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The direct and exchange scattering amplitudes for helium (1s)' with antiparallel spins in a three-body
approximation, and for hydrogen 1s, are treated. The fundamental differential and integral equations are
arrived at by using a simple atomic model given by Allis and Morse. Analytical formulas for differential
elastic cross sections are derived for the collisions of an unpolarized electron wave with helium and hydrogen
atoms in the above-mentioned quantum states. The second Born approximation is given, and distortion and
exchange effects are taken into consideration, The exchange effect is calculated in the second Born approxi-
mation and the perturbed exchange integral is calculated analytically to a good degree of approximation.

The analytical formulas derived for higher scattering angles are in qualitative agreement with experimental
results in the low-energy range.

II. FUNDAMENTAL EQUATIONS; DIRECT
SCATTERING

I. INTRODUCTION

A PROBLEM of basic importance in the quantum
theory is the theoretical explanation' ' of phe-

nomena occurring in electron collisions with atoms in
the low-energy range. Especially noticeable discrep-
ancies between the theoretical and experimental data
appear in atomic systems of light elements such as
helium and hydrogen, in which a large number of eKects
occur for this energy range. A number of papers are in
agreement that the Born approximation method appears
suitable for higher energies of the incident electrons,
though these papers possess differences in the number of
summands included in the perturbed member of the
Schrodinger equation, which is then solved with the
help of different methods. However, the Born approxi-
mation neglects the indistinguishability of the electrons.
The use of the first approximation in perturbation
theory and the neglect of the indistinguishability of the
electrons appear to be very substantial faults in calcula-
tions at lower electron energies (distortion and exchange
effect).

One might therefore suppose that in the solution of
the complex problem some progress may be achieved
(1) through specialization of all expressions on the
basis of broad energy intervals of a proved atomic
model (Allis and Morse' ), (2) through the inclusion of
the distortion effect corresponding to a given number
of summands in the perturbed member of the Schrod-
inger equation according to successive approximations
(with regard to convergence in a closed analytical
form), and (3) by including the exchange effect by the
Oppenheimer method in lower energy ranges in corre-
sponding analytical (if possible closed) expressions.

On this basis —besides deriving formulas for the
individual effects—the aim of this paper is to find the
corresponding extension of the validity of analytical
relations for lower energy ranges.

' H. S.W. Massey and C. B.O. Mohr, Proc. Roy. Soc. (London)
A136, 289 (1932); 139, 187 (1932); 140, 613 (1933).' B.L. Moiseiwisch, Proc. Roy. Soc. (London) A219, 102 (1953)' S. Borowitz, Phys. Rev. 96, 1523 (1954); 101, 1835 (1956).

4 W. P. Allis and P. M. Morse, Z. Physik 70, 567 (1931).

The Schrodinger wave equation describing the in-
cidence of an electron wave on a helium atom in the
ground quantum state, assuming that the in6nitely
heavy' nucleus is at rest at the origin during the
collision, may, by using the simplified atomic model,
be written in the form

where suffix 1 denotes the incident electron, su%xes 2
and 3 denote the orbital electrons, and i' denotes
always the nearest higher suKx to i in a cyclic suffix
permutation (1,2,3).

Let the total energy of the system E be giv'en as the
sum of the energy Eo of the orbital electrons and the
kinetic energy of the incident electron. Then the func-
tion 4 may be expressed in the form

+(ri r& rs) =
I 2+ lit'-(r»rs)~ (ri),

n a ] (2)

where the symbol (P+J') signifies summation over
the wave functions of the discrete spectrum and inte-
gration over the wave functions of the continuous
spectrum and P„ is a set of orthonormalized helium
functions.

