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region. ' Extrapolation to low strains suggests that the
high-temperature rise in "unstrained" crystals meas-
ured by the composite oscillator technique can be attri-
buted to loss in the joint-stressed region.

It should be pointed out that these new determina-
tions do not invalidate the "vacancy-drag" model pro-
posed by Kessler. There are three factors in this model
causing a variation of internal friction as the ternpera-
ture rises: (i) the decrease of vacancy jump time, (ii)
dispersion of the vacancy atmosphere from the disloca-
tions, and (iii) increase in equilibrium vacancy concen-
tration. These results indicate that the first two factors
dominate the third in undistorted crystals, causing a
decrease in decrement at temperatures above the "freez-
ing-in" temperature which was postulated. The quench-
ing experiment shows that, on this model, excess
vacancies have probably disused to inactive points
within 4 minutes. This is in accordance with derived
values of the diffusion coefficient of vacancies' if it is
assumed that the maximum diffusion distance is of the
order 10 ' cm.

The vacancy-drag model has the weakness, however,
that the Peierls force on the dislocation has been

' H. G. van Beuren (private communication).
'Letaw, Portnoy, and Slifkin, Phys. Rev. 102, 636 (1956).

ignored. This force is high in diamond-structure lat-
tices, as is demonstrated by the tendency of dislocations
to lie in preferred orientations. ' It is probable that a
dislocation relaxation mechanism such as that devel-
oped by Seeger et a/. ' is operating concurrently with the
vacancy drag. Application of this theory to the lower-
temperature peak yields an expected activation energy
of rather less than 1 ev. There is some doubt whether this
peak can be directly attributed to dislocations, as the
plastic straining experiments indicate that the high-
temperature rise is more directly aGected by introduced
dislocations. A more reasonable postulate might be that
the high-temperature rise is part of a dislocation relaxa-
tion peak. In this case the theory gives an activation
energy of 1.2 ev. This is not in disaccord with experi-
ment as some spread of energies must be allowed for.
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This paper is a sequel to an earlier study, from a many-particle standpoint, of the motion of an electron
(or hole) in an insulator. We consider an insulator (whose nuclei are taken as fixed), including the electron-
electron interaction. It is then shown that the static dielectric constant ff: defined in terms of the force between
two distant point charges immersed in the medium, and the effective dielectric constant if:*, which determines
the force between an extra electron (or hole) and a distant point charge, are equal. These results may be
summarized by the statement that, if sufficiently distant, external charges in a dielectric interact with each
other and with the charge of an extra electron or hole as if all charges were renorrnalized according to the
prescription Q

—+ Q/d. The method of proof is to treat the Coulomb interactions between the electrons and
between the electrons and external charges by perturbation theory and to establish a correspondence, to all
orders, between the Feynman graphs which define ~ and those which define ff:~. The result is therefore exact,
at least as long as the perturbation series converge.

1. INTRODUCTION

~W~NE of the simplest many-body systems in solid
state physics is the following: We begin with the

ground state of a perfect large insulator (of cubic
symmetry) whose nuclei are regarded as fixed and
which contains E electrons, moving under the action
of the Coulomb Geld of the nuclei and of their mutual
repulsion. Into this system we introduce a small number

*This work was supported in part by the Once of Naval
Research.

f On leave of absence from Carnegie Institute of Technology,
Pittsburgh, Pennsylvania.

of electrons and (or) holes. We are then interested in
the behavior of the resulting (E+tt)-electron system
(tt«N) under the influence of its internal interactions
and of applied electromagnetic fields.

It is well known that experiments on such systems
have been interpreted in great detail and with con-
siderable quantitative success in terms of an effective
single-particle model. According to this model the
system behaves quite analogously to a collection of
negatively and positively charged particles in a vacuum.
Only the following modifications are necessary. The
kinetic energy of these particles must be taken as
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where m* and K* were certain constants. This is just
the form one would expect on the basis of the above-
mentioned single-particle model, which further suggests
that the constant K* must equal the ordinary static
dielectric constant K. In reference 1, the identity of K

and K* was however not completely established. All

that was done was to give a strong plausibility argu-
ment' and to prove the identity explicitly in lowest

order of perturbation theory in the electron-electron
interaction (Appendix). The bulk of the present paper
is devoted to a demonstration of the equality,

K =K
7 (1.3)

E„(k), the appropriate energy band function, and their
pairwise interaction at large distances as

V=Q,Q2/»r,

where Qt, Q2 are their charges and» is the static di-
electric constant. In this model the same interaction
(1.1) is also appropriate when one or both of the charges
is an "external" charge such as a classical point charge
or proton.

