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The polarization of nucleons from the D(y,p)n reaction is investigated under the assumption of tensor
coupling in the #-p interaction potential. Electric dipole, electric quadrupole, magnetic dipole, and magnetic
quadrupole transitions are taken into consideration. The polarization is estimated for #w=65 Mev with the
help of recent nucleon-nucleon scattering phase shifts. These estimates indicate the dominant role of the
electric dipole and the magnetic dipole transitions from S14-3D; ground state to the 3Py, 3Py, 3Py, 3F, and 1S,
final states. The advantages of the measurement of the polarization are indicated.

I. INTRODUCTION

ECENTLY the theory of the polarization of
nucleons from the D (v,p)n reaction was presented!
(hereafter referred to as I). In the derivation of the
polarization formulas only E1 (to the ®P; states), M1
(to the 1S state), and E2 (to final free D states) transi-
tions were assumed effective and taken into considera-
tion. The polarization was shown by means of several
examples to be sensitive to the z-p interaction potential
assumed. Even this oversimplified analysis was satis-
factory to demonstrate that the polarization is much
more sensitive to the system of the n-p phase shifts
than is the angular distribution of the outgoing nucleons
(compare, e.g., papers by Hsieh? and Austern?). No
experiment on the polarization has been performed as
yet, so that the motivation for the present study is to
indicate the usefulness of such an analysis.

Recently Austern® mentioned that polarization meas-
urements would be necessary to provide the additional
equations required to determine the unknown E1 radial
integrals from the experimental data. Further, the M1
transitions, which do not disturb the angular distribu-
tion, could thus be more carefully investigated, since the
polarization is most seriously influenced by interference
with the large E1 transitions. '

The most recent results of the analysis of the D (v,p)n
differential cross section data®#* provide a new critical
revision of the current conventional theory. This fact
and the necessity of the investigation of the corrections
coming from all the hitherto neglected radiative transi-
tions assuming multipoles up to E2 and M2 require the
re-examination of the analysis carried out in I. The
nucleon-nucleon potential recently derived at Los
Alamos® should also be applied to the present problem.

It was suggested in references 3 and 4 that a certain
new meson effect seems to be the only reasonable ex-
planation of the large experimental values of the ratio of
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the isotropic to the sin’-dependent part of the differ-
ential cross section [i.e., a/b, where &(6) = a+5 sin?]. It
should be noted however, that the phase shifts as given
by Clementel and Villi,® for example, seem to produce a
reasonable value for the ratio a/b at %w=40 Mev,
assuming the conventional theory of the D (v,p)n reac-
tion (see I). Austern’s® recent analysis provides a theory
of the deuteron photodisintegration at medium energies
with the assumption of violation of Siegert’s theorem
for the E1 transition to the final 3Py state, and shows the
importance of the previously omitted E1 transition
3D;—3F,. The exceptional role of the 3P, state is con-
sistent with the assumption of a two-step process:
virtual production of an S-wave pion and disintegration
by re-absorption of the meson.?* The 3P, » final states in
E1 transitions are assumed to be reached vie ordinary
photon absorption according to Siegert’s theorem
(Austern’s “rigid nucleon theory’’). This assumption is
believed to be valid at the energies considered here, i.e.,
“medium” energies (up to #w=100 Mev).
Consequently, all radial integrals involved are com-
puted in the present analysis using the usual radiative
interaction potentials and neutron-proton forces (phase
shifts are examined for various particular theories). The
only radial integral for the £1 transitions leading to the
8P state is computed semiempirically from the experi-
mental total cross-section data, using theoretically
calculated values for all other E1 radial integrals.

II. NOTATION

J, M ;, the total angular momentum of a final state
and its z-axis projection.

7, m, the total angular momentum of an initial state
and its z-axis projection.

x1™:(0), the triplet state spin eigenfunction.

xo’(e), the singlet state spin eigenfunction.

7., the 3P state phase shift.

ns, the 451 state phase shift.

7, the 3D state phase shift (no splitting assumed).

ds, the 1S state phase shift.

dp, the 1Py state phase shift.

0p, the 1D, state phase shift.

¢ Clementel, Villi, and Jess, Nuovo cimento 5, 907 (1957); E.
Clementel and C. Villi, Nuovo cimento 5, 1166 (1957).
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POLARIZATION

€a=2.23 Mev, the deuteron binding energy.