Multiplication of Eq. (1) by 1(„*(r&,r&), with the form
of 4' given in (2), and integration over the space of
the orbital electrons with the help of the orthonor-
mality of helium wave functions, lead to the expression

(3){71 +~ }~ (rl) l 0 FO(rl)

k„'= (2tts/fz') (E E„), —
where

~ The corrections for a nucleus of finite mass are not considered.
For the corresponding transformation equation, see S. Borowitz
and B. Friedman, Phys. Rev. 89, 441 (1953);93, 251 (1954).
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and

2nz I' I' ( e' e' 2e'l
I +
Erg2 r, g r, ]

X4'0(r2, rs)p *(r2,r3)dr2d13 (4)

1
'g. (8;,p~) = —— Qo„(rg', r, ')Fo (r~')

4~8 J

Xexp( —ik„rg') dry'dr,"
(7)

By including known approximate auxiliary condi-
tions, according to which the asymptotic form of the
function Fo represents an incident (plane) wave and a
scattered (spherical) one, whereas the function F„(TWO)
represents scattered waves only, we may, by deter-
mining the Green's function of the given problem, pass
to the integral equation

F.(rg) =b„p e px(ik„rg)

exp(ik lr& r&'I)
V0 (rl )FO(rl ) drl ~ (5)

4
I

r~ —r~'I

From the asymptotic form of (5) (r&))r&'), it may
immediately be seen that the amplitudes of the scat-
tered waves are of the form

1 f'

j-(~,~) = ——
~

Vo-(ri')Fo(»') exp( —ik. r&)dr& ~ (6)

Xfo(r, r )dr, i,j =2, 3; i&j

for helium, whereas for hydrogen we have only

1
g (02, v~') = ——" ~QO (r& r& )Fo(r~')4»

X exp( —ik„r2') dr~'dr2',
(7')

2m( e' e')
Qo (r& r2') =,I,——,lk-*(r~')A(r2').

h EY21 f2 )

The exchange with incident electrons may, however,
take place only in accordance with the Pauli principle
which requires in Eq. (1) an antisymmetrical wave
function. For parahelium this function must be an
antisymmetrical wave function for each of the electron
pairs. With the help of the spin functions it is possible
to write such an antisymmetrical wave function which
is in agreement with this formalism in the separate
form

An expression formally identical to (6) would have
been obtained in the case of an electron wave incident
hydrogen atom in the ground quantum state, with the g „J)
difference that Vo„ in (4) is now

2nt p(e
Vo '=

'

I
—— IA'(r2)4' '*(r~)«2

&r„r,&

(4')

Q3 y
—Qy 3 0!2

+P„(rg,rg) 'G„(r2)

&1 2 &2 1 +3
+P„(r~,r2) 'G„(r3), (&)

i.e., for hydrogen we denote the corresponding quantities
in (4) with a prime. The functions P„' here represent a
set of orthonormal hydrogen functions which —unlike
those of helium —may be obtained in exact analytical
form.

III. EXCHANGE SCATTERING

If E&E„, i.e., for small energies of the incident
particles, there is always the possibility that in the eth
quantum state the incident electron will be captured
and the orbital electron ejected. Equation (1) will then
be satisfied for parahelium by the functions %(r2, r~, r~)

and %(r3,r~, r2). Analogously to the preceding part,
with the difference that the asymptotic forms deter-
mining the boundary conditions are here in the form
of scattered waves only, we get from the asymptotic
form of the integral equation the amplitudes of the
scattered waves:

where 2 &(n2P3 —n3i4)n& is an antisymmetrical spin
function with regard to electrons 2 and 3, F„ is given
by expression (5), and the functions 'G„and 'G„are
analogous solutions of Eq. (3) with the asymptotic
forms given in (7) for helium.

For hydrogen the antisymmetrical wave function is

Xk& '(r2)F (r~)&2&~ & (r~)G (r2)&~o'a (g')

in which the G„are solutions of Eq. (3) with the asymp-
totic forms (7').

As we consider neither the emission nor the absorp-
tion of electrons, we have the scattering coe1%cient in
the form

0.0„——(k'/ko) ) (O,koi V[n, k') i',
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where the statistical weights related to spin states may
be determined with the help of spin functions in (8)
and (8'), respectively. We thus get w, =0, te, =1 for
parahelium, and m, = ~, zv, = ~ for hydrogen.

