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We discuss the coherent states generated in the Bardeen, Cooper, and Schrieffer theory of supercon-
ductivity by the momentum displacement operator pu= Z exp(iQ r„).Without taking into account plasma
e8ects, these states are like bound Cooper pairs with momentum AQ and energies lying in the gap, and they
play a central role in the explanation of the gauge invariance of the Meissner effect. Long-range Coulomb
forces recombine them into plasmons with equations of motion unaffected by the gap. Central to the argu-
ment is the proof that the non-gauge-invariant terms in the Hamiltonian of Bardeen, Cooper, and SchrieEer
have an effect on these states which vanishes in the weak-coupling limit.

kr+ks= Q (2)
' M. J. Buckingham, Nuovo cimento 5, 1763 (1957).' Bardeen, Cooper, and Schrie6er, Phys. Rev. 106, 162 (1957);

108, 1175 (1957).The latter we call B.C.S., and we shall follow its
notation as far as possible.' M. R. Schafroth, Helv. Phys. Acta 24, 645 (1951).

4 M. R. Schafroth (private communication). I am indebted to
G. Wentzel for an elegant presentation of these questions in a
series of discussions, to which M. Lax and C. Herring also con-
tributed.' J. Bardeen, Nuovo cimento 5, 1765 (1957).

I. INTRODUCTION

VCKINGHAM' has questioned whether an energy-
gap model of superconductivity„such as that of

Bardeen, Cooper, and Schrieffer, ' can explain the
Meissner effect without violating a certain identity
derived by Schafroth' on the basis of gauge invariance,
and by Buckingham using essentially an f-sum rule.
This identity is what causes the insulator, which also
has an energy gap, to fail to show a Meissner effect;
thus, Buckingham and Schafroth4 argue, a proof of
gauge invariance lies at the core of the problem of
superconductivity, especially since the Hamiltonian
used in B.C.S. is not gauge-invariant.

Bardeen' argues that the matrix elements and energy
states involved in the gauge problem bring in coherent
excitations which will be strongly coupled to the plasma
modes, a high-frequency phenomenon presumably un-
altered by superconductivity. Vnfortunately, while we
6nd that this is indeed exactly the situation, the insula-
tor also often has normal plasma modes. Thus, while the
B.C.S. calculation in the London gauge is probably
entirely correct, and justi6able on physical grounds, it
throws little light on the basic differences between the
three cases—insulator, metal, and superconductor.

We also noticed that the operator which is central in
the gauge problem as well as the plasma theory,

pg ——P„exp(iQ r„)
k, tr Ck+Q, tr Ck, a&

has another interesting property: its separate compo-
nents ck+Q, *ck, , when applied to the B.C.S. ground-
state wave function 4 „create excited pairs of electrons
k~, ks with momentum pairing

instead of zero. The total operator applied to +, leads
to a linear combination of such states, which can be
thought of as equivalent to a Cooper bound state' of a
pair of electrons with nonzero momentum, superimposed
on the B.C.S. ground state.

Our discussion of these problems is based on the
following physical picture: any transverse excitation
involves breaking up the phase coherence over the whole
Fermi surface of at least one pair in the superconducting
ground state, and so involves a loss of attractive binding
energy. This causes the Meissner eGect. Longitudinal
excitations, however, such as those generated by pQ, do
not break up phase coherence in the superconducting
state, and so their energies involve only kinetic energy,
or electromagnetic energy when plasma effects are
included. Thus longitudinal and transverse excitations
are different in the superconductor, in a sense in which
they are not in either the metal or the insulator, and it
turns out to be this difference which allows a gauge-
invariant explanation of the Meissner effect.

We proceed further in two stages. First, we discuss
the Gctitious problem in which the only plasma effect
is the screening of the long-range repulsion. In this stage
gauge invariance requires, and we indeed find, that the
states

+Q=PQ+0 (3)

have energies in the energy gap and proportional to Q'.
In a perfectly gauge-invariant theory, their energy
would be just the kinetic energy

Eo= (O'Q'/2m) (2eg/3m. es), (4)

but we And a small correction going to zero in the weak-
coupling limit. Equation (4) follows from the same f
sum rule which leads to gauge invariance.