M, the nucleon mass.

v= (Meq/h*)?, the parameter of the deuteron ground
state wave function [limu=constXexp(—vr)].

: 700

E, the center-of-mass system energy of the relative
motion of the #-p system.

r=r,—r,, the vector from the proton to the neutron.

k, the #-p system wave vector in the c.m. system.

ko=wxko=1x(w/c), the wave vector of the incident
photon.

e, the polarization vector of the incident photon.

Kn, Kp, the magnetic moments of the neutron and the
proton, respectively.

6., O, the spin operators of the neutron and the
proton, respectively.

1

fx, the reaction amplitude: fx=gxo™+ > fmx1™.

ms=—1

P, the polarization vector.

{-- -}, denotes averaging over the photon polariza-
tions and the magnetic quantum numbers m of the
ground state.

u, w, the deuteron ground state radial wave functions
of the S and the D states, respectively.

us, %:, the 1Sy and 35; final state wave functions, re-
spectively.

w,, Wy, the 1Dy and ®D; final state wave functions, re-
spectively.

vp, the 1P; final state wave function.

vy, the 3P final state wave function.

7i(x), ni(x), the spherical Bessel and Neumann
functions, respectively.

Sz%(“n"l‘"p)-

III. CALCULATION

The polarization is calculated following the method of
I. First one has to determine the reaction amplitude

1
=g+ X fmoxa™,

ms=—1
and use the expression

P={(fx|oal SO}/ {{fx] Fx0}ne- 1

Here the neutron polarization is determined. However,
one can prove that exactly the same analytical expres-
sions are obtained for protons, 6 then having the mean-
ing of the proton angle, provided we confine ourselves to
M1 and E1 transitions only. Protons seem to be more
suitable experimentally at higher energies. It should be
noted that P in I was computed for neutrons, § having
the confusing meaning of the proton angle. If 8 is the
neutron angle, one has to substitute §—= for 6 and
change the signs, e.g., in Tables I and II of our paper';
viz., [P(—#0)=—x]-[P(#)=x«] (to make the scat-
tering angle always positive: 06’ < ).
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We shall confine ourselves in this section to the
consideration of E1 and M1 transitions leading from
£S1+2D; ground state to the seemingly most important
final states: 1Sy, 3P, and *F,. Higher order transitions
will be considered in Sec. 4. The 3P,—3*F, mixing by the
tensor force is neglected. This approximation seems
reasonable for the energies under consideration.” Like-
wise nr is assumed to be zero throughout.

Similarly to the treatment in I and in the old paper
by the authors,® the quantization axis is chosen along
the vector kXko. In the present approximation, the
radiative interaction operator is proportional to

H'=—e-1+ia(xXe) (0,—0,), 2)

where a= (/Mc) (up—px). The contribution to up—pns
of p(r), the anomalous magnetic moment due to meson
exchange current effects, was neglected. It follows from
Table I of I that this correction is not essential for the
polarization.

On using the same system of reference as previously,?
we can write

Hl:l:—z_’_%a(apx_o'nz):] cos¢
+[—x—%a(0p:—0n:)] sing, (3)

where ¢= £ (e, kXko). We may express fm, and g in
terms of cos¢ and sing: fmg= fm,* cosp~+ fm:” sing,
g=g? cosp+g7 sing. In our frame of reference, the com-
ponents P, and P, vanish. Finally, as in I, we get

P=P,

_ Zn(2Re(g™ /i) +2Re(g" )+ | fi7[*= | L17]?) W
ol 187124 g7 2 s (| fne? |24 | foo? [0}

After performing angular integrals, the summationsover
the magnetic quantum numbers of the final states, and
the averaging over the magnetic quantum numbers of
the initial states, we can express P in terms of the radial
integrals and phase shifts:

P=(0)"(c sin204ad sinh),

©)

where

c=¢LoLy sin(no—mn2)+%1L1Ls sin(ni—1ns)

—%L()Lf Sin’ﬂ()"*-%LlLf sinm—~ (5/24)L2Lf sinnz,
d=M gL, sin(6,—n1),
and?

7=a-+b sin%,

7 This seems to be somewhat inconsistent for the “Los Alamos”
potential (reference 5). However, the most important features of
the interference terms are preserved. The effect of the 3P, —3F,
mixing is the subject of the forthcoming publication.