IV. DISTORTION EFFECT

For the functions F„we have derived the diRerential
equation (3), the right-hand side of which is negligible
for high velocities of the incident particles. The exact
solution of the dif'ferential equation (3) with regard to
the boundary conditions (5) is given formally with the
help of Green's theorem in the form of the integral
equation (6). When the right-hand side of Eq. (3) is
negligibly small, the second term of this formal solution
is also negligibly small. This represents a zero approxi-
mation for the function F„in the solution of the integral
equation (6) from the point of view of successive
approximations. Thus,

Fp(rr) =exp(ik i'i), F =0, (is/0). (11)

Using (11) in (6), we get the first Born approximation.
We may thus say that in this approximation we neglect
the inhuence of scattered waves for all values of e.
With regard to the fact that the probability of inelastic
collisions relative to elastic collisions is negligibly small
for all energy values except those which approach the
resonance potential and correspond to atomic polariza-
tion by the electron wave, we may not, considering
polarization, neglect the functions F„even for e&1.
Likewise, the probabilities of the exchange effect are
negligibly small (G„O) in elastic collisions. Thus it
may be expected that the leading terms for higher
approximations will involve only the function Ii0. To
solve the differential equation (3) for n=0, we express
F0 by zonal Legendre polynomials in the form

00

Fp(rt) =—P fi(rt)Pi(cos8). (12)

By substituting (12) into (3), we get

d' L(l+1)
+kp —&pp(&t) — fi(&t) =0,

dr&' rl

'N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, London, 1949),second edition.

where (0,kp
I
V

I
ri, k') denotes the transformation matrix.

For the incident electron beam, which is considered
unpolarized, both polarization states must be admitted.
Symmetrical spin functions are then obtained with
threefold degeneracies (s=1), whereas the antisym-
metrical spin functions correspond to singlets with
lower energy states than triplets. The corresponding
scattering coeKcient' is

op = (k'Ikp){te. lf-+g-I +re. lf- g-I —), (1o)

C„=i"(2m+1) e'& (15)

The phase constants in expression (15) for e &1 assume,
for energy values smaller than 200 ev, especially small
values in comparison with g0.~ Therefore, if we compare
Fp in (12) with the known expansion of the plane wave,

e'~'= (pr/2kr)'P i"(2n+1)J„+i(kr)P„(cos8), (16)

we may identify all the terms in the series (16) for
e& 1 with terms in the series (12) for rs& 1. Then

Fp(ri) =exp(ik rt) —n'(krt) ' exp(skrt), (17)

where

—n'= (1/2i)l exp(2itlp) —1)=s sin(2rip)+i sin'rip. (18)

In the same manner, we may take into account even
higher approximations in the series (12); however, as
already mentioned, these will not be considered further.
Let us define here the constant o., such that

(19)

Let us consider more closely the formal solution of
Eq. (3) given in the form of the integral equation (5)
for m=0. In the asymptotic form, it is possible to write
this solution

Fp(ri) = exp (tkp ri) —fp(&t, 1pt)rt ' exp (rkp&l)

where fp is given by (6). Taking note of the remarks in
the text preceding Eq. (12), substituting into (6) for
Fp only the leading term from the series (12) (1=0),
and using in (4) the Hylleraas functions, ' we see that
in the first approximation (the term which is only a
function of k) we obtain after the integrations exactly
expression (17). In the sense of successive approxima-
tions, the expression (17) for Fp represents the first
approximation of such a rearranged integral equation
(5).

The distortion eRect appears considerably more
strongly in an incident electron wave than in the scat-
tered waves, and therefore in the future we shall assume
only the incident electron wave to be in the form of a
perturbed wave function.

' I. MacDougal, Proc. Roy. Soc. (London) 4136, 549 (1932).
V. A. Fok, Izvest. Akad Nauk Ser. Fiz. S.S.S.R. 18, 16$

(i954).

where, in the asymptotic form,

f, (r,) Ct sin(kr, ——,'hr+rii), (14)

q& denoting a phase constant. The asymptotic solution
of Eq. (3) for n=0 is thus given by the series (12),
where the fi are given by expression (14). We again
substitute suffix 3 for m, since this will not lead to mis-
understanding. If we include the boundary condition
in the solution, we get, as is known from the quantum-
mechanical problem on scattering, a relation between
C„and the phase constants g„ in the form



VLAD I M I R SACHL

V. SECOND BORN APPROXIMATION

For the calculation in the second Born approximation
it is necessary to know only the function fo. This func-
tion for helium, after substitutions using the perturbed
wave function (17), is

t
t'1. 1

fs(8, y) =c t '

~
+ ~

exp[ —2b(rs+rs)1
&rt, rts rt J

Xexp( —ik rt) exp(iko. rt) — exp(ikort)
kprg

to c' for hydrogen. The square of the absolute value of
expression (23) is the well-known Born formula.

