
7fs'(a), the singlet state spin eigenfunction.
g~, the 'Pg state phase shift.
qg, the '51 state phase shift.
AD, the 'D~ state phase shift (no splitting assumed).
bg, the '50 state phase shift.
8p, the 'P» state phase shift.
6D, the 'D2 state phase shift.

*Present address: Palmer Physical Laboratory, Princeton Uni-
versity, Princeton, New Jersey.
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&&=2.23 Mev, the deuteron binding energy.
M, the nucleon mass.
y= (Med/PP)', the parameter of the deuteron ground

state wave function [limn= constXexp( —yr)].

E, the center-of-mass system energy of the relative
motion of the e-p system.

r= r —r~, the vector from the proton to the neutron.
k, the n-p system wave vector in the c.m. system.
kp = «kp = «(cu/c), the wave vector of the incident

photon.
e, the polarization vector of the incident photon.
p„, p„, the magnetic moments of the neutron and the

proton, respectively.
e„, -o„, the spin operators of the neutron and the

proton, respectively.
1

fx, the reaction amplitude: fx= gxs'+ P fm, xt '

P, the polarization vector.
{ )A„, denotes averaging over the photon polariza-

tions and the magnetic quantum numbers ns of the
ground state.

I, ze, the deuteron ground state radial wave functions
of the S and the D states, respectively.

N„N~, the 'So and 'Si final state wave functions, re-
spectively.

x„m &, the 'D2 and 'Dj 6nal state wave functions, re-
spectively.

v~, the 'Pi 6nal state wave function.
vJ, the 'Pg final state wave function.
J~(x), e~(x), the spherical Bessel and Neumann

functions, respectively.
S=z(~-+~.)

III. CALCULATION

The polarization is calculated following the method of
I. First one has to determine the reaction amplitude

1

fX=gxo + 2 fmsxt
ms=1

and use the expression

P= {(fxI
~-

I fx)) A /{(fx I fx)) A'

Here the neutron polarization is determined. However,
one can prove that exactly the same analytical expres-
sions are obtained for protons, 0 then having the mean-

ing of the proton angle, provided we confine ourselves to
M1 and E1 transitions only. Protons seem to be mare
suitable experimentally at higher energies. It should be
noted that P in I was computed for neutrons, 0 having
the confusing meaning of the proton angle. If 0 is the
neutron angle, one has to substitute 0—~ for 0 and
change the signs, e.g. , in Tables I and II of our paper';
viz. , [P(—8') = —x]—+[P(8') =x] (to make the scat-
tering angle always positive: 0&~8'~&z.).

We shall confine ourselves in this section to the
consideration of E1 and M1 transitions leading from
'St+'D& ground state to the seemingly most important
6nal states: 'So, 'Pg, and 'J 2. Higher order transitions
will be considered in Sec. 4. The 'P2 —'J"2 mixing by the
tensor force is neglected. This approximation seems
reasonable for the energies under consideration. ' Like-
wise g p is assumed to be zero throughout.

Similarly to the treatment in I and in the old paper
by the authors, the quantization axis is chosen along
the vector kXko. In the present approximation, the
radiative interaction operator is proportional to

H'= —e r+-,'n(«Xe) (o„—rr„),

where n= (A/Mc) (Iz„Iz ). T—he contribution to Iz„
of p(r), the anomalous magnetic moment due to meson
exchange current effects, was neglected. It follows from
Table I of I that this correction is not essential for the
polarization.

On using the same system of reference as previously, '
we can write

&'=[—s+-,'n(o „,—o „.)] cosy

+[—x——',n(o„.—o .)] sing, (3)

where p= p (e, kXks). We may express fm, and g in
terms of cosg and sing: fm = fm cosg+ fm * sing,
g=g' cosg+g* sing. In our frame of reference, the com-
ponents P, and P„vanish. Finally, as in I, we get

p= p.

After performing angular integrals, the summations over
the magnetic quantum numbers of the final states, and
the averaging over the magnetic quantum numbers of
the initial states, we can express P in terms of the radial
integrals and phase shifts:

P= (o) '(c sin28+rrd sin8),

where

c= sLoLs sin(rfo —r)s)+4LtLs sin(r)t —r)s)

sLOLf sinr)s+ aLtLr sinri, —(5/24)LsLg sinr)s,

d=MsL& sin(3, —r),),
and9

o =a+b sin'8,

7 This seems to be somewhat inconsistent for the "Los Alamos"
potential (reference 5). However, the most important features of
the interference terms are preserved. The effect of the 'P~ —'J 2
mixing is the subject of the forthcoming publication.' W. Czyz and J. Sawicki, Nuovo cimento 3, 864 (1956).