Because of its long and successful history, most
physicists regard this model as plausible beyond
reasonable doubt. However, the question of why arid
under what circumstances it is a consequence of the
full Schrodinger equation for the (%+22) electrons,
including all their rather substantial interactions, has
not yet been fully clarified.

In a previous paper' we have begun a study of these
questions. We considered the case of a perfect insulator
with a single extra electron (or hole) and a small
external charge q embedded in it. It was shown that
under the single assumption that q is small, and without
in any way treating the electron-electron interaction
as weak, the (X&1)-particle Schrodinger equation
could be reduced —for the low-lying states —to a single-
particle equation of the form

to all orders in the electron-electron interaction, H'
(Secs. 2 and 3).This demonstration makes essential use
of Feynman diagrams and the linked-cluster theory of
Brueckner' and Goldstone. 4

In Sec. 4 we show that the results of Secs. 2 and 3
apply also to finite external charges, provided they are
sufficiently distant. In Sec. 5 the results of Sec. 3 are
generalized to electrons and holes of finite excitation
energy. Section 6 contains comments concerning con-
vergence, and Sec. 7 some concluding remarks.

It is hardly necessary to point out the close relation-
ship of this paper with recent studies of charge re-
normalization in field theory. '

2. DIELECTRIC CONSTANT x

Consider a perfect insulator with E electrons de-
scribed by the Hamiltonian

where
H=Hp+H', (2.1)

Hp= Q (T',+&;) (2 2)

represents the kinetic and interaction with the nuclei
of the lattice, and

4 ~iK (ri—r&')

H'= e' P P' ——
0 E' (2.3)

where
U= Up(I 2+~ 2), -

N

p
—P eip ~ ri

(2.4)

(2 3)

Iet us call the second-order energy change produced
by U, AE2. Then K is defined by the equation'

where
1/»= 1+tr, (2 6)

describes the Coulomb repulsion of the electrons. 0 is
the volume of the insulator and P' means summation
with E=O omitted.

To define the dielectric constant K we now consider
the effect on the energy of this system of a long-wave-
length sinusoidal perturbing potential of the form

a
]L

4~e' AE~
o.= llm—

P~P Q U' 2p2

Our total Hamiltonian can now be written as

Hr Hp+Ht, ——

(2.7)

(2.8)

(b)

FIG. 1. Two elementary graphs. (a) shows creation af an
electron-hole pair, (b) the interaction of an electron with the
external potential, X.

' W. Kohn, Phys. Rev. 105, 509 (1957).
~ See reference 1, p. 513, footnote 8.

~ K. A. Srueck. ner, Phys. Rev. 100, 36 (1955).
i J. Goldstone, Proc. Roy. Soc. (London) A293, 267 (1957).
5 F. J. Dyson, Phys. Rev. 75, 1736 (1949); A. Salam, Phys.

Rev. 82, 217 (1951); J. C. Ward, Proc. Phys. Soc. (I.ondon)
A64, 54 (1951).' It is elementary to verify that this definition of ~ is identical
with that given in reference 1, in terms of the interaction between
two small and distant point charges immersed in the medium.
See Sec. 4.
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respectively, Riled and un6lled in 4o. Let us denote the
single-particle normalized Bloch waves bes y

mk ~' &)m'ktp mk ~' ~lm k-p
ask Q keik r (2.12)

(b)

FIG. 2. Lowest order r hg aphs in the dielectrIc constant expansion.
~ ~

and their energies by e„k. Then the contribution of these
graphs to AE2 is

gg (o)

where
Hi=EE'+ U, (2.9)

and includes both the Coulomb repulsion between the
e ectrons and their interaction with the perturbing field.
To obtain AE2 we must find the energy corresponding
to II& to all orders in II' but only to second order i:n U.

he total energy shift due to B& can be written
conveniently by means of Goldstone's linked-cluster
perturbation formula'