For the calculation of the perturbed part in Eq.
(20') (deleting the constants before the integration
sign), we have

t't(1 1y
ItD —n——'

~

~ I exp( 2brs)
( rls rl)

exp(skpr t)
Xexp( —ik' rt) drtdrs, (24)

korj
we use the expansion

where the constants c and b are given by
ry v=p u=v

XtErtdrstlrs, (20)
Z ~ v

8„(rt,r,)f',"(cos8t)

c= yg 622 l~—3@—2/6 jeff.~p
where

XE~"(cos8s) cos[p(q» —q»)], (25)

Dividing the potential term into two parts, integrat-
ing over r3 in the first part, over r2 in the second, and
using the gamma function

be= (1—Z)/rt, rs(rt
=1/rs Z/rt, rs)—rt,

b =rs'r/rp+', rs(rt
= rt'r/rs'r+', rs) rt." t" 'exp( —ttt)dt=tt "I'(tt),

0

(21)

2tr t t'(1 1)
fo(8, p) =c—~'

(
———

)
exp( —2brs) exp( —ik rt)

bs J ~ &rts rtJ'
exp(ik'rt sin8t costot sin8) exp( t'stot—)dyt

where in our case Z=1. Substituting (25) into (24) and
integrating over q 2, we see that in the second summation

we get, after suSx change and addition of the two Parts, sign onl the term with p 0 ts different from
By further integration over q ~, using

X exp(ikp rt)—
kore

exp(ikort) drtdrs, (20')

and over 82 using' "
=2sri J (k'rt sin8t sin8), (27)

which, apart from the factor 2mb ', is exactly the same
form as would have been obtained for hydrogen by the
above substitutions with the corresponding constants Jc' and b':

c'= —me'2 'vr Vz 'b", b'=a
XJ~;(to sin8t sintt)C„&(cos8t) sin'r+'8td8t

= (2sr/y) &i" sinr jt C, (rcsof) J,+„(y), (28)
In order to carry out further integrations, let us

choose the axis of the polar coordinates along the direc-
tion of the vector ks and let the y axis lie in the plane
of the vectors ks and k'. Then

ko r,= ksr, cos8;,

k" r;= k'r;(cos8; cos8+sin8; sin8 cosy;), (22)

where 8 is the angle formed by vectors ko and k deter-
mining the angular distribution of the scattered
electrons.

Integration of that part of (20') involving the first
term in the second bracket gives the first Born
approximation:

dItss= —d(srs/b') [2+s' sin'(8/2) j/[1+s' sins(8/2))s

s= k/b for helium, s= k/b' for hydrogen, (23)

where the constant d is equal to 2mcb ' for helium and

we find that also all integrals for y/0 vanish. For the
only nonzero term of the series, in which we again
integrate over tt t with the help of (28), we get

exp(iksrt) sin(k'rt)
X — — r j'drgr..'dr2,

kpr, k'r,

where 8o is given by (26). Through the influence of the
potential terms this integral is not identically equal to
zero if r2&r&, and we may therefore still rearrange it

G. N. Watson, Theory of Besset FNrtetsols (Cambridge Uni-
versity Press, Nevr York, 1944), p. 379, Eq. (1).' E. T. Whittaker and G. X. Watson, A Course of Modern
ANalysts (Cambridge University Press, New York, 1952), fourth
edition, p. 329.
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to the form

(1&r ) i t" (ri —rp)—~'I, I exp( —2brp)rp
Ekpk'J & p ~p ( ri )

Xexp(ikpri) sin(k'ri)dridrp. (29)