There is a fundamental difference, which we demon-
strate, between the ways in which superconducting and
normal substances satisfy this sum rule. Both normal
metals and insulators (leaving out the rather confusing
effects of long-range Coulomb forces which can be
studied later) satisfy this rule with ordinary excitations
in such a way that the more familiar optical sum rule—

L. N. Cooper, Phys. Rev. 104, 1189 (1956).
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which in turn leads to normal diamagnetism —also
follows. In these normal cases the states (3) can be
shown not to exist separately from the ordinary excita-
tions. In the superconductor, however, the rule is
satisfied by matrix elements involving only the longi-
tudinal excitations (3), while the optical sum rule and
Meissner effect involve transverse excitations with
entirely diferent behavior from the longitudinal ones.
Basically, these transverse excitations involve combi-
nations of pair states which have a finite angular as well
as linear momentum and cannot be bound into quasi-
"Cooper pairs" like the longitudinal excitations. This
difference is the basis for the electromagnetic properties
of superconductivity.

At this stage any number of QWO pairs could be
incorporated into the state with little loss of energy.
This alleviates the rigidity of the B.C.S.ground state to
some extent, making it easier to fit physical boundary
conditions. On the other hand, we will find that when
plasma effects are included the Q=0 pairing condition
is again enforced, except possibly in particular geo-
metrical situations for very long wavelengths.

In the second stage of the calculation we discuss these
plasma eGects. Our procedure corresponds to that of
Nozieres and Pines, 7 who find that the f-sum rules, and
particularly the relationship of the optical and longi-
tudinal forms, are best discussed prior to including the
long-range Coulomb eGects. Appealing to the random-
phase approximation, which allows separation of the
different momenta Q, we show that the longitudinal
f-sum rule becomes the commutation rule of plasma
coordinates and momenta, while the transverse behavior
is unaffected, whether normal or superconducting, when
the long-range Coulomb interactions are included. The
states 0'@ are recombined to make the plasma excita-
tions, which now have large excitation energies and do
not acct the energy gap.

H =+ kktlk, rr+ 2
k, o

2Aco„/ cV„
f

'

XP(&k ~k+r) (A~„) 3 gkr

X&k+r, rr &k, e+Hcoui (5)
P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958).

II. COMMUTATORS AND ENERGIES OF
COHERENT STATES

In this section we carry out the first stage of the
program in the introduction. We naively ignore plasma
effects and subsidiary conditions and study the energies
of coherent excited states, and the f-sum rules, using the
B.C.S. ground state derived from phonon and screened
Coulomb interactions.

The initial Hamiltonian used by B.C.S. contains the
kinetic energy and the second-order phonon interaction
between electrons, but ignores the self-energy as well as
higher-order terms. It is

Almost immediately B.C.S. drop, except for later per-
turbation calculations, all terms except k' = —k, rT' = —o",

and they replace the coeKcient by a constant unless
either ~ek~ or

~
ok+„~)furr in which case it is zero. The

resulting Hamiltonian is their H„q.
The Hamiltonian (5) is already not gauge-invariant,

if it is to be used with the usual expressions for the
current and for the perturbation of an electromagnetic
field, because it depends on k as well as x. Fortunately,
however, we shall show that the important difficulties
are not connected with the momentum dependence of
(5) but with the simplification to H„z. The difficulty is
that in calculating the properties of coherent excited
states of the B.C.S. theory one must take into account
more than just the k' —k terms of the interaction.

When this is done we shall show that the corrections
caused by the k dependence of (5) in the important sum
rules and energies become negligible in a well-defined
limit which is that applying to most superconductors.

The entire argument is based on a commutation rela-
tion used by Buckingham' in this connection and by
Nozieres and Pines~ for other reasons:

PHx, po j= (—A'/2m)

iQ P„L|7„exp(iQ r„)+exp(iQ r„)V'„j
= (A'/2m)gk, .Q (2k+Q)cking, ,*ck..r

where H& is the kinetic energy and pg is defined in (1).
l"' In the case of most simple kinds of forces, which are
functions only of coordinates or at most of relative
momenta, pg commutes with the potential energy. Then
(6) may be written, using

(E„E)( m~p
~

um)—
= (A'/2m)

Q P, (m[7', exp(iQ r;)+exp(iQ r,)V', ~m'). (7)

We may also deduce from (7) the basic f-sum rule:

ELH, po),p oj=cVA'Q'/m;

(E E)
~

(m~ pQ~m') ~'=—glVA'g'/m,
01

P ~
~

(m~ Q P,P', exp(iQ r;)+exp(iQ r;)V';j~m') ~'

X(E .—E ) '=2mEQ'/A'. (9)

Now in the case of (5) the potential energy does not
commute with pq. However, what we can show is that
the commutator can be made arbitrarily small compared
to (7).

