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Adiabatic vs Bloch Ayproximation in Lattice Scattering of Electrons*
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The time dependence of an electron-phonon system described by means of Born-Oppenheimer states is
shown to be the same to first order in the coupling as the usual Bloch theory.

INTRODUCTION where Hl.~ and H~~ are defined for the product func-
tions C =y(r; Q)x(Q) by

A N important problem in transport theory is the
separation of the scattered part from the other

deformations of the conduction electron state due to
lattice vibrations. In the treatment due to Bloch the
scattering is calculated in first-order time-dependent
perturbation theory. The unperturbed states are prod-
ucts of perfect-lattice electron states and lattice oscil-
lator states. The perturbation is the change in potential
produced by the lattice deformation. Xo other effects of
the perturbation are considered.

It has been suggested' that it would be better to start
with adiabatic states of the Born-Oppenheimer (B-O)
type since these already include a correlation of the
electron and lattice motions. Ziman and Haug have
shown independently by direct calculation that the
matrix elements of the nonadiabatic part (HN") of the
Hamiltonian are closely related to those of the Bloch
theory. Thus the effect of HN~, treated as a perturbation,
is not smaller than in the Bloch theory so that it is not
obvious that the B-O states are a better starting ap-
proximation. It is shown in this note that the time
dependence of states calculated by the B-O and Bloch
methods is the same to /rsvp order in the electron-lattice
coupling. This result, of course, has no bearing on the
utility of the adiabatic approximation in an inter-
mediate- or strong-coupling calculation.

(3a)Hz Px=vtiHzx,

HNAyx —(H H A)yx
= l Z.i (~ '4) P'.x)+9'.4) (~.'x)

+(I'p'I'A)x) (3b)

Here ~t and x are the normalized eigenfunctions satis-
fying

(H.+H.)~ (r; Q) = ~ (Q)~ (;Q); (4 )

LH.+~ (e)lx, (e) =~ '.(e) (4b)

The customary running-wave operators, a= (Q+iPt)/
v2, etc. , are not used because Q and I' are treated

differently in the adiabatic approximation.
The 4 i, =&ixi„ form a complete orthonormal set, and

by expansion the linear operations Hz~ (and H~~) can
be defined for the general state 4 =P ci„C i„.

Hz"4:Qc i„Hz"4—i,v

This operation is Hermitian because the E~„are real.
H~~=HI. —H~~ is also Hermitian. It is thus possible
to do the usual perturbation calculations with Ho' and
H1' but the calculation is constrained to be done ex-
plicitly in terms of the C i, (B-O representation). The
latter restriction mars the formal similarity to pertur-
bation theory since the functions C &„ are not known
exactly. Suppose v, q are approximations to g,
res ectively:

CONSTRUCTION OF THE B-0 FUNCTIONS

r (r; Q) =P i a i(e)@i(r; Q),

«(Q)n(e)=Z «xi (Q);

~'0 P lv & i @lvv

In Hz" (vq)=iHzrl the lattice coordinates in ai(e) are
not differentiated, but they clearly are differentiated in

P a i,H z "Cv i,. The separation H z"+H~~ can be defined
only to the accuracy of the approximate B-0 functions.

The electronic functions will now be calculated to first
order in terms of the Bloch functions:

H =H~+Hz+Hr
=H~+ p Z p(I' p'I' p+~ p'Q p'Q p)

+X—' Q, V, (r)e'&'Q

It is split up in two diferent ways:

p
The B-O functions have some peculiar properties in

perturbation calculations because of the definition of
H~~. We brieRy review them here for the electron-
lattice problem. Complex normal coordinates Q, specify
the displacement of the modes q

= (q,a.).The Hamiltonian
is

Hp+Hi = (H@+Hz)+Hi, Bloch method;

Hp'+Hi'= (Hz+Hz, +Hz)+H B-0method;
(2)