8 W. Czyz and J. Sawicki, Nuovo cimento 3, 864 (1956).

? The expression for & leads to an angular distribution identical
with that of W. Rarita and J. Schwinger, Phys. Rev. 59, 556
(1941), provided L;=0. Equation (5) is valid for n7=0. If 550,
all »s in the arguments of all the sines and cosines should be
replaced by ns—nr.
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a=a*M &+ (1/9)Le*— (2/9) LoLs cos(no—n2)
—3LoL; cosno+3L>+(13/36) Lo>*— 3 L1 Ly cos(ni—ns)
+3L7+3L1 Ly cosm—gLaL s cosne,
b=3LoLs cos(no—mn2)+3LoL cosnot§L*+ (7/24) L
+4L.Ls cos(n—n2)+3L 2
—3L1L; cosm+1LaL s cosna,
where

Lo=foo (y7r)vo(u—2%w)dr,
0 .
L1=fm ('yr)'vl(u—{—Z_%w)dr,
0
L2=fw (vr)v2(u— 2 4w)dr,
0
Ly=3 [ Conyolhr (e o,
0

Msz'yf undr.
0

The normalizations of # [lim,,u~exp(—+vr)] and of
vy [lim 07~ kr (cosnsj1(kr) —sinn n,(kr) )] are chosen
following Austern® so as to make all the E1 radial
integrals Ly and L; have the dimensions of lengths (they
are lengths of the order of those which are actually
effective in this problem). The wave functions % and w
were used here as given in reference 3, and the integrals
Ly, and Ly were computed from the graphs and tables
given by Austern.? According to Austern’s analysis® (see
also Hsieh?and Example 1 of I), theintegrals Ly (J=1,2)
can be approximated by

Li(>ry)= f (yr)uv sdr, (6)

where 7,=1X10"% cm. The integral M, was com-
puted by the method of Hsieh? and Example 1
of I, i.e., u, was assumed to have the form u,
=sin(kr+ds){1—exp[ —p(r—Dy)]} for »> Doand u, =0
for »<Do. The parameters p and D, were chosen such
that #, corresponds to the repulsive core of the radius
Dy. (Do as suggested for 1Sy state from the p-p scattering
analysis is 0.4X10™%® c¢m according to Gammel and
Thaler® and 0.35X 10~ ¢cm according to Clementel and
Villi.®)

The integrals Lo were calculated by using the experi-
mental values of the total cross section. According to
the equation used by Austern,® one has

9a+6b= L?+3L*4-5L*+ (15/2) L2, M

provided Austern’s neglect of the oM s* term is justified.
The neutron (proton) polarization was calculated for
fuw=65 Mev using the sets of phase shifts of Gammel
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and Thaler® and of Clementel and Villi.® The polariza-
tions obtained in these cases are

—0.215 sin26+0.250 sinf

P(§)= (8a)
0.8774sin%
for the Gammel and Thaler case, and
—0.232 sin264-0.252 sinf
P(6)= (8b)

0.877+sin%

for the Clementel and Villi case. The denominators of
expressions (8a) and (8b) were taken from the experi-
mental data of Whalin ez al.' This procedure seems to be
justified to give an estimate for the polarization.

It should be noted that phase shifts from the potential
recently proposed by Signell and Marshak! differ only
slightly from those employed in (8a)—(8b) and so do not
produce a significantly different result for P(6).

IV. HIGHER ORDER CORRECTIONS

The surprisingly large influence upon the polarization
of M1 transitions, which are unimportant for (f),
suggests the need to estimate all the interference terms
including the lessimportant transitions for the multipoles
up to E2 and M2. These transitions might confuse the
situation mostly via the interference terms with strong
El transitions. The analytical expressions for the
polarization were derived by use of the following addi-
tional transitions: (1) M1 from 35:+3D; to 3S; and 3Dy,
neglecting the tensor coupling of the final states; (2) M1
from 3D, to'Dy; (3) E2 from 3S; to *D,, with no splitting
of the *D; states; (4) E2 from 3D; to 3Sy; (5) M2 from
%51 to ®Py, taking into account only the most important
interference terms of these transitions with E1 and E2
transitions; (6) M2 from 35 to *P;. The most interesting
point is, how do these corrections modify the general
features of the angular dependence of P(f), i.e., how
large are the corrections to the coefficients of sind and
sin2f as given in Eq. (5) and what new angular functions
are introduced in the modified P (6). The transitions (1)
and (3)-(6) arise from the residual interaction AH’
=Heo'—H', where H' is given by Eq. (2), while the
transition (2) is already implied by H’. The residual
terms of the radiative interaction are