In doing this we shall not use the explicit form (5) but
shall carry out the first stage —the cuto6—of the simpli-
fication to H„d, in full confidence that the results would
be practically the same if we used (5) itself, because the
new potential is no less k-dependent than the old in the
region of interest. One can then show that the full
interaction energy, corresponding to the k'= —k terms
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of the B.C.S. II„q, is

&v=. —2I'P[ P P + g g ](c,t*c,„i*c„qic&t).
q k'&k( k &fi ) k(q &5 ) k'gk(ek &A ) k(ek &5 )

(10)

(All notations are as used in B.C.S.) Then first of all we have to calculate the commutator of this with pQ. This is
done in the Appendix, and the result is:

tv, pQ] =-', U[ p p —p p + (same with k—+k', k'~k)]
k'gk k(ek &Aco, eking )h(o) k'&k k(ek)@or, q +g &Ace)

X (ck'+Qt c—k'+qi*c k+qi, ckt ck' —qt c—q'& c—k—Qick —qt) ~ (11)

These terms already refer only to k states within Q
of the cutoff surface, and contain subtractions which
make them depend on only the derivatives of the wave
function near this surface. Thus, (11) will always be
small acting on states close to the ground state, at least
for small Q.

We shall see that the most important measure of this
smallness is the scalar product.

Now we can compute the quantity (12) in the
Appendix. The result is

(PQ+. [&v,pQ]+.) = qqo'N(0)&'& ~'Q'/~'~' (19)

In order to get a measure of the magnitude of (19), and
for later work, let us also calculate the kinetic energy
commutator (6). This is also done in Appendix I, and
the result is

(PQ+g~[IIi ~PQl+g)1 (12)
(PQ+.,[&» PQ]+.)

Then
pg g ——t."—~g &—~—gg. (14b)

(PQ")++a = II [(1—&k)'+h~*bk*]
k y~,»+Q

X (1—h,+Q) ~h, 'c„+Qi*c,t+„

4„being the vacuum state. Thus

(PQ")++.=k.'(1—h.+Q) ~-...+Q, (15)

where the last notation refers to the presence of a pair
of real "single" excitations in the B.C.S. sense in states
—i' and qq+Qg. Similarly,

(pQ") @,=h„+Q&(1—h„)% „,„+Q, (16)
and

%Q ——PQ+,—2 Q„ I4'(1—h„)% „,.+Q.

Thus 0'q is ind, eed a certain linear superposition of pair
excitations with momentum Q. Its normalization factor
ls

(+Q,%'Q) =4 Qg hg(1 —hg)
—2qrqpN (0), (18)

which is finite —a vital point, since the corresponding
quantity in metal or insulator approaches zero with Q.
Equation (18) already implies the presence of long-

range order in the ground state, as we shall see.

where 4, is the B,C.S. ground state. This will be com-
puted in the Appendix also, but first we will need to
compute the wave function

+a= p@+g~

and its normalization. Consider a particular term of pg,

(PQ")+=c.+Qt*c.t
ol

A2

(PQ%'g, P Q (2qq+Q)c. +Q, ,*c...@g)
218

= -', (i''Q'/2m) N(0) q F. (20)

This value is shown there to be essentially independent
of the exact structure of the wave function if it resembles

a I'ermi sea at all.
We can now, 6rst of all, get a numerical measure of

the relative magnitude of the ordinary terms (6) and
the non-gauge-invariant terms (11) by taking the ratio
of (19) to (20). The result is

(19)/(20) =2qq'/fi'aP=2 exp[ —2/N(0) V], (21)

which is completely negligible for most superconductors,
and zero in the weak-coupling limit (when, of course, in

principle superconductivity still exists). Thus we have

proved our 6rst contention: that, although exact gauge
invariance is still not present except in the weak-

coupling limit, the inclusion of the QWO terms of Hv
restores gauge invariance well enough so that no diffi-

culties of principle are encountered by ignoring the

terms (11).
We now can use (19), (20), and (18) to show that in

this stage, before the introduction of specific plasma

effects, states closely related to pe+, must lie in the

energy gap. To show this we use the identity

&Q(PQ+.,PQ+.) = ( Q+.,&PQ+.)
= (PQ+0, [&PQ PQ&3+0)—

+& (PQ+,PQ+ ), (22).

using the fact that the ground state is an eigenstate.