(4mk I
Uoe

I tf m'k+p) (0m'k+p I
«"'l4 )

m, m' k ~mk —~m k+p

where (p ~—p) means a similar term I corresponding
to Fig. 2(b)5 with p replaced by —p. In the limit of
small y, and with the use of the cubic symmetry of the
crystal, (2.13) becomes

LP (N~k, vkg„k)5I P (vkN~ k,si~k)5
0

m m' 6mk 6m'k

(2.14)

where 4'o is the ground state (Slater determinant) of
EEo, with unperturbed energy Eo, and Pz, signifies
summation over all linked clusters leading from %o to

obtain AE2 we select from these graphs that
g rom o to (2s.)s m, m 6

subset in which U acts onl twicey
'

and denote it by L,, The corresPonding contribution to rr, and hence to 1/»
is, by (2.7),

~mk —~m k

I (g~k, city~ k/cj4)
I

ir2 m, ml
(2.15)'

We shall use the same graphical representation as
oldstone, which is exemplified by the elementary

graphs of Fig. 1.A Greek symbol represents all quantum
numbers of a one-electron wave function, that is band
index, crystal momentum, and spin direction. Lines
with arrows pointing up refer to states which are not
occupied in the unperturbed state%'o, those with arrows
pointing down to states occupied in 4'o. Figure 1(a)
shows an electron in the normally empty state n going
into the normally empty state P as a result of a Coulomb
collision (H') with an electron in the normally filled
state p which is scattered into the normally empty

bein
state 8, leaving a hole in y. Figure 1(b) shows an electron

eing scattered by the external potential (U), from
which it absorbs crystal momentum p. It is of great
importance that also graphs violating the exclusion
principle must be included. For example, P and 5 in
Fig. 1(a) can be identical states.

The graphs for AE2 of zeroth order in the electron-
electron interaction are shown in Fig. 2. Right to left
in E . ~2.11~q. ~ . ~ corresponds to an upward direction in our
graphs. m and m' are the indices of bands which are 7

' Reference 3, Eq (3.3}. .

X ————~ y oy'
p 1

il
m k+p

'
Vg V4

X
P

m'

V4

(a) (b)

Fxo. 3. Some higher order graphs in the dielectric
constant expansion.

s This corresponds to Eq. (A.17) of reference 1.

~ ~It is important to note the reason for the factor
in hE &o). Itin 2 . t arises from the fact that at each vertex
such as V, Fig. 2(a), where an electron makes an
ieterband transition, the corresponding matrix element,

(fs,k+p I
UO&' 'Ifn, k) = UOP

' (Ns, k, VkN~, k), (2.16)

is linear in p.
Other types of graphs occur in higher orders, for

instance those shown in Fig. 3.
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In Fig. 3(a), the collision at V is itrtraband and for
small p the corresponding matrix element is

(3.3)
'Jt+p

~

Upe' '~f &) = Vo+O(P), (2.17)

3. EXTRA ELECTRON (OR HOLE): EFFECTIVE
DIELECTRIC CONSTANT x*

We consider now the system consisting of the perfect
insulator plus one extra electron. The wave functions
of this system will be denoted by %„x, where K is the
total propagation vector and e is an additional set of
quantum numbers. The corresponding energies will be
called E K. The Hamiltonian of the system is given by

where
H =Ho+H', (3.1)

Hp= Q (T;+V,), (3.2)

i.e., of degree zero in p. The matrix element at V' is of
course linear in p, so that this entire graph makes a
contribution linear in p to AE2. However, when this
graph is combined with that obtained by replacing p
by —p, the linear terms cancel and one is left with a
quadratic contribution to DE2.

In Fig. 3(b), the vertices U, and Vi' are both intra-
band, so that this graph contributes a term of degree
zero in p. Now consider the graph obtained from Fig.
3(b) by replacing the vertex V, by V2, causing an intra-
band collision at V2. This graph contributes the same
term of degree zero to AEz as Fig. 3(b), but with the
opposite sign. For according to the rules of evaluating
the contributions of these graphs, 4 each must be multi-
plied by a factor (—1)'+", where / is the number of
closed loops and h the number of internal hole lines. In
this way the leading terms of the 16 graphs obtained
by taking one of the vertices from the group V& V4
and the other from V&' V4' cancel in pairs. Any
remaining terms linear in p cancel on replacing p by —p.