@i,„——ek(r)II e,(e,);
q

Ho+kn +kn +kn j
* Supported in part by the 0%ce of Naval Research. (o)— 1
~ J. R. Ziman, Proc. Cambridge Phil. Soc. Sl, 707 (1955); H. Ei,„——p(k)+&„=p(k)+Q, (e,+,)Api, -

Stumpf, Z. Naturforsch. Ila, 259 (1956);A. Haug, Z. Physik 146,
75 (1956). To this order k, e will be good quantum numbers so
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Hzk, k =& U (k', &)Q (& ',& )
(6)C'kn U+kn

that the transformation from the Bloch to B-O repre- where only e,' differs from e, so that
sentation is

In a familiar manner the electronic part is first found in
(4a) to some order in &i, where Hz is replaced by XHz,
and hk{Q) = hk~p&+XBk&'&+ ' ls pll't lzl (4b) Lhk&'&

= e(k) J. Since Hz is linear in Q„

Bhk
b "&(Q)=Z Q.

BQp op=p

&', k'"(Q) =Az «II, (k', ~)Le(k') —e(~)3 'Q (12)

C'kn —(uk+A Qk' Vk'k (Q)uk'+0(li )}
X {&~..'"+O{&')} (13)

The diagonal elements of 'U(') are zero. It is convenient
to write 'U(') also as a matrix in the electronic states only.
Then

and similarly for h ~", etc. For the electronic part, the H will oPerate on the Qp in 'U"'(Q) and will thereby

lowest order terms are' have a comparable eBect to II~.

+1k'k
yk(r; Q) =uk(r)+X Q uk+

k'&k e

Hzk k= (uk, Hzuk) =1v—«U, (k',k)Q„q=k' —k;

U, (k', k) = (uk, U p(r) uk) ~ Sk, k+ „.

TIME DEPENDENCE

ln terms of the separation H=Hp'+Hi', the time

dependence of the Schrodinger state vector is

q (t) =exp( —iHp't/A)

Jz r

xexp+
I

—s
~p

hk(Q) = e(k)+XHzkk

I
v, (k+q, k) Is

+—E Qp Qp+' ' ' (9) where the operations are all defined in the B-O repre-
E P e(k+q) —e(k) sentation and

Since Hzkk ~ E «Qp, the term linear in X is negligible for
large E. The E ' before the quadratic term is canceled
by the terms ~ 1V in the summation. There is rzo first
order change in the lattice motion:

xk =xk 'P&+l~'xk "'+ =g u ~,'(Qp)+; (10)

where Nn, ' is Nn, wltll M q replaced by

zs
I vp(k+q, I ) I'

G&p = G& p+
AX e(k+q) —e(k)

The change in Nn, is of order E ':

bum's

=a (happ/ppp)( (n p+1)«(N p+2)«up p+s

+I„«(n,+1)«un, -s},

but the change in p is of order unity or more precisely of
order

Hzz+(r) =exp(i7Ip'r/A)Hzv" exp( —iHp'r/A).

The ordered exponentiaP exp+( . ) is not used seriously

since we are only interested in first order terms in X.

Because of the proviso in the definition of H~~, it will

be better to work explicitly in the B-O representation.
The column vector for 0 will be denoted by 8 here and

by 6' in the Bloch representation. According to (6),
Ck„=+ 'Uk „,k 4'k „so that 6'='U6 w'here 'U is the
matrix (11).Then

6'(t) =Q exp{—iHp't/A)'U 'U exp+( )6(0). (13)

Again 6(0) is kept on the right side because H~" is

defined in that representation. To first order in ),

( r'
exp+I i H—&v" (r)dr/A I

=1—i HN" (r)dr/A,
) ~p

&t'"(I U. I'/A .Le(k+q) —e(k)])A„.

Writing the transformation operation in
'U='U~'&+Ado&+, then, since in first order
changes, the matrix 'Uk „,k„——(4k „,Ck„) is,
order in X,

Uk ~, k'z« —vk ~ ~ k~)(0) —~

and for k'zs'4krz

Uk'n' kn I ( e)ke(k)) Hzk'n', knq

'U exp (—iHp't/A) 'U—'6'(0),

which is just the evolution of unperturbed (by H~")
B-0 states as seen in the Bloch picture.

