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Interaction of Spin Waves and Ultrasonic Waves in Ferromagnetic Crystals*
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A held-theoretical treatment is given of the magnetoelastic coupling of magnons and phonons in a ferro-
magnetic crystal. The effects of the coupling are large when the wavelengths and frequencies of the two
fields are equal. If the two transverse phonon states of a given wave vector are degenerate, then the rotatory
dispersion of the phonons will be large. The possibility exists of creating nonreciprocal acoustic elements,
such as acoustic gyrators. At simultaneous resonance the phonon attenuation is expected to be large. The
possibility of magnetostrictive transducers at microwave frequencies is discussed. A calculation is given of
the damping by eddy currents of spin waves in a metal.

I. INTRODUCTION

HIS paper is concerned with the phenomena
expected to occur when spin waves (magnons)

are coupled to lattice vibrations (phonons) in a mag-
netic crystal. We are interested particularly in the
resonance behavior exhibited when both the magnon
and phonon frequencies and wavelengths are equal.
The effects of the coupling of energy in the magnetic
and acoustic modes are most pronounced near reso-
nance. At high phonon frequencies an observation of
the resonance condition may provide a good measure
of the value of the exchange-energy constant. It is also
shown that a magnetic crystal has nonreciprocal
acoustic properties. The acoustogyric eGect, as it may
be called, causes circularly-polarized elastic shear
waves of diferent sense to have different velocities
when propagated along the magnetization axis. The
possibility thus exists of creating acoustic gyrators,
isolators, and other nonreciprocal acoustic elements.

The dispersion relation for phonons is

re=ok, (k=2z/)t) (1)
for wave vectors much smaller than a vector in the
reciprocal lattice. When k is directed along a suitable
symmetry axis of a nonmagnetic crystal, two of the
three roots of the secular equation determining the
velocity e coincide. These two roots are associated with
shear waves. The third root is associated with a longi-
tudinal wave. The phonon velocities may be of the
order of 3X10' cm/sec.

The dispersion relation for magnons in a ferromagnet
in the absence of magnetic fields and magnetocrystalline
anisotropy is, in the long-wavelength limit,

ce = (2'/3I, )k', (2)

where y is the magnetogyric ratio, M, is the saturation
magnetization, and A is the exchange-energy coristant
associated with the exchange-energy density f, in the
Landau relation' '

f-=A {(«*)'+(«.)'+ («)')
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Here 0. is the unit vector in the direction of the mag-
netization. On an atomic model, the exchange-energy
constant A may be expressed in terms of the exchange
integral J by, for a body-centered cubic lattice,

A =2JS'/a,

if there are only nearest-neighbor interactions. Here S
is the spin in units of A, -and a is the lattice constant.
The value of A may be of the order of 10 ' erg/cm for
a normal ferromagnet, M may be of the order of SX10',
and p is approximately 2X107 (oersted-sec) '. Thus,
roughly, co=10 'k'.

If the wavelengths of magnons and phonons are equal,
the frequencies will be in the ratio

2yAk k

eM, 3X10'

so that the angular frequencies are equal when
k =3X10 cm ', corresponding to a =10" sec ' It is,
fortunately, possible to increase co by applying a dc
magnetic field. A magnon with k~~H will have its
frequency increased by pB, and the dispersion relation
becomes

(o=yB+ (2'/M, )k', (6)

where we have assumed that demagnetizing effects on
the magnon may be neglected. An anisotropy field will,
if suitably oriented, act in the same manner as an
external magnetic 6eld. For V=100 oersteds, we have
co=2X10' radians/sec, which is about 300 Mc/sec.
The corresponding acoustic wave vector is about 104
cm '. The contribution of the exchange term on the
right-hand side of Eq. (6) for this value of the wave
vector is about 10' radians/sec, only about one percent
of the Zeeman contribution.