9 The expression for 0. leads to an angular distribution identical
with that of W. Rarita and J. Schwinger, Phys. Rev. 59, 556
(1941),provided Ir =0. Equation (5) is valid for vr =0. If rl~/0,
all q, I in the arguments of all the sines and cosines should be
replaced by g J—gz.
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a=r22Mss+ (1/9)Lp' —(2/9)I.pI.2 cos(rip —
2)2)

QLpL f Cosrip+ sLi +(13/36)L2 2LiL2 COS(272 2I2)

+2L f +-2LiLf Cosr)r QL2L f Cosfls)

b = QLpL2 COS(rip —2I2)+ 2LpLf COSrlp+ s Lrs+ (7/24)L22

+4LiL2 COS('gt —2I )2+2Lf
sL1Lf Cost)1+ sL2L f Cost)2,

where

P(8) =
—0.215 sin28+0. 250 sin8

0.877+sin'8
(Sa)

for the Gammel and Thaler case, and

and Thaler' and of Clementel and Villi. ' "The polariza-
tions obtained in these cases are

Lp ~ (yr) np(N —2lw)dr,
P(8) =

—0.232 sin28+0. 252 sin8

0.877+sin'8
(Sb)

I.g ——-35V2 (pr) w[kr js(kr) ]dr,

L,= (yr) v2(N —', 2 '*w)—dr—,

for' the Clementel and Villi case. The denominators of
expressions (Sa) and (Sb) were taken from the experi-
mental data of Khalin et al."This procedure seems to be
justified to give an estimate for the polarization.

It should be noted that phase shifts from the potential
recently proposed by Signell and Marshak" differ only
slightly from those employed in (Sa)—(Sb) and so do not
produce a significantly different result for P(8).

Nu, dr.
Jp

Lg() r,)= (yr)en~dr, —
drc

(6)

where r, =1)(10 " cm. The integral 3f, was com-
puted by the method of Hsieh' and Example 1
of I, i.e., I, was assumed to have the form I,
=sin(kr+Bs) {1—exp[ —p(r —Dp)g} for r ~&Dp and I,=—0
for r&DO. The parameters p and Do were chosen such
that I, corresponds to the repulsive core of the radius
DQ, (DQ as suggested for 'Sp state from the P-P scattering
analysis is 0.4&(10 " cm according to Gammel and
Thaler' and 0.35)&10 "cm according to Clementel and
Villi. ')

The integrals 1.0 were calculated by using the experi-
mental values of the total cross section. According to
the equation used by Austern, ' one has

9g+ 6/ =Lp'+3L22+5L2'+ (15/2) Lrs, (7)

provided Austern's neglect of the cPMB' term is justi6ed.
The neutron (proton) polarization was calculated for

Ace=65 Mev using the sets of phase shifts of Gammel

The normalizations of I [lim„„e exp( —yr)) and of
n~ [lim, „tq kr(cost)g ji(kr) —sinri~ei(kr))] are chosen
following Austern' so as to make all the E1 radial
integrals Lz and Lf have the dimensions of lengths (they
are lengths of the order of those which are actually
effective in this problem). The wave functions n and w
were used here as given in reference 3, and the integrals
L~, 2 and I.~ were computed from the graphs and tables
given by Austern. ' According to Austern's analysis' (see
also Hsieh' and Example 1 of I), the integrals L~ (I= 1, 2)
can be approximated by

IV. HIGHER ORDER CORRECTIONS

The surprisingly large inQuence upon the polarization
of M1 transitions, which are unimportant for o(8),
suggests the need to estimate all the interference terms
including the less important transitions for the multipoles
up to E2 and M2. These transitions might confuse the
situation mostly via the interference terms with strong
E1 transitions. The analytical expressions for the
polarization were derived by use of the following addi-
tional transitions: (1) M1 from 'Si+'Di to 'Si and 'Di,
neglecting the tensor coupling of the final states; (2) Mi
from 'Di to 'D2., (3) E2 from 'Si to 'Dq, with no splitting
of the QD~ states; (4) E2 from 'Di to 'Si,. (5) M2 from
Sy to 'I J', taking into account only the most important

interference terms of these transitions with E1 and E2
transitions; (6) M2 from 'Si to 'Pi. The most interesting
point is, how do these corrections modify the general
features of the angular dependence of P(8), i.e., how
large are the corrections to the coeKcients of sino and
sin28 as given in Eq. (5) and what new angular functions
are introduced in the modified P(8). The transitions (1)
and (3)—(6) arise from the residual interaction AH'
=H„„' H', where H' is gi—ven by Eq. (2), while the
transition (2) is already implied by H'. The residual
terms of the radiative interaction are