(The first equality defines EQ as the energy of %Q.)
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Thus

(+Q +o) (PQ+ PQ+ ) (PQ+ Ã PQ3+ )

2 (er)l&'Q'
(»)

3~( eo& 2m

Since Pg is a state of momentum AQ, it is orthogonal to
the ground state; thus some eigenstate must lie below
Eq. One guesses that +@is really a very good approxima-
tion to this state. '

These states, if they existed, would have interesting
properties. Their effective mass is about 10 4 electron
mass. Therefore the specific heat would be tiny and
probably below the accuracy of present measurements.
The states would exist distinct from the individual
particles only up to the energy gap, so that the maxi-
mum Q would be about mes/A'kg 10'/cm. Another
fact about them is that they cannot be correctly calcu-
lated directly from the excitation energies of the pair
states and the appropriate matrix elements of IIy. This
is because the B.C.S. ground state, while nearly exact,
does not diagonalize H well enough for this purpose; we
shall discuss this point later.

It is the uniqueness of the states +g which will be the
central feature in the explanation of the Meissner effect.

is a longitudinal excitation; the corresponding
transverse excitations are of a completely different
character. Study of the steps which lead to Eq. (11),
or a little thought about the properties of Cooper
pairs, quickly convinces us that no energy advantage is
gained by making an excitation which does not have the

same amplitude at all points of the Fermi surface. Any
transverse excitation is of this form, and thus neces-
sarily has a finite excitation energy as its wave number
approaches zero. An equivalent statement is that no
excitation possessing a finite angular momentum exists
in the energy gap, since Cooper pairs have no bound
state with nonzero angular momentum.

To understand the effect of these statements let us
return to the fundamental sum rule (8). LFrom here on,
we consider the question of the gauge invariance of the
Hamiltonian itself closed. All statements are exactly
true only in the weak coupling limit in which (11)=0.)
Equations (8) and (9) are general statements, and
indeed are used in the Nozieres-Pines plasmon theory, '
since they involve only longitudinal excitations. Actu-
ally, in the solid as in the atom the more familiar form of
(9) is the optical (i.e., transverse) sum rule, to derive
which one takes the limit as Q—+0 and assumes

2m/
=limQ —'P (E„—8„) '

$2 Q-+0

X ((mrs(Q PP';exp(iQ r;)+exp(iQ r~)&;](~') ('

=s Z. (~. -&-)-'l(~I22;~;l~') I' (24)

The condition for the validity of this limit process has
not been previously discussed; we shall find that it
involves the absence of a certain type of long-range
order, which is, however, present in a superconductor, in
that there is a qualitative difference between transverse
and longitudinal excitations even as Q—+0 and in the
absence of Coulomb forces.

NO
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FIG. 1.Logical relations among diamagnetism, sum rules, gauge
invariance, and plasmons. Wide arrows are general theorems, solid
arrows mean "valid for superconductors at least, " and heavy
dashed arrows are theorems for normal but not superconducting
cases. The numbers in parentheses refer to equations in the text.

' J. Bardeen has pointed out to me that (23) could also be
derived by the method of R. P. Feynman [Phys. Rev. 94, 262
(1954)g using the B.C.S. calculation of the correlation function.
Feynman also presents arguments that pq+, is nearly the eigen-
state.

In this section we shall show how the mathematical
questions of the sum rules (6)—(9) and (24) are related
to the physical questions of gauge invariance and the
Meissner effect. Figure 1 is a schematic diagram of the
rather complex relationships involved. The core of the
argument is that it is the longitudinal sum rule (9)
which implies gauge invariance. As we have pointed out
(9) is always true. On the other hand, normal diamag-
netism is a consequence of the optical sum rule (24). We
shall then show that the normal cases obey the optical
sum rule, while the B.C.S. superconductor need not
because of the distinction between the states%'q and the
transverse excitations. B.C.S. have in fact shown, in
deriving the Meissner effect, that it does not, and there
is no need to repeat their calculation here.

To do this we must write down the two quantities
involved in the calculation of electromagnetic effects,
the current operator:

J(r) = (ieh/2m) (O'*V'@—O'V+*) —(e'/rlc) +*A+
=J„+J., (2S)
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Hi= (ieh/2m) dr+*(A V+V' A)+. (26)

and the perturbation to the Hamiltonian caused by the
vector potential A:

to a certain order of accuracy (7) is maintained in
B.C.S. is a proof of gauge invariance to that order.