Considering the fact that we treat only elastic
electron collisions, the law of conservation of energy
(kp ——k'= k) must be satisfied. Let us introduce in (29)
the substitutions kr~= x~ and kr2 ——x2, then we can find
the integral over x& by elementary integrations:

t'*p (xi—»)
~

exp(ix&) sinx&dpi ———i4/exp(2ixp) 1j

to the calculation of the integral

t(1 1 2~
'g.(e, V ) = c

~ ( +
Er„rip r, &

XexpL —b(ri+rp+2rp)] exp( —ik' r,)

exp(ikprp)
X exp(ikp rp) —n' dridrpdrp. (34)

k()r2

By dividing the potential term in the first parentheses
into two parts and by integrating the first part over
r;, , we get two integrals

gp(~, p) = pd(I»+I»)
p~»t Ci(2») —1nb2zp —i Si (2») —1j, (30)

)

(35)

5 =expC,

where C is Euler's constant (b= 1.781072 ). By
substituting (30) into (29) using (21), by differentia-
tions with respect to the parameter with the help of
the expressions for the cosine integral and sine integral:

exp (zk prp)

X exp(ikp r,) n'—
kGrg

dridrp (34')

r t'(1 1)
I»——

~

———
~

expt —b(ri+rp) j exp( ik'—ri)» Er„r,&

"0

f 1 ) p
exp( —p~) Ci(g~)d~= ——in~ 1+—

~,
0 g'&

'

(p't
exp( —

p&) Si(g/)d&= ——arc tan~ —
~,

p Lg]'

(31)

is identical with the expression which would have been
obtained for hydrogen. The corresponding constant for
hydrogen (d=c') is given by Eq. (20). The second
integral is equal to the product of two independent
integ rais,

we get after integrations of the contributions of in- bP p exp(ikr )-
dividual terms in (30) the perturbed integral in the I» exp( —brp) exp(ikp rp) —n — drp

closed form kr2

2m' 1 1 n'
IiD = — —(s' —3s' —2) +n (1+s4)

b' s' 2(1+s')' s

t'1'l ( 1) 1
r—n' arC tan( —

)
——+4r in( 1+—

(
——,(32)

Es) 2 ( s') b' I

where s= k/b.
Thus, if the exchange effect is not considered, the

scattering intensity in the second Born approximation
is given by

I(&)=d'~Iia+IiD ~', (33)

where dH, =2vrc/b' and dH ——c' and where Ii~ is given
by Eq. (23), IiD by Eq. (32). We have thus included in
the calculation the distortion effect in the second Born
approximation; its inAuence in exchange scattering
will be shown in the next section.

VI. DISTORTION EFFECT IN EXCHANGE
SCATTERING

The amplitudes of the scattered waves in exchange
scattering 'go are, as has been shown for helium, equiva-
lent for both superscripts i, so we may limit ourselves

t'(1 11X, (

———
I

expL —b(ri+2rp)7
&rip ri)

l

Xexp( —ik' ri)dridrp, (36)

and need be taken into consideration only for helium.
First we shall show the method for calculating the

exchange integral I~~, which we again divide into two
parts: the part originating from the unperturbed wave
function in Fo, which will further be denoted I2~, and
the part giving the distortion of this wave function,
which will be called I2~~.

For reasons to be indicated later, we shall first deal
with the second part of the exchange integral, I2&D.

The orientation of the axes will be chosen identical to
that in the preceding part of the calculation of the
Born second approximation. Substituting into I~~ for
the potential term the expansion (25), we find by
integration over pi that p =0. By integration over gi

we see that y must also be equal to zero in order to
obtain a term of the series which is not identically
equal to zero. lf, after the thus executed rearrange-
ments, we use Eq. (27) for the integration over qp,
and Gegenbauer's integral, Eq. (28), for the integration
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where bo is again given by Eq. (26) for Z=1. Therefore,
after the substitutions x'= kr2, x= kr&, and having
satisffed the law of conservation of energy (ko= k'= k),
the nonzero part. of the integral I» is

D
167r'e'

ka
exp( —Kx) exp(4x)

~

—
~

~

(x' —x)
kk') &,

&(exp (—xx') sinx'dx'dx, (37)

where 14= b/k=1/s. By differentiation with respect to
the parameter A: in the second integral, we get the
result that the second integral in x' is, with the excep-
tion of the factor k ', expressed by elementary integra-
tions in the form

t' 8 ) exp( —14x) 1
s K slnx cosx

814) 14'+1 14'+1
(38)

Substituting the integration result (38) into (37), we
see that for integrations over x we get special cases of
integrals of the Lipschitz-Hankel type, i.e., the integral