It may be necessary to carry out experiments with
ultrasonic waves at microwave frequencies to obtain
accurate measurements of the exchange constant A.
Ultrasonic experiments in this range may become
possible in the near future if paramagnetic relaxation
eGects are utilized successfully as detectors of micro-
wave phonons. Eddy-current damping of spin waves is
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considered in Appendix A; such damping may be
important in metals.

Similarly, letting lt;= M„,

dM /dt =yH pMs. (14)
II. CLASSICAL CALCULATION

We first carry out a derivation of the coupled equa-
tions of motion of magnons and phonons treated as
classical fields. ' The Lagrangian density and Hamil-
tonian density will be denoted by 2 and K, respectively,

2 =&z+&e+«+ &v',

BC =BCz+X,+X,+BC, ;

where the subscripts Z, e, i, and p denote, respectively,
the Zeeman, exchange, magnetoelastic interaction, and
phonon terms.

Equations (13) and (14) are the usual spin resonance
equations.

The Hamiltonian is obtained by using the momentum
density,

Bg Bgz 3f„
7r=

8M, 8M, o),
We find

Xz= ~M,—Zz = (~p/2~, ) (~.'~'+P), (M)

where coo
——YHO, and we have defined the field displace-

ment f by
(17)

3f M Ho
y(M, '+—M„')

GOg 267 g

(9)

with Ho as the static field along the z direction, and

Zeeman Term

The Lagrangian density may be written for M,
M„((M8 in the form

Exchange Term

The exchange Hamiltonian density (3) may be
written as

3C,= (A/M, s)Ltp, s(%sr)'+(V'lt)'j, (18)

if we neglect terms in M, and M„above the second
degree. If sr and P have a wave-like dependence of the
for e'&"'—~'), then

We have expanded

M, = [M,s —M.'—M„']'

(10) 3C — (g $2/M 2) (ra 2sr2+$2) (19)

where now sr, P are written as the amplitudes of the
field momentum and displacement.

M '+M„'
=M, 1— +

2M''

8Z dBZ 8 BZ
. —Z =0,

BP; dtBQ; ~ Bx B(BQ;/Bx )
(12)

gives the usual equations of motion of a spin system.
Letting P;=M„we have

dM„/dt = 7H pM . — (13)

'The general techniques employed for the magnons are ex-
tensions of the methods used in a somewhat different connection
by J. M. Luttinger and C. Kittel (unpublished) and C. Kittel and
E. Abrahams, Revs. Modern Phys. 25, 233 (1953).E. Kondorsky
(private communication) has remarked that some consequences
of the magnon-phonon interaction have been discussed in un-
published work by S. A. Altschuler and by A. I. Akhiezer and co-
workers in the U.S.S.R. S. Friedberg has observed e6ects of a
magnetic 6eld on thermal conductivity in ferrites and interpreted
the results in terms of phonon-magnon scattering (private
communication).

4 S. Rodriguez has pointed out that the Lagrangian

Zz= (1/2&v, ) —XM H —v(MXH)sdM
dt

gives the full torque relation dM/dt =7M XH The form (9) above
is somewhat more convenient for our present purpose, as fewer
variables are introduced.

and preserved terms4 not higher than the second degree
in M„M„.We show that Eq. (9), when substituted in
the Lagrangian equations of motion for a field,

X;= (2bs/M. ) (rp.rrS„,+PS, ),

where the shear components are defined by

(21)

(BZ„BZ,) (BZ, BZ,)+ I; S..=—si + I (22)
KBz By& EBse Bzl

Here R is the displacement vector of a point in the
solid from its original position in the unstrained solid.

s R. Becker and W. Doring, Ferroraagnettsrags (Verlag Julius
Springer, Berlin, 1939), p. 136; see also reference 2.