Now consider the real diamagnetism problem in which

A=a@exp(iQ r); ao Q=O. (34)

The vector potential may be expanded in Fourier
series:

A=go ao exp(iQ r),

and one can calculate the appropriate Fourier compo-
nents of the current Jo. If we set

Jo———Eoao, (27)

then it is well known that the Meissner e6'ect follows
when in the London gauge:

V A=O,
(28)

On the other hand, in a longitudinal gauge there can be
no physical current:

VXA=O,

EQ=—0. (29)

A= V'exp(iQ r). (30)

The Qth Fourier component of the resulting paramag-
netic current is, in perturbation theory,

(e%o )J.=Z-
I"
&4m'c)

X (0 I g „I exp(iQ r„)V„+V„exp(iQ r„)$ I
m')

X(nz'IiQ P„I exp(iQ r„) V+ Ve px(iQ r„)]IO)

X (E —Eo) '+complex conj. (31)

The problem is to reconcile these two I (28) and (29)].
In an energy-gap model, (28) is true because the J~

term of (25) either is small or vanishes, as a result of
small matrix elements and finite energy denominators in
perturbation theory. But the finite energy denominators
must not cause J„to vanish in the longitudinal case (29)
(see reference 4).

Let us take up the longitudinal case first. Then a
typical component is

Now)

J„=P (e'A'/4m'c)

X(OIQ„I exp(iQ r )V +V exp(iQ r„)jInz')
X(m'IP I exp(iQ r„)ao.V+V„auexp(iQ r )BIO)

X (E —Eo) '+complex conj. (35)

As far as possible constant terms are concerned, if the
optical sum rule (24) is valid, then (35) is also equal to
the corresponding Jq and normal diamagnetism follows.

Having thus shown how the gauge invariance and
sum rule questions are the same, let us compare how the
three cases—superconductor, insulator, and normal
metal —obey the sum rules (7) and (9). In the normal
metal, the ground state may be approximated by a
Fermi sea. The appropriate excited states are single-
particle excitations from k to k+Q, whose excitation
energies are proportional to Q. Equation (7) is satisfied
by finite matrix elements of pQ and small excitation
energies. However, we can see from (8) that the sum

2- 1(0 I pa I
~') I'= (+o,+u) (36)

vanishes as Q when Q
—4, as a result of the small number

of possible excitations as Q—4. This means that the
identity (22) does not cause any anomalous excited
states to appear as Q

—A.
The insulator behaves in an even more regular way.

In the insulator there is an automatic energy gap be-
tween the ground state and all excitations, but (7) can
be satisfied because (0 I po I

te)—&0.This in turn is simply a
consequence of the fact that excited states are orthogonal
to the ground state. The sum (36) in the insulator
vanishes as Q', and again (22) does not cause any special
excited states to appear.

We see, then, that the failure of (36) to vanish in the
superconductor is the major diGerence from the normal
state. %e now show that this is related to the presence
of a kind of long-range order in the electrons' wave
function. A unified way to prove that (36) vanishes in
the normal cases is to write the wave function as a
determinant of localized one-electron functions:

From the sum rule (9), +o=Z( —1)"II+(r —R~& &) (37)

Q J~=iQ'Qe'/mc,

which is exactly the negative of

Q Jg ———(1Ve'/mc)(Q A).

(32)

(33)

Thus (9) ensures gauge invariance, and our proof that

In the insulator case, the 4's are the usual Wannier
functions. Equation (37) is not in the literature for the
case of the Fermi sea, but may be derived as a limit
from the insulator by increasing the lattice spacing and
combining more and more Brillouin zones to approxi-
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mate a sphere. Then, as we approach Q= 0,

pQ+0 P P (—1)~ exp(iQ r,) g%'(r, —R&(;i)
P

=i&'exp(iQ R )j+s+Z~, ~(
—1)~

Xexp(iQ R~iy))Q (r, —Rp(;i)

Xg;+(r,—R~i;&) =0+o(Q). (38)

In the real physical case, one-electron determinants

are only an approximation. Nonetheless, if we retain the
definition of "no long-range order" as meaning that the
wave function is really a properly symmetrized product
of factors, each referring to a volume small in comparison
to the whole specimen, then the above proof still holds.

Now we come to the question of showing that (24)
holds in the metal and insulator but not in the supercon-
ductor. The proof for one-electron function representa-
tions of metal and insulator is trivial, but we shall give it
here in a form using (37) which indicates how it might
easily be generalized to any case without long-range
order.

The sum rule we start from may also be written in the mixed form

p„(O~Q p,f&; exp( iQ—r;)+exp( iQ—r,)V,]~m)(m~exp(iQ r;) ~0)+c.c.=2EQ'.

The above is simply the scalar product

(39)

(pz, , (—1)~exp(iQ R 1,))2Q |7;g+(r;—Rzm), gp, (—1) exp(iQ R&&~)Q (r; R&—~) g@(r,—RQ('))).