AH'=ig(e 1) (x-1)+¢ (kX e) -S=if(x-1) (xXe)-S
-—i?](K'r) (KX e) (0'1,“—'0'7,), (9)

10 It should be noted that in a recent paper, J. Bernstein [Phys.
Rev. 106, 791 (1957)7] analyzed the D(y,p)n total cross section
using the phase shifts of Feshbach and Lomon. However, recent
results in the analysis of the p-p and #-p interaction (reference 5)
indicate the failure of Feshbach and Lomon’s phase shifts. For
those phase shifts one obtains: (0.877+sin%)P (@) = —0.147 sin26
+0.074 sing, as compared with the numbers given below.

1t Whalin, Schriever, and Hanson, Phys. Rev. 101, 377 (1956).

2 P. S. Signell and R. E. Marshak, Phys. Rev. 106, 832 (1957).
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where
%) /2
qzi—y (2—(ﬂp+#n_%);
c Mc
R i)y 1= Gy )
f=——(up—us), 1=——(uptua),
wme ame "

are the parameters characteristic for £2, M1 (to triplet
final states), M2 (to triplet final states), and M2 (to
singlet final states) transitions, respectively. In our
system of reference, AH’ can be written as

AH' =[1gzy+{S . — 189S =1y (0 pa—0nz) ] COSP
+Ligey—¢S.416yS.4-iny (0 p.—0z) ] sing.  (10)

For the sake of simplicity we shall neglect the E1
transitions 3D;—*F, considered previously. In this ap-
proximation, we find

Peorr= (Feorr) { ¢ sin20-+ad sinf+gA cosh sin26
+aqA s sin20+4-qA ; sinf+{¢ A4 sind
+ (g¢ As+¢246) sin20+-aAd 7 sinf+agAs sin29
+£A44 sin20-+£gA 10 cosd sin20+£gA 14 sind

+n4 12 sin20-+nqgA 15 cosf sin26}, (11)

where eorr is the correspondingly modified expression
which replaces & [as in Eq. (5)], given in Appendix I.
The coefficients A, are as follows:

A1=75Qp[5L; sin(nz—np) —2Lo sin(no—np)
- 3L1 sin (1}1*"‘7]1))],
A2= —%MsQD sin(&s—np),

1
As=——0s[ L1 sin(ns—n1)—%Lo sin(ns—mno)
10V2

+3Lesin(ns—mn)],
Ay=39M s[4 Lo sin(ns—mno)+ Ly sin(n s—n1)

1
=+ (5/3) Lz sin (nS“nz)]—gij[%Lo sin(no—7p)

— 2Ly sin(m—np)+ (14/3) Lesin(ne—np) ],
As=[9MsQp+ (3/40)MpQ 5] sin(ns—np),

3
Ae=—NsMp sin(ns—np),
6 v, sMp sin(ns—np 12)

1
A7= ———MD[:Ll Sil’l(‘)’h—‘al))—st Sin(‘nz—ap)],
2V2

1
As= ——MDQD Sin('ﬂD_ﬁp),
Y

Ag=2%LoLy' sin(noe—1n2),
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A10=15Q0[ 2L’ sin(no—np)~+3Li" sin(n—np)
+7L; sin(n:—np) ],

A11=

10\/7@ s[$Lo' sin(ns—mno)— Ly’ sin(ns—mn1)

+(5/3)Ly’ sin(ns—n2)],
Are=MpL; sin(n1—38p),
A13=MPQD Sin(ﬁp—‘/)D),

where

MD'—"Yf
0

0 0
Qs='yf rwudr, QD=‘yf ruw.dr,
0 0

4

0 0
wwdr, Mg=7y f uudy, Mp="y f ww,dr,
0 0

0

Ly =L;w=0), Mp=~yf ruvpdr.
0

It is readily seen from Eqgs. (11) and (12) that the
numerator of P is a simple function of 6, viz.,

Ocorr Poorr= @ sin26+ ® sinf+ @ cosf sin20, (13)
where
Q=ctagd gt A5+ Aetagdst+EAstnd e,
®=ad+qgAs+Astad+EgAn, (14)

C= qA 1+ EqA 10+‘)’)QA 13.