Magnon-Phonon Interaction

The interaction between magnetization direction and
elastic strain (as observed as magnetostriction) is
described by the magnetoelastic coupling. ' To the first
order in the strain components S;; and to the second
order in the direction cosines, the coupling in a cubic
crystal is described by the magneto elastic energy
density

f .= &r (n.'S .+n„'S„„+n.'S„)+2b,(n~„S.„
+n„n,Sv.+n~.S„) (20).

lf the static magnetization is along the z direction, we
shall want to retain in a linear theory only those terms
o.„o.,S„,and n,o.,S„linear in M and M„. The Hamil-
tonian density X; associated with these interaction
terms is
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Phonon Term

For convenience we make the assumption of elastic
isotropy. Then the Hamiltonian density BC„associated
with the phonons is, as is well known,

It is convenient to form the combinations

%+=M,&iMy, R+=E &iRy.

Then, writing
(o'= happ+ (2Ayk' 'M )

(36)

(37)

II=pdR/dh (24)

Se„=—(1I.+II„'+11,')+ P,, , S,,'+P(P; S,;)', (23)
2p

where

we have

i (pp+~') M+ = %yb pkR+;

((o'p k—'n) R+=i ( bpk/M, )M+

(38)

(39)

NC 8 NC
+Z

Bg Bx. B(B&/Bx )

8BC t9 NC

B~ Bx B(Bn-/Bx )

(26)

(27)

similar equations obtain for the components of dII/dh
and dR/dh. It will shorten the equations considerably
if we assume that all field quantities are independent
of x and y. With this restriction we have, from Eq. (25),

P=a&gu, sr+ (2co,bp/M, )S„.—2 (A ppP/3IIP)

X (B'~/BsP) ' (28)

~=—((op/a), ) iP —(2bp/M, )S„+2 (A/M, ')
X (BV/B&') (29)

dII /dh = (bp/M, ) (BP/Bz)+n(B'R, /Bs'); (30)

dlI„/dh= (bp(o, /M, ) (Bpr/Bs)+n(B'Ry/Bs') (31)

We omit the equation for dII, /dh, as longitudinal
phonons along the s axis do not couple in first order
with magnons when the static magnetization is along
the s' axis. Using the relations defining the coordinates
and momenta, and assuming that all variables have the
time and space dependence e""' ~'&, we may rewrite

-Eqs. (28) to (31) in the form

icuM, =[~p+(2Ayk'/M, )]M, iybpkR„; —(32)

icuM„= —L(up+ (2AykP/M, )]M +pub pkR, ) (33).
oPpR, =k'nR. +i(bpk/M, )M;
(o'pR„= k'uR„+i(bpk/M, )M„.

(34)

(35)
' In carrying over our results to actual crystals, we are restricted

by this assumption to waves propagating along symmetry axes
having two degenerate transverse waves.

is the momentum density conjugate to the coordinate
R. Here n and P are elastic constants; p is the density.

The total Hamiltonian density is found, on combining
Eqs. (16), (18), (21), and (23),

(~ /2~ ) (~ 2~2+F2)+ (A/M 2)L~ 2(|7~)2+ (QP)2j

+ (2bp/M, ) (ar,7rS„,+ALPS, )+ (1/2p) (II,P+
+11„'+II')y~ P, , S,P+P(P, S,,)P. (25)

We proceed to determine the equations of motion,
which in Hamiltonian form are

We may attempt to take account of spin relaxation
by other mechanisms with relaxation time r by writing
(38) as

(cv —ir '&~')M+= &ipbpkR+, (4o)

which may be compared with the usual equation for
spin resonance in an rf magnetic Geld H+=II +iH„,

(a&
—ir 'appp)M+= +pp, B+. (41)

Recalling that —ikR =2S, , we see that 2bpS„/M, is
in some respects equivalent to a transverse magnetic
field in its effects on the spin system. The difference lies
in the use of &v' in Eq. (40) and &op in Eq. (41). The
equivalence of 2bpS„/M, and also 2bpS„,/M, to a
magnetic field is equally apparent from the original
expression for the magnetoelastic coupling, Eq. (20).
With bp of the order of 10' ergs/cm', the equivalent
Geld intensity is of the order of 10' 5 oersteds, where S
is the shear strain.

