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Adiabatic vs Bloch Approximation in Lattice Scattering of Electrons*
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The time dependence of an electron-phonon system described by means of Born-Oppenheimer states is
shown to be the same to first order in the coupling as the usual Bloch theory.

INTRODUCTION

N important problem in transport theory is the
separation of the scattered part from the other
deformations of the conduction electron state due to
lattice vibrations. In the treatment due to Bloch the
scattering is calculated in first-order time-dependent
perturbation theory. The unperturbed states are prod-
ucts of perfect-lattice electron states and lattice oscil-
lator states. The perturbation is the change in potential
produced by the lattice deformation. No other effects of
the perturbation are considered.

It has been suggested! that it would be better to start
with adiabatic states of the Born-Oppenheimer (B-O)
type since these already include a correlation of the
electron and lattice motions. Ziman and Haug have
shown independently by direct calculation that the
matrix elements of the nonadiabatic part (H¥4) of the
Hamiltonian are closely related to those of the Bloch
theory. Thus the effect of H¥4, treated as a perturbation,
is not smaller than in the Bloch theory so that it is not
obvious that the B-O states are a better starting ap-
proximation. It is shown in this note that the time
dependence of states calculated by the B-O and Bloch
methods is the same to first order in the electron-lattice
coupling. This result, of course, has no bearing on the
utility of the adiabatic approximation in an inter-
mediate- or strong-coupling calculation.

CONSTRUCTION OF THE B-O FUNCTIONS

The B-O functions have some peculiar properties in
perturbation calculations because of the definition of
HY4, We briefly review them here for the electron-
lattice problem. Complex normal coordinates Q, specify
the displacement of the modes ¢=(q,¢). The Hamiltonian
is

H=Hp+H+H;
=Hp+5 2 (PPt iQ404)
+N 2 Va(0)e 0, (1)
It is split up in two different ways:
Hy+H,=(Hg+HL)+Hj, Bloch method;
H{+4-H,=(Hg+H*+H;)+H"4, B-O method;

* Supported in part by the Office of Naval Research.
1J. R. Ziman, Proc. Cambridge Phil. Soc. 51, 707 (1955); H.
?tumpf, )Z Naturforsch. 11a, 259 (1956) ; A. Haug, Z. Physik 146,
5 (1956).

where H ;4 and HV4 are defined for the product func-

tions ®=¢(r; Q)x(Q) by

H i *¢x=¢H 1x, (3a)
HNAgy = (H—H 1*)¢x
=35 2 (Pd'6) (P )+ (P ) (P'x)
+(PSPg)x}. (3b)

Here ¢ and x are the normalized eigenfunctions satis-

fying
(He+H1)du(x; Q)= E(Q)¢u(r; Q)5 (4a)
[H 1+ 81(0)Ix 1 (Q) = Eux1,(Q). (4b)

The customary running-wave operators, a= (Q-+iP")/
V2, etc., are not used because Q and P are treated
differently in the adiabatic approximation.

The ®;,=¢x1, form a complete orthonormal set, and
by expansion the linear operations H 14 (and HV4) can
be defined for the general state =3 ¢;,®4:

H A=} c,H Dy, (5)

This operation is Hermitian because the E;, are real.
HNA=H;—H 4 is also Hermitian. It is thus possible
to do the usual perturbation calculations with H,' and
H{ but the calculation is constrained to be done ex-
plicitly in terms of the ®; (B-O representation). The
latter restriction mars the formal similarity to pertur-
bation theory since the functions ®; are not known
exactly. Suppose v, n are approximations to ¢, x,
respectively :

o(r;Q)=21a:1(Q)¢u(r; Q),
al(Q)"I(Q) ZZV a X lV(Q);

‘U"I=Z 147 le(Plv-

In H A (vy)=vH 1y the lattice coordinates in a;(Q) are
not differentiated, but they clearly are differentiated in
> apH 4®y,. The separation H 14+ H¥4 can be defined
only to the accuracy of the approximate B-O functions.