It should be noted that Eq. (11) is valid for neutrons,
with 6 having the meaning of the neutron angle. The
expression for protons, with 6 now having the meaning
of the proton angle, is readily obtained by changing
signs of A1, As, As, A5, As, A10, A12 (for the modification
of Georr sSee Appendix I).

We shall first estimate the corrections given by 4 ; for
the “Los Alamos” set of phase shifts. For the numerical
computation of the integrals, the ground state wave
functions # and w were taken from Fig. 4(b) of Austern.?
The final S states were assumed to have the hard core
radius Dy=0.4X10"® cm, as in Sec. ITI. Keeping the
same normalization as in Eq. (8a) and (8b), the follow-
ing results were obtained: (a) The most important
correction to ¢ in @ is gt A+ {24 6~0.043, amounting to
209, of c¢; the remaining terms are negligible (e.g.,
agd »is about 9.5%, £4is about 2.59, of ¢, agAsis about
1.99, of ¢, and 14 ;2 is still smaller). (b) In the factor ®&,
the most important correction to ad is ad;=0.048,
amounting to 199, of ad; the remaining terms are
negligible (e.g., {44 is about 0.8%, of ad and gA4; and
£gA 1 are still smaller). (c) The only important term in
the factor @ is q41~0.059; £g94 10 and ngd 15 are entirely
negligible. A more detailed analysis of g4, is given in
Sec. V.
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Fic. 1. Polarization of the outgoing neutrons from the D (y,p)n
reaction. Curve I represents polarization resulting from E1
transitions to 2Py, 3Py, 3P,, and 3F; final states. Curve II represents
the modification introduced by the g4 cosf sin26 term in the nu-
merator of P(9). Curve III represents the influence of the 1 —28cosd
factor in the denominator of P(8); this factor practically cancels
the modification introduced by the term ¢4 cosf sin2¢ in the
numerator of P(9). Curve IV represents P (9) as given by Eq. (8a).
It illustrates the strong influence of the M1 — E1 interference term.

The A; for the set of phase shifts of Clementel and
Villi® are very similar. Only a certain decrease of ady
and increases of {44 and g4, should be noted.

V. CONCLUSIONS

As was mentioned before, there are no data on P(6)
available as yet, and therefore the present short dis-
cussion is based on numerical factors obtained in pre-
vious sections and plotted in Fig. 1. These results are
based on rough estimates of the integrals L, from
Austern’s paper and recent phase shifts. There is, how-
ever, some inconsistency among the various sets of
phase shifts now in the literature. The numerical results
of the present analysis are, therefore, only illustrative.
These results also illustrate the importance of all
transitions up to E2 and M2. The measurements of
P(f) at many angles can provide an argument for or
against a given set of phase shifts and can provide new
equations to determine the Ly and M integrals.

Equations (8a) and (8b) of Sec. ITI represent the main
features of P(6) (see Fig. 1). It appears that the “Los
Alamos” set of phase shifts® gives about the same results
for P(6) in the entire interval 0 <6< as does.the set of
Clementel and Villi.® The higher order corrections do
not introduce essential differences between these two
cases.

Let us now consider the most important higher order
corrections given by ¢A; (E1—E2 interference) and
aAy, (E1—M1 interference). The E1— E2 interference
introduces the factor g4, cosf sin2 in the numerator
and for neutrons changes the denominator from a5 sin
to (a+b sin®d)(1—2B cosf). For a photon energy of 65
Mev, 26=0.25, according to Hanson et al.'® The in-
fluence of E1—E2 interference on P(f) is shown in
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Fig. 1. It is readily seen, however, that the contributions
to the numerator and denominator largely cancel each
other. This effect does not depend upon the details of the
radial integrals and phase shifts involved. It is sufficient
that their signs and the sign of the ¢ coefficient remain
the same as in the calculations presented above for the
cancellation to take place. The term ad; (E1—M1
interference) can give rise to a correction as large as 199,
of ad. It has, however, no important influence on the
general character of the curve P(6). On the other hand,
there is a great uncertainty in our estimates of a47 and
ad. Tt seems, therefore, that any data on P(6) could
provide the following useful information on the M1
radial integrals: (1) the E1—M1 interference terms
give rise to destructive interference in the forward and
constructive interference in the backward direction; the
deviation from the symmetry of P(6) about the point
6=90° thus indicates the M1 contribution; (2) the
polarization at 6=90° is due only to the E1—M1
interference:

a:corr (QOO)P corr(gOO)
=QR=a (d+A7)