(2b') 'I'(v+ 2)
exp( —a/) J,(b't)t&dt=, (39)

(a'+ b') &+'g~

and the integral

t
"+8+&'q

exp( —14x)J,(bx)dx= —Q, .*,
~

~. (40)
0 ~ (Pb) ' I 2'

For p= —,', the Legendre polynomial of the second order
on the right side of (40) is equal to

Qo(t)=2 ln(t+1)/(t+1)

For values 14) 4, 4)0 (z(2/4) in which we are particu-
larly interested in dealing with the slow collision of
electrons with atoms, the convergence of this integral
presents no difficulties. With the help of the special
case of the Lipschitz-Hankel integral (30) and (40),
after rearrangement, we get

I D
4m' 2A

n" (3—s')+
b5 (1+s2)3 s

(41)

over 82, we get

167t-'n' p r
I21 30(rl r2) exp) —b(r4+r2)]

k,k'~, ~,
)&exp(ikor4) sin(k'r2) ridrir2dr2,

Mohr, "by making an infinite series expansion, neglect-
ing the contributions from the minima in the individual
terms of the integrand, and considering that the ex-
pressions in the integrand replace the approximate
terms. Massey and Mohr give a very detailed analysis
of the contributions of the individual terms of the series
and show in this connection, for slow electrons, the
method of calculation of four terms of the thus-formed
series. According to the analysis, two terms of the
series for slow electrons already give a quite close
approximation. Further, we are going to calculate these
two substantial terms more accurately.

As shown in the Appendix, it is suitable to include
in the integral Iq4D the 6rst term of the series Lsee
(A2) j. Let us therefore introduce in the exchange
integral I» a division into parts,

I24 Igp jIg——4 (42)

where I2~
'

is the integral I» including the first term
of series (A2) and I~P' is the integral I~P without this
term. Then, as derived in the Appendix, the first part
of the integral I~~ is obtained in the form (41), where
the constant n" is

n"=n+1. (43)

For the second part of the integral I», only an
approximate solution may be given. Neglecting the
influence of the terms of series (A2) in which y) 2, we

get the part I» '
expressed in the form of an infinite

series. The first terms of this series are then given as

I2P'= 16m' b SPY(cosg) (1+z )
X (0.625—0.3s+1 539s' —1.906s'+0.377s4— ),

(44)

where the first two terms are given exactly and the
others with accuracy 10 '.

Now let us introduce the method of calculation of the
integral I~~ given by form (36). The ffrst of the inde-
pendent integrals, containing also the perturbed term,
may be expressed by elementary integrations, using in
the integration over r2 differentiation by the parameter
b. If we include in this integral the factor b'/n. , then we
get the result of the integration for the unperturbed
term in a simple form,

8/(1+z')',

where z is again k/b. Also the integration of the per-
turbed term may be performed by elementary integra-
tions and with the help of differentiation with respect
to the parameter b, so that we get

which is the required evaluation of the integral belong-
ing to the perturbed wave function. The constant e" is
here equal to e.

The calculation of the unperturbed exchange integral
I2~~ is very tedious and difficult. An approximate
solution of this integral was obtained by Massey and

—n ——(1—s') .
(1+z')' 2s

It remains, therefore, to evaluate the second inde-

"H. S.K.Massey and C. B.O. Mohr, Proc. Roy. Soc. (London)
A132, 605 (1931).
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Let us introduce the notation x2——kr2, x~=kr~, then we

may write

16m2 ~" (1) t*'
exp (—2~x2) x2~ —

~
(xi—xp)

ka J, Ek2) J,
&& exp( —Kxi) slllxidxidx2, (45)

where ~=b/k=1/s. The integral over xi is therefore
identical with the integral given in (37). The result of
this integration is given by Eq. (38). By substituting
(38) into (45), we get by elementary integration. and
with the help of (21),

4m' 1

b' s(9+s')

Ke have therefore the result for the integral I22 in the
closed form

I22———16m'b 's '[2(1+n) —n'(1 —s')s 'j
X (1+s')—'(9+s')—' (46)