Here we have already used (38). In any case in which the Wannier functions may be taken even or odd, this is the
same as

p&(pp( —1)~ exp(iQ R~(,))2Q V, p(r, —R~(,')),pp (—1)
'
exp(iQ. Rz (,))Q. (r,—Rp (,))@(r,—Rp. ())). (40)

Since the + are localized, the scalar product will
vanish for all but nearby Rp(,g's, which means that at
small Q the exponentials all approach unity. Clearly the
only property of the wave function which has been used
is the absence of long-range order. The above proof fails
completely for the B.C.S. ground state, simply because
(37) and (38) are not true. The matrix elements which
enter in the current in the B.C.S. case can be shown to
lead to states with finite angular momentum, which are
orthogonal to the states %q which satisfy the sum rule
(9). For details of the actual calculation see the B.C.S.
paper.

IV. PLASMA CONSIDERATIONS

So far all our work has ignored the long-range order
and correlations caused by the plasma eGect. The reason
is now obvious: that a certain special type of long-range
order is required to explain the Meissner eGect, which is
not at all similar to the order enforced by long-range
Coulomb forces. That latter order would only serve to
obscure the relationships. Prior to plasma effects, the
derivation of (24) from (9) is trivial, as in the Nozieres-
Pines paper'; afterwards, it is not at all simple.

In fact, we shall simply repeat the Nozieres-Pines
work here, but must first briefly explain the philosophy
of what we do. The interaction used in B.C.S. includes
both the phonon and repulsive Coulomb interactions,
the latter appropriately screened, so that our procedure
does require justification, in that this screening implies
that in the ground-state wave function the plasma effects
have already been included.

The basis of our justification is provided by the
observation of Sawada, Brueckner, Fukuda, and Brout'

' Sawada, Brueckner, Fukuda, and Brout, Phys. Rev. 108, 507
(1957).

that the plasma properties of the free-electron gas follow
from a Hamiltonian in which the different Q s are com-
pletely decoupled. This observation provides a deeper
justification for the "random-phase approximation" of
Bohm and Pines. "What we shall do is to retain the
random-phase approximation in the superconductor.

As Sawada et al. show, the random-phase approxima-
tion is equivalent to assuming it more probable that
Coulomb interactions return an excited particle into the
Fermi sea than that they excite still another. Such
terms, as shown by Brueckner and Gell-Mann, "always
lead to the most singular parts of the interactions. Our
rather physical argument is that we can show that the
part of the interaction retained by these authors is
practically unchanged by the energy gap. It is then very
hard to see why the less singular parts of the Coulomb
interaction would take on a new importance and over-
whelm the more singular terms in the superconducting,
but not the normal case.

Our procedure is in principle the following: the
original B.C.S. Hamiltonian is assumed to contain all
the Coulomb interaction except that part involving p@
itself. Thus most of the screening is present, while all
momenta except Q have corresponding subsidiary condi-
tions and plasma terms. For Q, however, we can still
prove (7) and (9) and study the transition from (9) to
(24) as we did in the last section; the random-phase
approximation tells us there is no strong coupling of Q
and other momenta (we shall discuss the explicit point
where this is introduced later). We then show that the
plasma properties follow from the sum rules, practically

M D. Bohm and D. Pines, Phys. Rev. 85, 338 (1952).
'K. A. Brueckner and M. Gell-Mann, Phys. Rev. 106, 367

(1957).
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una6ected by the gap. On the other hand, the states%'@
disappear and are replaced by the plasma states at
E=Aco„. This means that, in a sense, the pairing
criterion Q=O of B.C.S. is enforced only by the sub-
sidiary condition associated with the plasma.

To derive the plasma effects, we shall use the method
of the appendix of reference 9. Define a quantity

We can now solve (47).

(XA'Q'p )4IIe' q
IIIQ+~I z IpQ E&(DPQ+pIIQ).&mi) (Q2)

Since p@ and II@ are independent, this can be solved to
give

IIQ= (iVQ') '

2iQ P,P';exp(iQ r,)+exp(iQ r;)V;]. (41)

The commutation rule (7) gives us

[H,pQ] = (XA'Q'/mi) IIQ,

E '=4m. ee'A'/m= (A(o )'

n/P =inca, /NAQ',

and the subsidiary condition, from (48),

(np Q
—piI Q)e, =o,

(51)

(52)

(53)

while (9) gives
[IIQ,p-Q] = i, (43)

so that IIq* plays the role of a momentum conjugate to
the coordinate p@, and the sum rule becomes their
commutation relation. Now we must introduce the
interaction