=a —MsL1 sin(m—és)

1
""—‘—MD[L], Sil’l(?’]l—ap)—st Sin(‘qz—'ap)] . (15)
V2

Once the integrals L, » are known, one can in principle
determine the M1 matrix elements. Estimation of the
M1 transitions is simpler in the low-energy region. In
this case, throughout the interval 0<6<m, only the
E1—M1 interference is important, since the phase
shifts of the P states vanish.
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APPENDIX I

The angular distribution factor denoted by Georr in
Eq. (11) has the following form:

Foorr=a+b sin0+¢By sin’f cosf+¢*B; sin?d cos®d
—+¢Bj; cosf+¢*Bs+¢ By cosf+ (gt Be+2By) sin’f
+ qg‘Bg—*—szg"*’?ﬁBlo COS20+a7]Bu cosf
+a2B12(3 cos?0—1)+a2B13(5—3 cos?)
+anB14(3 cos’@—1) cosf+ £Bys sin?d+ £Bie
~+ £¢B17 sin?0 cosf+-£gBis cosd, (Al)
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where ¢ and b are the same as in Eq. (5) and
B1=—Qp[4Ls cos(no—np)
+Li cos(n1—np)+(5/3) L, cos(na—1p)],
By=300%,

V2
B;= *;QSE%LO cos(no—1ns)

—3L1 cos(m—ns)+§Ls cos(na—ns)],
By=(1/25)Q¢,
By=—9Ms[3Lo cos(no—ns)+ L1 cos(m—ns)

Mo
+3Ls cos(na—ns) J+——=[3Lo cos(no—np)
42

+ L cos(ni—np)+3Ls cos(nz—1p) J,
Bs=—(3/20)Q M p cos(ns—np),

3
B7=Emsmp COS(ns~ﬂD)—%mD2,
V2
Bs=(1/20)QsMp COS(ns—nD)-I-IaQsims,

1
By= —-\ijmsfmp o8 (1 s—np) 4291 2+%9 12,

B10=4MP2;
Bu=—4M sM p cos(8 5—8p),

1
Byy=——M sMp cos(8s—0p),

(A2)

905

Biz=1Mp?,
Bu=V2ZM pMp cos(8p—dp),
Bis=—(7/12) LoLy'+35LoL¢’ cos(no—n2)+1LiLy,
Bis=— (2/9)LoLy' — 3Ly L'+ (11/24) L, L/
— (1/18)LoLy’ cos(no—n2)
—3LoLy cos(no—n2),
Byy=—Qp[ELy’ cos(n2—np)

—3Lo cos(no—np)—3L1 cos(m—np)],

B18:"'

ISVQQS[_ZLOI cos(no—nx)

+3L1, Cos (171"'"]3)"'2L2, COS(ﬂz'—'ﬂs)].

Certain B; are already known: By and B, were given by
Schiff® Marshall and Guth“* (for 5,=7%p=0), and
Sasaki'®; B; and B, were given by Sasaki'’; and Bi; and
Bi; were reported by Austern.!® It is readily seen that
Goorr 1 Of the form:

Feorr= Q' (14-0a’ cosf)+®' sin?9 (148" cosf+B" cos).

Equation (A1) is valid for neutrons, § having the
meaning of the neutron angle. . for protons, § now
having the meaning of the proton angle, is readily
obtained by changing signs of By, Bs, Bs, B11, Bu, Bir,
and Blg.T

181, I. Schiff, Phys. Rev. 78, 733 (1950).

14 J. F. Marshall and E. Guth, Phys. Rev. 78, 738 (1950).
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T Note added in proof.—A recent paper by R. E. Marshak and
J. J. de Swart (to be published) using the potentials of reference 12
and assuming Siegert’s theorem for all the transitions obtains & in
agreement with the data. A numerical computation of P(9) for
this case is in preparation.