Production of Microwave Phonons by
Ferromagnetic Resonance

At resonance (~=~'), we have from Eq. (40) that
~M+~ =ybprk~R+~, so that for r=10 ' sec we have
S=10 '

~ M+ ~. For an rf magnetic field of 1 oersted it
is reasonable to expect ~M+~ =10 gauss at resonance,
so that 5=10 ', corresponding to a phonon Qux of
=0.01 watt/cm'. We have neglected demagnetizing
eBects on the resonance in making this estimate; we
have also neglected the loss of energy from the phonon
system which might arise in the event the ferromag-
netic element is used as a transducer coupled me-
chanically to another elastic system. It appears not
unlikely, however, that a thin ferrite crystal section
could be driven as a magnetostrictive oscillator. The
static shear strain accompanying a magnetization
M is S= (bp/n) (M,/M, )= 10 'M„while the resonant
effect just calculated is S=(M,'/bp)(or, r) '(M /M. ).
The two quantities are of the same order of magnitude
for our values of the physical parameters, but the static
effect will not be excited if cur»1. At microwave fre-
quencies the resonance effect will probably have to be
employed. It may be that piezoelectric transducers
will be a simpler source of microwave phonons. YVe note
that in quartz the strain is given by 5=10 7E, where
E is the electric field intensity in esu.
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We now discuss the acoustical properties of the
medium. Combining Eqs. (39) and (40), we have

( (pp —ir '&re') (pp'p —k'n) &rp, k'(bs/M )')R+=0. (42)

It would be simple to generalize Eqs. (39) and (42) to
include an intrinsic relaxation time for the phonons,
but we shall suppose that this time is larger than the
spin relaxation time.

Damping of Phonons

We first estimate the damping of the acoustic wave
for the lower choice of signs in Eq. (42) when the
frequency ~ is equal to co', the resonance frequency of
the spin system. Then, from Eq. (42),'

We suppose that we may neglect 1/r in comparison
with ao, this means that the phonon attenuation at co

arising from coupling with the spin system is taken as
negligible. Then, making the usual expansions, we have

rp'p ( vbs'
k'=

~

1+ (1ari) I

rr ( rrppM,
(49)

Rotatory Dispersion of Phonons

We now consider the rotatory dispersion. We suppose
that the resonance frequency co' of the spin system is
considerably less than the phonon frequency, so that

Writing

we have

GPp/Q
k2=

1+i(rp, r/n) (b /sM, )'

k=kg —ikg,

k'= k '—2ikgk2,

(43)
Now for the two senses of circular polarization of the
phonons we write

k+= kp(1&c), (50)

where e is a constant supposed small in comparison
with unity. Then

on the assumption that k~&(k~, that is, we assume that
the attenuation per wavelength is small. If the imagi-
nary term in the denominator is small in comparison
with unity,

(k+)'=k '(1&2e),

and, by comparison with Eq. (49),

e—ybss/(2nrdM, ),

(51)

(52)
kr' —2iktks=pP(p/rr) {1—s(rp, r/n) (bs/M, )'}, (45)

and we find for the attenuation per wavelength

ks/kt=rp, rbs'/(2nM, ') =yrbs'/(2nM, ). (46)

Now with y=2&(10' (oersted/sec) ', v=10 ' sec as
for a typical ferrite, br=10' ergs/cm' as for nickel,
n=10" dynes/cm' and M, =500, we have k&/kt ——2.
This means that the absorption of sound is very large
indeed at the resonance frequency of the spin system.
Our assumption k2(&k& is violated, but we may safely
conclude that at resonance the phonons are highly
damped and hardly propagate at all. We may remark
that Eq. (46) follows also from a quantum-mechanical
calculation of the transition probability on the assump-
tion that the individual spin wave modes are resolved,
so that the density of states at resonance is r/A. Raman
transitions of phonons will give additional attenuation.