2x'e
He (pQp-Q+p —QpQ) i (44)

of which we write only the Q terms. We also assume the
existence of a ground state of energy Eo, which we expect
to be perturbed from the 0, so far discussed in such a
way as to give the part of the long-range correlation
energy associated with pq, and the subsidiary condition.
Finally, we observe that if p@ and II@are to play the role
of plasma oscillation coordinates, the first excited state
+~ is obtainable by

+ —(~PQ+PIIQ)+o

while the energy condition

Eg%g= (Hp+H. )%g
is just

(45)

(46)

[H ('WQ+~+Q)]+0 +&(o'PQ+J3+Q)+o (47)

and, as Sawada et al. show, ' the condition that%'0 be the
ground state is the subsidiary condition:

(&PQ+J311Q)'+o—=o. (48)

The commutator in (47) with IIQ is made up of

[H„IIQ]=+4me'Q 'ipQ, (49)
aiid of

[H„II,]=miP~A2Q2)-~[H„[H, pQ]],
(50)

LHo IIQ] =mi(&A'Q') '(& —& )'(mI pQ Im'),

in the representation in which Ho is diagonal. The sum
rules (7) and (8) show us that this is of lower order in Q
than (49) except in the insulator (for which a complete
discussion has been given by Nozieres and Pines' ).

The random-phase approximation consists in as-
suming that (49) is the only important commutator of
II@with any of the Coulomb terms. A discussion of this
was given earlier.

which is the same as that of Bohm and Pines" as Q
—4,

since n))P, and the no-plasmon states have almost no
Q&0 pairs present. 'The old states 4, and %Q have
disappeared; they are related to 0'0 and +~ more or less
as eigenfunctions of momentum are to the harmonic
oscillator eigenfunctions. The derivation of (51) and
(53) completes our program of showing that only (7)
and (44) are necessary to normal plasmon behavior.

V. CONCLUSION

The above is by no means a rigorous and coriiplete
answer to the original question of whether the B.C.S.
theory satisfies gauge invariance and the sum rules and
still shows a Meissner e6ect. Although most of it is
fairly rigorous, a few parts have to be considered as a
map for how things might be, rather than a proof of how
they are. A few points which would bear further discus-
sion follow.

The first one is the question of rigorous rather than
approximate gauge invariance. To show rigorous gauge
invariance we would have to show that the corrections
to J and H& always canceled the momentum depend-
ence of Ho. Many arguments indicate that this is not a
basic difhculty. For instance, one can always make a
superconductor of arbitrarily large transition tempera-
ture by letting Aa&—+~ and exp[ —1/X(0) V]—4 simul-

taneously, thus satisfying gauge invariance arbitrarily
well.

Second is the random-phase approximation in the
superconductor. As this is an incompletely solved ques-
tion for normal metals, we have little hope of making
much more headway here.

The most serious question revolves around the cor-
rectness of calculating E@by the commutator argument
rather than directly from B.C.S. excited-state energies
and matrix elements. These latter are all calculated
ignoring the higher order corrections of QWO inter-
actions as well as the fact that the S.C.S. ground state
is not the exact solution of the reduced Hamiltonian. We
believe that the argument is as sound as that of any such
intermediate coupling method, in that what ha, s to be
assumed is that certain properties of the ground state-
the energy commutator, which is very insensitive, and
the normalization of +@, equivalent to the correlation
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function of the electrons' —are more stable against
perturbations than the actual matrix elements them-
selves. In calculating frequencies of other coherent
elementary excitations, such as sound waves or spin
waves in metals, the same situation often arises —the
energy calculated directly from what appears to be the
correct wave function is not the same as that calculated
from the equations of motion.
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APPENDIX. COMPUTATIONS OF COMMUTATORS

The interaction Hv is given in Eq. (10).We divide pu into two parts:

pg=pq++pg =Q(cx+gt*cxt+c xg*c x Qg),
K

and by direct computation:

11""-.:II.= I Z( 2 2 +
k(~ &Aco) k'Wk(~k &Acu) k(~ &bc') k'gk(~~ &h~)

(A1)

X (cp~pcit c p&+qi, c—&+q&cpt cput c—p~pq& c p+qgcp Qt) (A2)

In the case of pg, the summations are the same but the last parentheses read:

(czlt c k'yq+qg c g+q&cat cz~t c g~+qi, c z+~ o&c&t). (A3)

In both (A2) and (A3) the second term can be made to correspond with the first by the appropriate substitutions:
in (A2) by

and in (A3) simply by

k' —Q~k', k —Q~k, q —Q~q, (A4)

If Q is small, (A4) and (AS) have no effect on the large majority of terms, so that the appropriat'e parts of the
second term cancel the 6rst. Near the cutoG surface, the substitutions aGect the presence or absence of the terms:
(A4) when the cutoff depends on k and k', (AS) when it depends on k —q, k' —q. The resulting terms near the cutoff
surface are given in (11) of the text.