&H'=iq(e r)(22 r)+ (fX22e) S ip(22 r)(—22Xe) S
irl(x r) (—22X e) (tr~ —e ), (9)

2P It should be noted that in a recent paper, J. Bernstein (Phys.
Rev. 106, 791 (1957)g analyzed the D(v, p)22 total cross section
using the phase shifts of Feshbach and Lomon. However, recent
results in the analysis of the p-p and n-p interaction (reference 5)
indicate the failure of Feshbach and Lomon's phase shifts. For
those phase shifts one obtains: (0.877+sin'8)P(8) = —0.147 sin28
+0.074 sin6), as compared with the numbers given below.

"Whalin, Schriever, and Hanson, Phys. Rev. 101, 377 (1956)."P. S. Signell and R. E. Marshak, Phys. Rev. 106, 832 (1957}.
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where

GD

)
c

(~.+~-—2),
Mc

A io = i o QD[2Lo' sin(go —gD)+3Li' sin(qi —q~)

+7Lp sin(gp —gD)],

Ail= Qs[SLp sin(gs gp)
—Li sin(qs ivi)

10v2
(I . I -)—, n= (~&+~-),

2Mc' 4' c'

are the parameters characteristic for E2, M1 (to triplet
final states), M2 (to triplet final states), and M2 (to
singlet final states) transitions, respectively. In our
system of reference, AH' can be written as

DII'= [iqsy+ fS, i'—S, iqy—(a„, a,—)] cosg

+[iqxy t S,+—i/yS, +ipy(o „, a„,)]—sin&. (10)

For the sake of simplicity we shall neglect the E1
transitions 'D&—&'J 2 considered previously. In this ap-
proximation, we find

P,.„=(a;„„) '{csin28+nd sing+ qA i cosg sin28

+aqA o sin28+qA o sing+ fA4 sing

+ (qt Ao+f'Ao) sin28+nA7 sing+nqAp sin28

+$Ap sin28+gqA ip cosg sin28+gqA ii sing

+gAio sin28+itqAio cos8 sin28), (11)

+ (5/3)Lp' sin(ps —qp)],

Alp MpL——i sin(gi —gl ),

Aip=Ml Ql) sin(gp —gl)),

where

f
M~=y zvx, dr, 5RB=y IN~dr, 5R~=y em~dr,

~o
'

&o ~o

F00

Qs=y r'wlidr, Ql&
——y, r'Nw, dr,

Lg' Lg(w =0——),
4o

rleI dr.

It is readily seen from Eqs. (11) and (12) that the
numerator of I'„„is a simple function of 8, viz. ,

where o„„is the correspondingly modified expression
which replaces a [as in Eq. (5)], given in Appendix I.
The coefficients A, are as follows:

where

a„„P„„=R .sin28+S sing+6 cos8 sin2g, (13)

A i =—,'~Q&[5L& sin(g2 QD) 2I o sin(go —gD)

—3L, sin (iI,—gD)],

8=c+nqA p+qf Ao+f'A p+nqAp+)Ao+rlA ip,

S=nd+qA p+lA4+uAl+pqAii,
6= qA i+ (qA ip+gqA ip.

(14)

A p
—— ,'M sQD sin(—gs-—gD),

—2Li sin(gi —gD)+ (14/3)Lo sin(gp —itD)],

A, = $9RsQD+ (3/40)~DQs] sin(rl s 'gD),

Ap= 9RsBRg& sin(gs —'gD),

1
A7 ——— MD[Li sin(gi —&D) —3Lo sin(gp —ail)],

2&2

(12)

A, = — M&QD sin(ply —8D),
2v2

A p
———p'LpLo' sin

(ihip

—gp),

Ap= Qs[Li sin(ps —pi) —oLo»n(iIs —qo)'
10~2

+ioLo sin(gs —qo)],

A4=-', gqs[-', Lp sin(rls —gp)+Li l s( 1nis'gi)

1
+ (5/3)Lo sin(ps —zo)]— ORli[—Lo sin(rip —rlD)

Sv2

It should be noted that Eq. (11) is valid for neutrons,
with 9 having the meaning of the neutron angle. The
expression for protons, with 0 now having the meaning
of the proton angle, is readily obtained by changing
signs of Ai, Ap, A4, A p, Ap, Alp, Alp (for the modification
of a;„, see Appendix I).