It is clear that these examples are representative of
all graphs, since any graph is cut by any horizontal line
in an equal number of electrons and hole-lines. The total
hE& is obtained by adding up the contributions of all
relevant graphs, and the dielectric constant a is then
obtained from Eqs. (2.6) and (2.7).

Let now +OK be that eigenfunction of H which
corresponds to the unperturbed function 0'OK() de-
scribing the perfect insulator plus an extra electron in
the one-electron state Ppx of the lowest empty band.
We shall sometimes call 4'OK the wave function of the
"clothed" electron.

Suppose we want to describe the scattering of the
"clothed" electron by a small external charge q im-
mersed in the medium. We then require the matrix
element

( N+1 gq
~x x=

] +ox Q ——+ox [. (3 4)

Now we may Fourier analyze the perturbation and
write

(3.5)

where p~ was defined in Eq. (2.5). Then for suKciently
small K and K', (3.4) becomes

(3.6)

where f(:* is defined by the following equation:

1
(+OK'

~

Pxj K~ +OK)~-
K, K'~0
K+K'

(3.7)

The quantity ~* is called the effective dielectric con-
stant. It is the same constant which describes the
interaction of the "clothed" electron with q in a bound
state of large orbit )see Eq. (1.2)j.

Clearly (3.6) is just the matrix element for the
interaction of the extra electron and q in vacuum except
that both charges have effectively been renormalized
by the factor I(.

*—'.
We now wish to demonstrate the equality of this

constant x* and the static dielectric constant ~ defined
in the previous section, to all orders in the electron-

J't
OK

~ ~
~

~ ~ ~ ~ ~ e e ~ ~ ~ ~ ~ ~ ~ ~ 4

i't

OK

I'IG, 4. A typical graph in the perturbation expansion of the
wave function 4'OK, Eq. (3.10). Fio. 5. A graph occurring in the normahzation aum, Eq. (3.11).
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OKtq OK't(

OK
]t

.seas. a-s e . t-Q Fio. 7. A graph of
class I, occurring in the
evaluation of 1/I~:* Eq.
(3.12).

OK t(

Vp

FiG. 6. A graph which cannot occur in (3.11) because it violates
conservation of total crystal momentum.

electron interaction H'. For this purpose we require
first the wave functions%'OK. I.et us imagine that at time
t= —~ our system is in the unperturbed state +oK"'
and that the interaction H' is slowly turned on ac-
cording to the factor exp(»t/It). o Then at time t= 0, the-

normalized wave function is given by

(—il' p+ox= P I
H'(t&)' ' 'H'(«)~t~ ~«+oz'",

&=o & &&'t ) ~

ti( (tg (0, (3.8)
where

(3 9) 1 f 1
lim P ~

4'o "& H'
K, K' 0 ) ) g jVOK, (O) Qpt

jp (t) —giH 0t&AH&& i IIpt&oeot&o-

On performing the time integrations, one obtains"

It may be noted here for later use that graphs of the
structure of Fig. 6, in which one portion (marked A)
can be completely unlinked by breaking a single inter-
action line, in general cue~of occur. For such graphs
evidently violate the conservation of total crystal mo-
mentum during the interactions, except in the special
case (which will not be relevant in the following) where
the crystal momentum carried by the linking line just
equals a reciprocal lattice vector.

Next consider the expression (3.7) for 1/&&* with 4'oz

and 4oz expressed by means of Eq. (3.10)

+oz= 8' o ~ ~

oE&&z "=& Ho+i trt—
XB' PK KX II'

E,z, &o& —H, —it'q Eoz'" —

Ho+�ital

X H' Ooz&o& (3.10)
Eoz&"—Ho+i»

X H' +oz"& ~. (3.12)
Eoz&'& —Ho+i»

+oz&o& yp ~ H'
+OK IIO ig ~OK IIO

X J 0 ~ ~

Eoz&o& —Ho+it'g

1
H' +oz&"

[

Eoz &o& —Ho+i»
(3 11)

A typical graph representing one term in the normali-
zation sum (3.11) is shown in Fig. 5. The dotted line
indicates the place where the two propagators follow
each other directly in (3.11). The portion below it is
one graph in%'OK, that above it one graph of +OK* with
matching external lines.