Far from resonance the damping is reduced con-
siderably. If we consider the "wrong" sense of circular
polarization of the transverse phonons, we have for
en=co', on the same assumptions as above, the at-
tenuation

ks/k t=ybss/ (8(d'rnM, ), (47)

which is lower than above by the factor 1/(4ppr)'. For
u=-10' sec ' and 7.=10 ' sec, the attenuation in the
"wrong" sense is 1/200 of the attenuation for phonons
in the "right" sense of circular polarization.

7 It should be pointed out that we are assuming for convenience
(1) that the exchange contribution to cu' is entirely real, and (2)
that the magnons will take up the same value of k as the phonons.

independent of g. The rotation of the plane of polari-
zation per wavelength is measured by

(k+—k )/kp=pbss/(ordM, ) =4X10P/(p. (53)

For co=10' sec ', the fractional rotation is about ~,
which is a very substantial rotation. Our assumption
cv7-))1 must be remembered. It does not seem as if the
experimental effects predicted by Eqs. (46) and (53)
should be difficult to observe, but one must bear in
mind that other phonon attenuation mechanisms may
be present. The predicted rotation of the plane of
polarization of degenerate transverse elastic waves is
the basis for application as a nonreciprocal mechanical
circuit element, and a whole class of new devices
becomes possible in principle.

It is perhaps not always relevant to ask how much
the spin system is damped by the magnetoelastic
coupling with a phonon system having an independent
relaxation mechanism. When the spin system of a ferro-
magnetic insulator is excited by electromagnetic
radiation the magnons usually have a very low k,
entirely too low to match the k required of phonons at
the same frequency. If by some device the spin system
could be driven in such a way that the k's of magnons
and phonons were matched, then at the spin resonance
frequency the coupling contribution v' to the spin
relaxation time could be estimated in appropriate
limits by the result (46), the phonon attenuation ks

now being taken as arising from an independent
mechanism.
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[g, (r, t),II,.(r', t)]= ih5 (r—r') 5„,
for the phonon Geld and

(55)

III. QUANTUM THEORY

The classical Hamiltonian density is, according to
Eq. (25),

SC = (a o/2(o, ) (a Pn'+P)+ (A/M. ') [oi '(V~)'+ (VP)'$

+ (2b2/M, ) (~,mS„,+$5„)+(1/2p) (1I,'
yil„'+ ll, ')y~ P;, , S,, +P(P; S,,)'. (54)

Here f is the magnon field displacement, and ~ is the
conjugate magnon momentum density; 8, involved in

S,; is a phonon 6eld displacement component; and II;
is the conjugate phonon momentum density.

The Hamiltonian, as we have written it, refers to
6eld quantities, but a parallel atomic treatment may
be given starting from the usual lattice vibration theory
for the phonons and from the spin wave theory with the
Heisenberg exchange interaction for the magnons. The
magnetoelastic coupling term arises on an atomic
model directly from the strain dependence of the
anisotropic exchange interaction and the quadrupole-
quadrupole interaction. ' The atomic and field-theo-
retical treatments are equivalent for wavelengths long
in comparison with the lattice spacing, and this is the
situation of interest to us. We will content ourselves
with the quantization and indication of the solution of
the problem associated with the Hamiltonian (54).
The commutation relations are

APPENDIX A. EDDY-CURRENT DAMPING
OF SPIN WAVES

We may ask what effect eddy-current damping has
on the motion of spin waves. The problem will be solved
for pure exchange spin waves under conditions of the
normal skin e6ect. The equation of motion of the spin
waves is, from Eqs. (32) and (33),

dM 2yA
MX V'M+qMy H.

dt 3E,'

From the Maxwell equations,

c curlH= 4m.oE,

dH dM
c curlK= — —4n

we have
dM dH c'

4m = — + V'H.
dt dt %ra

(A.1)