Upon using the B-O matrix,

exp( —iHp't/A) k' ', k =5k' ' k exp( —i~k .'"t/A),

since H~" operating on the M3"& term in (13) is of
order X. The identity in the above gives in (15) the

(6 as
only yk
to first

' The possibility of a reciprocal lattice vector here is understood. ' R. P. Feynznan, Phys. Rev. 84, 108 (1951).
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this part of (15) is

6» „'(&!)=exp( —iE» „~o&t/A)

X 6». (0)+& Z Hr»", ».
kngk'n'

Now using (11),we have

(E~ —K)
IIlk'n', kn

«(k') —«(k)

(19)

«(k') —«(k)

X6» '(0) +O(X'). (16)

(exp[x(E». .~ & —E»„~")&!/&&&]—1qxi—
E.

This matrix element, which is just the matrix element
of H~~ in (17) in the B-O representation, was given by
Ziman and Haug. ' The "nonadiabatic" terms (18) can
be combined with (16) if the resonance denominator is

put in the latter by writing

«(k') —«(k)

to give the first-order term of the Bloch theory.

This resembles closely the form of the Bloch theory
but for the appearance of the electronic energy in the
denominators of the transition terms while the total X (E»;"' E»~—"') '

energy appears in the numerator. The diRerence in the
th f } th t '

th l 't f Then (16) and (18) combine through

low-frequency phonons or static lattice deformations the
scattering is described as the "spreading" of Bloch-
state wave packets constructed out of staHoeary B-O «(k') —«(k)
states.

The H~~ matrix elements in (15) are

i exp (iHo—'r/A) H++
E.

Xexp( —iHo T/&&&)dr/hC»„~

t'exp[i(E». „."—E»„' )&/$] —1
~

l )E„, , (o) p (o)

—
}&, exp( —iE» „&"t/0) P '0 "&([Hr„Q])»„,»

pL '(E'- '"—E.-'")&l&]—1)
X I

- -
(
~..'(0).

E„, , &o& E„„~o& )
(18)

X (C'» .H~"'U "&(Q)+ „). (17)

Now Q appears linearly in 'U&'& (Q) according to (12),
and by (13) and (3b) the quantity H~"'U (oQ&)%„»
contains terms like [Po'U "&(Q)][Pot+»„],[P,t't&&'& (Q)]
X[P&%'» ], and [P,"P,'U'"(Q)]4», the last term
vanishing. Now P,'U&'& (Q) =—ih(«&/«&Q, )'U &'& (Q) re-
moves Q, which is replaced by iAP, t operatin—g on
4'»„. But i', =[HI.,Q,]—so that

H""~"'(Q)~.-=~'"([H.,Q])~.-
Neglecting all other terms of order X in (15) which
multiply H~~ gives as the additional first-order con-
tribution to (16):

DISCUSSION

It is not surprising that when a/t contributions of
order ) are accounted for, the result is the same for
different separations into time-independent (4'»„vs
C»„) and time-dependent (Hr vs H~") parts. This
should be true for any order in a strict reduction to
powers of ) . There seems to be no advantage, then, to
using B-O initial states in first order nor any significance
attached (in disagreement with Ziman) to the mixing of
states of the sunse electron energy through the denomi-
nator in (19). In fact, in the construction of the B-O
states the degeneracy in (8) was ignored and it is the
energy denominators there that are responsible for (19).
The reduction to the Bloch theory shows that there is a
cancellation of these terms and that the mixing which

does occur is between states Ek „(o'=Ek„"'.
Transport phenomena which depend on the lowest

order of the electron-phonon coupling are appropriately
described by the Bloch theory. This is in agreement
with the general arguments of Van Hove4 in his de-

velopment of the quantum-mechanical transport equa-
tion where the lowest order interaction effects are shown

to be dissipative. '

4 L. Van Hove, Physica 21, 517 (1955).
~ The author wishes to thank Professor Van Hove for pointing

this out to him.