We shall first estimate the corrections given by A; for
the "Los Alamos" set of phase shifts. For the numerical
computation of the integrals, the ground state wave
functions e and w were taken from Fig. 4(b) of Austern. '
The final S states were assumed to have the hard core
radius Do=0.4X10 " cm, as in Sec. III. Keeping the
same normalization as in Eq. (Sa) and (Sb), the follow-

ing results were obtained: (a) The most important
correction to c in 8 is g'Ao+l'Ap=0. 043, amounting to
20% of c; the remaining terms are negligible (e.g. ,
nqA, is about 9.5%, $A o is about 2.5% of c, nqAp is about
1.9% of c, and qAio is still smaller). (b) In the factor S,
the most important correction to nd is o,Ay=0. 048,
amounting to 19% of nd; the remaining terms are
negligible (e.g. , f34 is about 0.8% of ad and qA p and

tqA» are still smaller). (c) The only important term in
the factor t is qAi=0. 059; PqAip and itqA» are entirely
negligible. A more detailed analysis of qA~ is given in
Sec. V.
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p(e)) (
0$'

0.9

0.4.

00
gO

0.1

-o.a.

The 3; for the set of phase shifts of Clementel and
Villi' are very similar. Only a certain decrease of &AD

and increases of f'A4 and qA I should be noted.

Fzo. 1.Polarization of the outgoing neutrons from the D(~,p)II
reaction. Curve I represents polarization resulting from E1
transitions to 'P0, 'PI, 'E2, and 'F2 6nal states. Curve II represents
the modi6cation introduced by the qA I cos8 sin28 term in the nu-
merator of P(8). Curve III represents the influence of the 1—2p cos8
factor in the denominator of P(8); this factor practically cancels
the modi6cation introduced by the term qA& cos8sin28 in the
numerator of P(8) Curve IV r.epresents P(8) as given by Eq. (Ha).
It illustrates the strong inhuence of the M1 —E1 interference term.

Fig. 1.It is readily seen, however, that the contributions
to the numerator and denominator largely cancel each
other. This effect does not depend upon the details of the
radial integrals and phase shifts involved. It is sufFicient
that their signs and the sign of the c coe%cient remain
the same as in the calculations presented above for the
cancellation to take place. The term nAI (E1—M1
interference) can give rise to a correction as large as 19'%%up

of nd. It has, however, no important inRuence on the
general character of the curve P(8). On the other hand,
there is a great uncertainty in our estimates of nA7 and
nd. It seems, therefore, that any data on P(8) could
provide the following useful information on the M1
radial integrals: (1) the E1—M1 interference terms
give rise to destructive interference in the forward and
constructive interference in the backward direction; the
deviation from the symmetry of P(8) about the point
8=90' thus indicates the M1 contribution; (2) the
polarization at 8=90' is due only to the E1—M1
interference:

8..„(90')P,.„(90')

=S=n(d+Ar)

=n MSLI sin—(rir —bs)

V. CONCLUSIONS

As was mentioned before, there are no data on P(8)
available as yet, and therefore the present short dis-
cussion is based on numerical factors obtained in pre-
vious sections and plotted in Fig. 1. These results are
based on rough estimates of the integrals Lg from
Austern's paper and recent phase shifts. There is, how-

ever, some inconsistency among the various sets of
phase shifts now in the literature. The numerical results
of the present analysis are, therefore, only illustrative.
These results also illustrate the importance of all
transitions up to E2 and M2. The measurements of
P(8) at many angles can provide an argument for or
against a given set of phase shifts and can provide new
equations to determine the Lz and M integrals.

Equations (Sa) and (Sb) of Sec. III represent the main
features of P(8) (see Fig. 1). It appears that the "Los
Alamos" set of phase shifts' gives about the same results
for P(8) in the entire interval 0(8(gr as does the set of
Clementel and Villi. ' The higher order corrections do
not introduce essential differences between these two
cases.