(A.2)

(A.3)

(A.4)

1——+
4ir (4m)'ore

(A.S)

which we shall write as H, =CAN„ thereby defining C.
Then Eq. (A.1) becomes

Assuming that all variables have the time and space
dependence e'("' ~", where or may be complex, we have
from Eq. (A.4)

[f(r, t),m (r', t)$ =ihb (r—r') (56)

for the magnon 6eld. We are now of course interpreting
the E„II„P, and 7r as operators. The quantum equa-
tions of motion are

ihB, =[X„Hj; ihdlI, /dt=[II„H j,

and similarly for f and ~. Here

2pA
k' —LCM 3f .

2yA
k' —pe, M, .

The secular equation is

(A.6)

(A.7)

Z= "3.'dV or 2Ak'

M,

2Ak2—CM. =- + . (A.8)
M, 1—(ic'k'/4nooi).

is the total Hamiltonian. It is straightforward to verify
that the quantum equations of motion are identical in
form with the classical equations of motion (28)—(31).
The Hamiltonian has been written in an approximation
giving equations of motion linear in the field variables.
It will, therefore, follow that expectation values satisfy
the classical equations of motion, so that nothing
essentially new results from quantizing the fields.
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We note that

c'k'/(4ora(o) = -'Pk' (A.9)

where 8 is the classical skin depth for permeability
unity. For purposes of an estimate, we may take from
the usual dispersion relation

so that
k'/o~= M, /(2A y), (A.10)

c'k'/(4iro&o) =c'M, /(Sn.A o y) = 104, (A.11)

where we have taken M, =10', A=10 ' erg/cm, and
&=10"esu as for iron at room temperature.

We may use the ratio of real to imaginary parts of
~ as a measure of the Q of a spin wave; this ratio is
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approximately

or

oi/'y c'k'
7

(4ir)'M, o-co/c'k' 167rsM,go

Q=c' /(32 'Ay' ),
using (A.10).The Q is of the order

Q=10 'e~,

(A.12)

(A.13)

(A.14)

with the foregoing constants. Thus the damping of a
magnon is small above 100 Mc/sec; the damping is
trivial for thermal magnons. This result agrees with the
conclusion of Ament and Rado. f

The situation is rather less favorable for magnons
whose energy arises largely from interaction with an
external magnetic field (or with an anisotropy field)
and which are such that co and k are in resonance with
a phonon. With co=~k, where e is the phonon velocity,
we infer from the appropriate modification of (A.S) and
(A.12) that

sP (c)
(4z yM, ) (4'-) (s)

(A.15)

or, with our usual numerical values,

Q
—10—19ois

Thus, the Zeeman magnons are strongly damped in a

t W. S. Ament and G. T. Rado, Phys. Rev. 97, 1558 (1955).

metal for o&(10" radians/sec. The damping generally
is proportional to 1/k', the Zeeman magnons suffer
from having a lower k for the same co as compared with
a pure exchange magnon.

We may understand the form of the result (A.12) by
an elementary consideration. The energy per unit
volume in an exchange spin wave of amplitude 3f,
M„and wave vector k is, from Eq. (3),

f=A ksM, '/M, s. (A.17)

The eddy-current energy loss per unit volume per cycle
when the skin depth 6 is large in comparison with a
wavelength is of the order of

M,'/(6k)',

if we use the known result for eddy-current losses in
slabs. Thus, by the definition of Q,

Q=Ak4/(M '5s) =Ak4c'/(M '&uo) =c'k'/(yM. o) (A.18)

when we use (A.10). We have dropped numerical
factors in making this estimate, but the result agrees
in form with (A.12).

Our calculation is based on the assumption that the
conduction electron mean free path is much less than 6,
the skin depth. The calculation of magnon —conduction-
electron relaxation by Abrahams' does not apply under
these circumstances.

' E. Abrahams, Phys. Rev. 98& 387 (1955).