With the given integration results (41), (44), and

(46), we have thus obtained all the terms necessary for
the expression of the amplitudes of scattered waves for
exchange scattering, and thus the required formulas
describing all effects which need be taken into con-
sideration for collisions of unpolarized electrons with
helium and hydrogen atoms. Let us state that with the
exception of the higher terms (y) 1) of the series (A2)
for the unperturbed exchange integral, in which the
terms &s, as already mentioned, " are negligibly small
in comparison with the other terms, we have expressed
all the given integrations in a closed form. The
convergence of the terms of the series y=1 in the ex-
change integral, which we have in turn expressed by a
series, will be better for small values of s, i.e., for small
energies of the incident electrons.

pendent integral containing the potential term. For
this purpose we use again the expansion (25), first
substituting in the integral the index 2 for index 3,
After substituting the expansion (25), by an integra-
tion over p2 we see that p=0; by integration over &pi

with the help of (27) and over 0u with the help of (28),
we find also the y=0. Using again Gegenbauer's in-
tegral (28) for the integration over 8&, we then get, by
the same rearrangement as for integral (24), the part
of the integral which is not identically equal to zero for
r2(ri (kp= k'= k),

16m' ~" ft2

exp( —2brg)r9 ('ri r2)»0 ~O

&&exp (—bri) sin (kri) dridr2.

have derived the formulas

I(0) = If gl—', f=d(I»+IiD), g=sd(I»+I22) (47)

for helium;

I(e) =4
~If g i—'+g

i
f'+g'i', f'=c'(Iiii+I, n),

g'= -', c'I2i (47')

for hydrogen. The constants d (=2scb ') and c' were
given for Eqs. (20) and (20') respectively. The Born
approximation, Ii~, and the inhuence of distortion
effects, I~~ and I22, were developed in a closed form
by analytical expressions (23), (32), and (46). The
exchange integral I2i, which we divided in (42) into
parts I»D' and I~P', was determined by Eq. (41) in
which n" is equal to n+1, and the approximate part
I&P' was given by Eq. (44).

For Eqs. (47) and (47') to become complete formulas
for intensities of scattered electrons, it remains to deter-
mine the parameter o.', including the erst approxima-
tion in the zero quantum state, which we had hitherto
considered as known. The accurate values of this
parameter are given by the absolute terms in ex-
pression (6).

In the first approximation we have determined e'
by Eq. (18), in which the phase factor go had been con-
sidered as known. This phase factor, as is known, is in
the required approximation given by the Mott formula

go= — V (r)I;,'(kr)rdr,

which for our case, in which we use the above atomic
model, acquires the form

go ——Rsvp'(2A') 'b '[s 'ln(1+s')+s/(1/s')j. (48)

The intensities of the electrons scattered by helium
and hydrogen in the ground quantum states are then,
in the approximation considered, given by formulas
(47) and (47') and. the expressions for the parameter by
(18) and (48), valid for greater scattering angles
(o45')

In special cases the derived analytical formulas may
be considerably simplified. For high energies of incident
electrons (above 200 ev), this simplification lies in the
neglect of the exchange amplitudes g or g' in (47) or
in (47'). The small contribution of the distortion effect
is here then introduced by the part I~D. If we do not
neglect the exchange amplitudes, it is necessary to
determine a greater number of terms for extremely high
energies, with respect to the convergence of the series
in (44). A good approximation for the parameter 0.

'

may be obtained, in cases in which n' assumes extremely
small values, by the expression

VII. SUMMARY AND DISCUSSION OF RESULTS
I0! =$0~ (49)

For the intensity I(6) of electrons scattered by
helium and hydrogen in ground quantum states, we

where go is given in (48).
A comparison with the experimental results, which
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TABLE I.DiGerential cross sectionX 10' (theoretical) {units cins). determined through our results in a broad energy
interval.