It is also necessary to use Eq. (11) to compute (po%'„$H&,po)@,). Equation (17) of the text shows us that only
terms of the commutator which break up only two pairs can contribute to the scalar product. Examination of (11)
reveals that two types of term can appear. These are the terms involving q=0 or q= —Q. Upon taking this into
account, the important part of (11) becomes

-', V{ P [ P — P )+same with k'—+k, k—+k')
k~ &k k(ek &Aco, q +.g &Bar) k(ek )Ace, ek+g &hco)

X (cm'~qt c g~i, c—tickt+ct'yet c t'—g J, c—k—Qi&t ct't c—k'i c—k—picot —cg~+ut c t'g c—g gicyyot). (A6)

The effect of the terms in parentheses in this equation on the B.C.S. 0'g may now be computed:

)q, ={ g [(1—hz) **+ha*br-*)&~'(1—h~ )'(1—h~+q) lc, ~ot*c g i*
K gk', k'+Q, k

[(1—hx) +hxlbx*)(1 —hk+u) *h„h„+~* ~+a ~+~t* —w'
K gk, k+Q, k'+Q

+ g [(1—h )l+h **b *)h '*h l(1—h )'b *c *c „ *
Kgk, k+Q, k'

II L(1—hx)'+hx'&x*)h~+o'(1 —h')'(1 —h'+a)'c'+ut*c-'~*)q''
K &k', k+Q, k'+Q
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Now we combine this with (23) and (24) to compute the scalar product:

(~Q+.,t:&~»Q]+.) =
2 UL 2 E — 2 2 +

k(~ %~cog &k+Q )~co) k y k k(~ &5~, ek.yg &A~) k' Qk k'(q i &Aco, ~k~+g )Aco k gk'

X~D,"(1—h, .+,) +a,.+Q (1—h, .) ](1—h, .)&(1—7, +Q)

&& D "-(1—&.)'—h.+Q'(1 —h.+Q)']+V "(1—&~+Q) '*+h~+Q'(1 —&~)'1

Xkg~k/~Q Lhg" (1—hQ')' —hgl+Ql (1—/alt'+Q')])

If in the first term we interchange the labels k and k, it becomes very similar to the second, and the whole sum is
symmetric in k and k+Q, and antisymmetric in k' and k'+Q. We therefore have left only twice the limited sum
over k':

6 Q~„L~.»Q]~,) = Ul ~.—:(1-h.+Q)-:+~;Q-:(1-Ii.)~]

Xt hg*hg+Q'+ (1—hg)'(1 —hg~Q)'*])hg '(1—hg )&—hg+Q*(1 —hg ~Q)*]. (A7)

In view of the symmetry in k and k+Q and the fact that Q is very small, the k sum may be simplified to
2U g ~Lb~(1 —h~)]l = 2&0. The k' sum is an integral over the cutoff surface

~
e

~

=Au&. When k' points at an angle 8 to
Q, the energy difference is

4= tg'+Q cg'= (A k pQ cos8)/m)

and the number of states in the surface element at this angle is ~isin8d8X(0)8e. Thus

(m'(u')

which gives the value (19) of the text.
Finally, we compute the commutator involved in the kinetic energy:

Px, , Q (2K+Q)cx+Q, ,*cx,,%',=Q.gx(2K+Q)(cx+Qt*cxt —c xg*c x Qi)+,
=Q Px(2R+Q)Lhx~(1 —hx+Q)& —hx+Q&(1 —hx)&]+ x, x+Q,

using (14)—(16). Again using (15) and (16), we get

(&Q+u 1+x»Q]+g) = (&'/2m)Zx Q (2K+Q) (hx —hx+Q).

For small Q, this is almost exactly

—(P/m)P&(Q k)Q P&(Z„)= (@'/m)'P, (Q k)2(d&/dE).

~ w/2 —

(pe�) &(0)&'& 'Q'~
P ALhl, '*(1—hk)~]=4N(0)2 ' sin8d8

(
—[kpg cos8 —/geo(6'+60') —'], /„——-',

k (m&

(AS)

(A9)

(A10)

(A11)

(A12)

In this form it is clearly independent of the exact form of the distribution, and thus is practically the same as the
identical quantity for a Fermi sea. Evaluating (A12) (the assumption must be made that eo is small), we get the
result quoted as (20) of the text.