M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951),
Appendix.' It is well known that because %0K() re-occurs among the
intermediate states, the phase —but only the phase —of +0K
depends critically on the value of y. This does not cause any
difhculties in what follows.

A typical graph representing one of the terms of (3.10)
is shown in Fig. 4.

The normalization of (3.10) is expressed by the
equation

(+oz,+oz)

There are only two classes of graphs which make finite
contributions to (3.12) in the limit K' —K -+ 0:

Class I is obtained by attaching an external line
K' —K [representing a Fourier component of the
external potential, Eq. (3.5)$ at t=0 to a normalization

graph, such as Fig. 5, and adjusting the crystal momenta
in the latter by the small momentum transfer K' —K
in accordance with the conservation laws. For example,
one of the graphs corresponding to Fig. 5 is shown in

Fig. 7. The interaction at Vi is intraband and in the
limit K' —K~ 0, the corresponding matrix element of

pz z is 1. Consequently Fig. 7 contributes to 1/&&* the
same as Fig. 5 does to the normalization. The two
similar graphs, obtained from Fig. 7 by replacing Vi
by Vo and Vo, cancel in the limit K' —K —& 0 (different
number of hole lines). Thus clearly all the graphs of
class I together contribute 1 to 1/F.

The second class of graphs is split into two halves,
classes IIA and IIB. Consider first class IIA. It is
constructed as follows (see Fig. 8). We take a normali-

zation graph, such as Fig. 5, which we shall call the
9l graph, and a dielectric constant graph, such as Fig.
2(a), with two external lines p=K' —K, which we shall

call the 2 graph. The "later" of the external lines is
attached to the % graph at all possible points with
t)0 [Figs. 8(a) and 8(b)] thus becoming an internal
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groph

od
-K

JL

ok

over all % graphs and since P C(g)=1, we obtain
simply n. Finally, by adding the contribution 1 from
class I we obtain the desired result:

(3.14)

oz„( ()
OK, ,

(a)

FIG. 8. Two closely related graphs of class IIA, occurring in
the evaluation of 1/a*, Eq. (3.12).

When we sum over all graphs of class IIA arising
from a given 5 graph and '7) graph, by taking all

possible times (t)0) for the point of attachment and
all possible time relationships between the interactions
occurring in the % graph and those occurring in the
Z graph l see Figs. 8(a) and 8(b)], the resulting con-
tribution to 1/lr* is exactly a product of three factors":

(1) The contribution of the 5 graph to the nor-
malization sum Eq. (3.11), say C(%).

(2) The factor (4rre'/0)
l

K'—Kl ' coming from the
matrix element M', Eq. (3.13), and describing the
intraband scattering taking place at Vs, Fig. 8(a), in
the 5 graph.

(3) The contribution of the X) graph to the second
order energy AE2 encountered in the calculation of K,

with Uo set equal to 1 Lsee Eqs. (2.4)ff.]."
The product of (2) and (3) is just the contribution

of the 2 graph to the quantity n, Eq. (2.7).
Holding fixed our original % graph, we now construct

the graphs of class IIB, which diGer from those of class
IIA only by having the interaction between the % and
Z parts occur at time t(0. (A typical Z part in class
IIB will be Fig. 2b, with p=K' —K.) Then, by adding
all graphs of classes IIA and IIB corresponding to a
given 5 graph we clearly obtain C(Pt)n. Now we sum

"See reference 3, paragraph 3.
"Actually some ri's will occur in the denominators oi (3),

whereas in {2.11) the limit y —+ 0 has already been taken. Since
this limit is well defined, no difficulty is caused. The important
thing is that (1) is exactly equal to the contribution of the 5 graph
to (3.11), including its dependence on ri, which is critical. (See
reference 10.)

line of the graph, while the other external line remains
external at t =0. In contrast to class I, when the external
line is deleted from one of the present graphs, the
resulting graph is topologically diferent from any
% graph (see Fig. 6).