The electronic functions will now be calculated to first
order in terms of the Bloch functions:

Vin=ux (D] ung(Qq);
q
HO\I’kn=Ekn(O)\I'kn;
ExO=e(k)+E=e(k)+2 o(ny+3) e,

To this order k, » will be good quantum numbers so

so that
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that the transformation from the Bloch to B-O repre-
sentation is

Py =V¥gq. (6)

In a familiar manner the electronic part is first found in
(4a) to some order in A, where H is replaced by AH7,
and &x(Q)=ExO+NED4--- is put in (4b) [E@
=¢(k)]. Since H;y is linear in Q,,

98k
ED(Q) =2 Qq ,
7 9Qqleg=0

@)

and similarly for &x®, etc. For the electronic part, the
lowest order terms are?

Hiwx
T
wk e(k")— e(k)
Hiw= (ww ,Hru) =N73U (K kK)Q,, q=k—k;
U (K &) = (i, U (1) 241) = 81’ k-5
8x(Q) = e(k)+MH i«
X |Udchg B
NG ektq—e®)

¢x(r; Q) =ui(r)+A +ee; (8)

Qq+"'- (9)

Since Hrxx < N~3Q,, the term linear in A is negligible for
large N. The N! before the quadratic term is canceled
by the terms « N in the summation. There is no first-
order change in the lattice motion:

an=an(0)+)\2an(2)+ e =H unq'(Qq)—l- cee (10)
q
where #n, is #n, with w, replaced by
N A2 IUq(k+q; k)|2
AN e(ktq)—e(k)

Wg =Wq

The change in #n, is of order N7*:
dun =% 8w /0 ){— (n¢+1)}(no+2)ungt2
+nd(ngt+1) un -2},

but the change in x is of order unity or more precisely of
order

AXxO(| U 4|2/l [ e(k+q) — e(k) D

Writing the transformation operation in (6) as
V=VOQ4N0D+- .- then, since in first order only ¢x
changes, the matrix Uwn,xn=(¥in,Pxn) is, to first
order in A,

eOk’n’, kn(o) =5k'n', kny

and for k'n'#kn

Virnr, kn® = [e(kl) - é(k)]_lHlk’n’. kny (11)

2 The possibility of a reciprocal lattice vector here is understood.
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where only 7, differs from #, so that
Hiwn, xin=N"U (K K)Q (14 ,14).

The diagonal elements of V® are zero. It is convenient
to write U also as a matrix in the electronic states only.
Then

Vi, 1@ (Q) =N~ (' ) [e (k") — (k) I7Q, (12)
By ={ Ut 2w ViV (Q)uw+0(N)}
X{xen®+0(N)}.  (13)

HYH will operate on the Q4 in VY (Q) and will thereby
have a comparable effect to Hj.

TIME DEPENDENCE

In terms of the separation H=H,+H/, the time
dependence of the Schrédinger state vector is

¥ (t)=exp(—1iH,'t/%)
Xexp+(—i f tHNA(T)dT/h)\II(O), (14)

where the operations are all defined in the B-O repre-
sentation and

HVA(7)=exp(iH'7/B)H¥4 exp(—iH ' 1/h).

The ordered exponential® exp..(- - -) is not used seriously
since we are only interested in first order terms in A.
Because of the proviso in the definition of HV4, it will
be better to work explicitly in the B-O representation.
The column vector for ¥ will be denoted by € here and
by € in the Bloch representation. According to (6),
Brn=>" Virn’, kn¥xrn 50 that @' =VEC where U is the
matrix (11). Then

€' ()= exp(—iH't/h)V0 expy(- - -)€(0). (15)

Again @(0) is kept on the right side because HV4 is
defined in that representation. To first order in A,

exp+(—i j; t HNA(T)dT/ﬁ) =1—i j; t HYA(7)dr/h,

since HV4 operating on the AV® term in (13) is of
order A. The identity in the above gives in (15) the
term,

0 exp(—iHo't/B)V1C'(0),

which is just the evolution of unperturbed (by HV4)
B-O states as seen in the Bloch picture.
Upon using the B-O matrix,

exp(—iHo't/h) wnt in="08krn’,kn €Xp(— i B Ot/),

3R. P. Feynman, Phys. Rev. 84, 108 (1951).