25 ev 700 ev 50 ev 75 ev

65' 7.87
90' 5.96

125' 5.73

60' 0.234
90' 0.086

120' 0.052
135' 0.018

67' 5.81
90' 3.61

127' 1.97

67' 4.69
90' 3.39

127' 2.78

'2 Hughes, McMillen, and Webb, Phys. Rev. 41, 155 (1932).

includes also inelastic collisions, for the angular dis-
tribution of scattered electrons, will be carried out for
helium in the ground quantum state. Experimental
results for the energy interval 25—700 ev have been
reported by Hughes, McMillen, and Webb" and for
incident electron energies 25 and 50 ev by Bullard
and Massey. These results have been obtained by
normalizing on the basis of Mott's theoretical curve
for 700 ev. For the analysis of the obtained results for
greater scattering angles ()45') we list in Table I the
values of the differential cross sections, determined by
Eq. (47), for 25 and 700 ev. The values for 700 ev,
which were partly used for the normalization, were
obtained here without the inclusion of the exchange
effect and are marked in the left half of Fig. 1 by
crosses.

The stronger continuous line in this figure represents
the experimental curves obtained by Hughes et al.

Kith regard to the fact that we have not considered
the polarization of the electrons and with regard to the
extent of the energy interval, it is possible to consider
the analytical results obtained in this way, which are
equivalent to the numberical results of Massey and
Mohr, to be satisfactory.

The possibility of using Eq. (47) with the first two
terms of the series of the unperturbed exchange integral
(nonclosed analytical form), with the inQuence of the
exchange effect thus taken into account, is investigated
for incident electron energies of 50 and 75 ev. For these
energies the condition s(1 introduced in the Appendix
in the calculation of the terms of the series of the un-
perturbed exchange integral is not satisfied. Neverthe-
less, the inhuence of the exchange eGect for these
energies drops considerably. The values for the dif-
ferential cross sections obtained in this way are also
included in Table I and are compared with the experi-
mental data in the right half of Fig. 1. From the figure
it is evident that for 75-ev maximum with a corre-
sponding difference this method is acceptable. For
energies of incident electrons, for which s& 1, it is
therefore better to use the unperturbed exchange in-
tegral in another approximation, cited in the literature,
e.g., in reference 11.

The results (not including the polarization effect)
which were obtained for the atoms in the ground
quantum states may also be used for molecular hydro-
gen. Likewise the total effective cross sections cited in
the experimental works of Ramsauer and Kollath are

APPEND IX. CALCVLATIO N OF THE INTEGRAL I21

For the calculation of the integral I2i~ we use again
the development (25). Then by integration over ps we
get p=0; the integration over pi may then be carried
out with the help of (27). H we use further the special
case of the Gegenbauer-Poisson integral,

t'x t* t
I„+,(x) = (—i) "l —

l
~ exp(ix cos8)

&2~»,
XI'„(cos8) sin8d8, (A1)

for the integration over 62, and the Gegenbauer integral
(28) for the integration over Bi, we get

Isi =16'' P C,i(cos8) t 8, (ri, rs)
y=o ~J

Xexp[—b(ri+rs) 1j,(k'ri) j,(kors)ri'rs'dr&dr&, (A2)

where

j.(*)= (~!2x)'I~+:(x)-(A3)

16m' 00

IsP I i (cos8) '~
~ exP (—ax])j\, (xi)

k'

f% +1 F00

X exp( —axs) ji(xs)xs'dxsdxi+ exp( —axi)
Jo J,

lXji (xi)xi', exP (—~xs)ji(xs)dxsdxr, (A4)J„ I'

where ~=b/ks (k=ks ——k), xi ——kri, xs=krs. By ele-
mentary integrations in the first integral over x2 and
by using repeated differentiations with respect to the
parameter to obtain derivatives of higher order, we may

and h~ is given by Eqs. (26) for Z=1. We can easily
check that the first term of series (A2) is, for p=0,
apart from the constant —in'(=n), identical with the
imaginary part of I2~~, and this means that in the
result for the integral I&i one may simply write n+1
instead of n" in Eq. (41). We have thus included the
first term of the expression I2i . This arrangement of
terms in the integral I2~ will be denoted in the individual
summands from now on with a prime on the upper
right of the symbol.

Taking into account the fact that the contributions
of the other terms of the series for p) 1 are negligibly
small even for small electron energies, we shall give
only an approximate expression for I2~, namely,
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transform. t" '
.this integral into the form

(3x,—xxss) exp( —xx,) sinx, oix,

cl exp( —zxt) *)("+)+ j

go&8„25

I

&20 eo'

-6M&0

-~ 5o ~&

2

+ (1—xxi) (x'+1) cosxi — — AS
(x'+ 1)' I
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