The interaction Vi V2 causes an iefraband scattering
at Vs, with the momentum transfer K' —K. The corre-
sponding matrix element M' is therefore

%re'
(3.13)

lim (@oz l pz zl +ox) = ——.
K, K'~0
KgK'

(3.15)

The change of sign, which is a direct consequence of
the algebra of these graphs, rejects the opposite charge
of this "particle. "

4. FINITE EXTERNAL CHARGE

In the preceding sections we have restricted ourselves
to infinitesimal external 6elds. We shaH now show that
the constant f(. also determines the interaction between
/vite external charges and between a finite external
charge and an extra electron (or hole), provided only
that they are far enough apart.

x- —~—
(x-K)

OK &Ii

FIG. 9. Direct scattering of the "clothed" electron by the
external potential.

The physical meaning of the two classes of graphs
can be seen from Figs. 7 and 8. Class I is of the structure
of Fig. 9 which shows a "clothed" electron interacting
directly with the external potential. l

The portion
marked "clothed" electron does not contain any part
which can be completely unlinked from it by breaking
a single interaction line carrying crystal momentum
K' —K (see Fig. 6).)

Class IIA is of the structure of Fig. 10, in which the
clothed electron is scattered by the electrons of the
medium which has been polarized by the external
potential. In class IIB the time order of the two
momentum transfer lines shown in Fig. 10 is inverted.

The case of an insulator with a single hole is com-
pletely analogous to that of an insulator with a single
electron. We can define wave functions 40K for the
entire system, corresponding to the functions 0'OK of
Eq. (3.10). Graphs representing 4'oz are similar to
those for +OK, except that the initial electron line,
running upwards, is replaced by a hole line, running
down. In analogy with Eqs. (3.7) and (3.14), one then
finds readily
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We begin by considering two 6nite charges in a
perfect insulator, q~ placed at the origin and q~ at R.
The resulting perturbing potential is

1 1
U= Cql P ——8q2 P'r; ' fr.;—R[

Fzo. 11. A graph
of order q1q2 re-
ferring to the inter-
action energy be-
tween the charges
qI and q2.

—~—X
Pg

= ——Z qiZ', +q2Z'—
0 & 21 Pl 22 P2

4n-e e'bp]. ~ I' j sp2'rjgip2 R-

(4.1)
X-~---~

Pp

Let 5E(R) be the energy change of the dielectric caused
by U. Then the force acting on q2 is of course given by

contribution of these terms to 5E(R) in the form

47lqy q2
~~21(R) Z G21(P2) ~ (4.6)

9'&q2

F= —~aha(R),E'
(4.2)

apart from the irrelevant force exerted by the un-
perturbed medium on q2.

Now 8E(R) can be calculated by means of the
linked-cluster perturbation formula, (2.10). Graphs of
order qpq22 are independent of R and so do not con-
tribute to F, and graphs of order q12q2" are periodic in
R and describe the interaction energy of q2 alone with
the medium. They are not of interest here.

The graphs of order q&q& are exactly those encountered
in Sec. 2. (A typical one is shown in Fig. 11.) We can
write the contribution of these graphs to 5Z(R) as

PI +P I =P2. (4.7)

In adding up their contributions an integration, say
over p~' —y&", remains. Thus, whereas the vertex U in
Fig. 11 contributed a singular matrix element of order
P2 ', pairs of vertices such as V and V' in Fig. 12 do not.
Consequently one 6nds that

and hence

lim p2'G21(p2) =0,
p2-+0

(4 g)

A typical graph contributing to G»(p2) is shown in Fig.
12. For fixed p2, all graphs of this structure contribute
to G21(y2) for which (to within a reciprocal lattice
vector)

lim RSE21(R)=0. (4.9)4n-q~q2
~& (R)= 2'G (u)~""""

0
(43)

In other words, the terms of order q&'q2 give an inter-
action of shorter range than those of order q~q2. The
same is true, for similar reasons, of all higher order
terms.

Therefore (on neglecting terms periodic in R) we
obtain for large R

For small p2 one obtains, by comparison with the
definition of n given in Eq. (2.7),

(4 4)llII1 GII(P2) =
p2~p P2'

hE»(R) ~ n(qiq2/R). qiq2 (R )
pe (R) (4.11)

Let us next look at terms of higher order, say of
order q12q2. In analogy with (4.3) we may write the

The case of a 6nite external charge interacting with
a distant electron (or hole) is exactly similar. For small
momentum transfer K' —K, the graphs linear in q give
a matrix element of order ~K' —K~ ', all higher order
graphs being less singular.