890 BERNARD

this part of (15) is

Crrn’ () =exp(—iEyrn/Ot/%)

X { ek’n’,(0)+)\ Z IJIk’n'ykn

knZk’n’

» (exp[i(Ekfn'(‘” — E,O)t/h]— 1)
e(k)—e(k)

X €n'(0) }+ow). (16)

This resembles closely the form of the Bloch theory
but for the appearance of the electronic energy in the
denominators of the transition terms while the total
energy appears in the numerator. The difference in the
two is the energy of a phonon, so that in the limit of very
low-frequency phonons or static lattice deformations the
scattering is described as the ‘“spreading” of Bloch-
state wave packets constructed out of stationary B-O
states.

The H¥4 matrix elements in (15) are

t
(‘Pklnl, - ’bf exp(ng'T/h)HNA
0

Xexp(— 'L'Ho"r/h)dr/hq)kn)

)\(eXp[i(Ek’n’(o) —Ekn(o))t/h]_ 1
Eyr @ —Ey,,© )

X (@i, HNAVD (Q) ). (17)

Now Q appears linearly in V® (Q) according to (12),
and by (13) and (3b) the quantity HNAUD(Q)¥y,
contains terms like [P, 0 (Q) [P o"W¥kn], [P0V (Q)]
X[P¥x,], and [PP, 0D (Q) Wy, the last term
vanishing. Now P,0D(Q)=—1k(3/30,)0VP(Q) re-
moves @, which is replaced by —i#P,' operating on
Wyn. But —ihP ' =[H,Q4] so that

HYAQO (Q)¥ 4, =V ([H 1,0 )W k.

Neglecting all other terms of order N in (15) which
multiply H¥4 gives as the additional first-order con-
tribution to (16):

—)\ exp(_iEk'n'(o)t/h) Z eU(D([:IIL;Q])k’n'. kn
kn
(exp[i(Ek’n’(O) —E®)t/B]—1
X

i ®— s

)ek,/(o» (18)
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Now using (11), we have
‘U(l) ([:HL,Q]) k'n', kn=— (En’ - En)U k’n’, kn(l)

(En’ - En)

(k) —e(k)

(19)

Ik’n’, kn.

This matrix element, which is just the matrix element
of H¥4 in (17) in the B-O representation, was given by
Ziman and Haug.! The “nonadiabatic” terms (18) can
be combined with (16) if the resonance denominator is
put in the latter by writing

[e(k)— e(B) ' = { (Exrn @ — E,®) /[e(K)— e(k) ]}
X (Egr /@ — Eg, @)1,

Then (16) and (18) combine through
Eyrn @ — Ey, @

e(k)—e(k)

En’_‘En 1
() —e(k)

to give the first-order term of the Bloch theory.

DISCUSSION

Tt is not surprising that when all contributions of
order A are accounted for, the result is the same for
different separations into time-independent (Wi, vs
®y,) and time-dependent (H; vs H¥4) parts. This
should be true for any order in a strict reduction to
powers of A. There seems to be no advantage, then, to
using B-O initial states in first order nor any significance
attached (in disagreement with Ziman) to the mixing of
states of the same electron energy through the denomi-
nator in (19). In fact, in the construction of the B-O
states the degeneracy in (8) was ignored and it is the
energy denominators there that are responsible for (19).
The reduction to the Bloch theory shows that there is a
cancellation of these terms and that the mixing which
does occur is between states Ew o @ = Ey,©.

Transport phenomena which depend on the lowest
order of the electron-phonon coupling areappropriately
described by the Bloch theory. This is in agreement
with the general arguments of Van Hove* in his de-
velopment of the quantum-mechanical transport equa-
tion where the lowest order interaction effects are shown
to be dissipative.5

41,. Van Hove, Physica 21, 517 (1955).
5 The author wishes to thank Professor Van Hove for pointing
this out to him.