Let us now consider the most important higher order
corrections given by qAI (E1—E2 interference) and
nAr (E1—M1 interference). The E1 E2 interference—
introduces the factor qA~ cosesin20 in the numerator
and for neutrons changes the denominator from a+ b sin'8

to (a+b sin'8)(1 —2P cos8). For a photon energy of 65
Mev, 2P=0.25, according to Hanson et al." The in-
fluence of E1—E2 interference on P(8) is shown in

——MpLLI sin(rir —bn) —3Lg sin(gig —bD)j . (15)
2v2

Once the integrals L~, 2 are known, one can in principle
determine the M1 matrix elements. Estimation of the
M1 transitions is simpler in the low-energy region. In
this case, throughout the interval 0(0&m, only the
E1—M1 interference is important, since the phase
shifts of the P states vanish.
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APPENDIX I

The angular distribution factor denoted by 0;„, in
Eq. (11) has the following form:

Ir„„=a+bsin'8+qBI sin'8 cos8+q'Bg sin'8 cos'8

+qBI cos8+q'84+t Bs cos8+ (ql 8p+QBr) sin'8

+qf Bs+f Bg+7PBIp COS 8+n'QBII COS8

+n 8 (3 cos 8—1)+ngB (5—3 cosg8)

+nriBr4(3 cos'8 1) cos8+ $8ts si—n'8+ $8rp

+PqB,r sin'8 cos8+ PqBts cos8, (A1)
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where a and b are the same as in Eq. (5) and

Bl=—QD[sLp cos(rip r)D)

+Ll cos(r)l rlD)+(5/3)ts cos(rfs r)D) 1,

W2

Bs ——Q——s[-s,L0 cos(rip —
rf s)

5

—-', Ll cos(rit —rid)+0Ls cos(rfs —'gs)])

B4= (1/25)QB',

B0
= —5R 8[0Lp cos (r)0

—'g 8)+L1 cos (r) 1 rfs)—
5R+

+ ', Ls cos(r)s —-r)s)j+ [sL0 cos(rip —0)D)
4v2

+Ll cos(rll rfD)+sLs cos(res —'QD)))

Bp = —(3/20) Q s5RD cos (rf s rfD), —

3
Br= 5Rs5RD cos(ris —'gD) —105RD,

2

Bs (1/20)Qs5RD —c—os(rf8 —r)D)+—Q85Ks,
10

Bp= ——5RS5RD COS(lip —r)D)+05RS +105RD,
v2

&io=4~s',

Bll= —4MSM1 cos(bs —bg),

Bls= ——MBMD cos(88—8D),

(A2)

Bja= ~My)',

B14 V2M——r MD cos(51 —8D),

Bls ———(7/12)L2L2'+sLOL0 cos(rip ris)+4L1L1 g

Ble= (2/9) L0L0' 0L1L1'+(11/24) LsL0'

—(1/18)LpL0 cos(rip rfs)

—0LpLp cos('gp —rf0),

—sLp cos('gp litD), L1' cos(rf1 'gD)])

Bls Qs[ 2LO cos('gp ris)
1592

+3L1' cos(ril —
rf s)+2Ls' cos(r)2 r) s)j.

Certain 8, are already known: 8& and 82 were given by
Schiff, " Marshall and Guth" (for rf 0 rfD 0——), an——d
Sasaki"; 83 and B4 were given by Sasaki"; and 8» and
B]3 were reported by Austern. "It is readily seen that
0-„„is of the form:

o;„,= 8,'(1+n' cosg)+ S' sin'0(1+/' cosg+P" cos'8).

Equation (A1) is valid for neutrons, 0 having the
meaning of the neutron angle. ~„„for protons, 8 now
having the meaning of the proton angle, is readily
obtained by changing signs of 8&, 83, 85, 8», B&4, 8»,
and Bls t
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"M. Sasaki, Progr. Theoret. Phys. Japan 8, 557 (1953); 9, 96
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"N. Austern, Phys. Rev. 85, 283 (1952).
t Note added irl proof Arecent pa.p—er by R. E. Marshak and

J.J. de Swart (to be published) using the potentials of reference 12
and assuming Siegert s theorem for all the transitions obtains 0. in
agreement with the data. A numerical computation of P(8) for
this case is in preparation.