5Z(R) =5EII(R) =nqiq2/R, (4.10)
From (4.3) and (4.4) we see then at once that, for h' h hen c mbined with (42) and the definition
large R,

(4.5)
ii
—'= (1+~), gives

OK

FIG. 10. Scattering of the "clothed" electron by the medium
which has been polarized by the external potential.

"The subscripts» refer to the linearity in q& and q2.

FxG. 12. A graph
of order qP q2 re-
ferring to the inter-
action energy be-
tween the two
charges q1 and q2.

X ———~
P~
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One remark should however be made. The arguments
just given depend of course on the covergence of the
power series in the q's. The following physical con-
sideration shows that this power series must have a
finite radius of convergence. For as we increase the
magnitude of q there will come a point when the electric
field produced by it is so large that the dielectric will
break down, For example, the vicinity of an As impurity
in silicon may be considered as such a broken-down
dielectric, produced by placing a charge of (Zz.—Zs;)e
on a silicon nucleus. The results we have proved 'will

then not be applicable.

it is likely that it holds even beyond the radius of con-
vergence. Thus if the analytical behavior of our wave
functions in their dependence on the electron charge e
were known, the general equality of I~: and ~* might be
proved by analytic continuation.

Another, and simpler, method of extending the proof
of the equality of ~ and z* is the following well-known
procedure. Instead of writing H=Hp+H', as in Eqs.
(2.1) and (3.1), we introduce a one-particle potential
V', such as the Hartree-Fock potential, which simulates
the effects of JI' as well as possible, and then write

H =H p+H',
S. ELECTRONS (OR HOLES) IN STATES

OF FINITE EXCITATION
where

Hp Q, (T——,+V;+V,'),

1
»m (+.x ~px x~+.x)=-, (5 2)

for all «and K for which (E x—Epp) is below some
critical value.

6. CONVERGENCE OF THE EXPANSION IN THE
ELECTRON ELECTRON INTERACTION

In Secs. 2 and 3 we expanded the eigenfunction of our
system in powers of the electron electron interaction,
II'. lt is doubtful if such an expansion would converge
for any real dielectric. However, since the equality of
If and ~* was proved to all orders of perturbation theory,

~4 We believe that (5.2) holds for any states in which the number
of electron-hole pairs is sufIIciently small compared to 2V.

In Sec. 3 we have considered an electron or hole in
states infinitesimally near the lowest possible state
(«=0, K, K' —+0). Those were the states which were
encountered in the discussion of impurity states in
reference 1. However, while our arguments in Sec. 3
depended critically on the assumption of small mo-
mentum transfer,

K' —K 0,

no explicit use was made of the fact that m=0 or that
K and K' are separately small.

For su%.ciently highly excited states a delicate

difhculty arises, because the unperturbed state O' I")
describing a perfect insulator and one fairly highly
excited electron then becomes degenerate with other
states %„K"& describing a perfect insulator, a con-
duction electron, and one or several electron-hole pairs.
This situation requires separate discussion into which
we do not want to enter here. "But certainly our results
continue to hold at least up to energies where this
difficulty occurs. Thus we can write, instead of (3.7)
and (3.14), the somewhat more general result

H'=H' Q, U, '.— (6.3)

The graphical analysis given in the preceding sections
can be readily extended to cover the new perturbation
H', and since V,' does not have divergent long-wave-
length components, the result is as before that K =K.
The radius of convergence is, however, much larger
now and probably includes real dielectrics.

0 «=Q/~' (7 1)

where I~: is the static dielectric constant. We have treated
only those cases in which at least one of the charges is
classical. The case where both are dynamical particles
is complicated by problems of self-energies, adiabatic
hypothesis, etc. , and must await further elucidation.
From what has been done here, however, there can be
little doubt that a general proof of (7.1) must be
possible.
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7'. CONCLUDING REMARKS

While this paper accomplishes its immediate purpose
of establishing the equality of I~:* and ~, it falls short of
proving the following geeerat charge renormalization
theorem for a dielectric. Any pair of extra charges,
provided they are sufficiently far apart, and whether
carried by electrons, holes, foreign particles (e.g. ,

protons), or classical charge points, interact with each
other via the same Coulomb interaction as in a vacuum,
except that each charge Q must be replaced by an
effective charge


