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The formation of van der Waals crystals, the formation of polymers, the properties of solubility, and
several biological phenomena have raised the question what detailed role the van der Waals forces play in
these cases. Given a mixture of several types of molecules or macromolecules contained in a liquid medium,
the question at issue is whether van der Waals forces, more precisely and generally, forces due to the inter-
action of fluctuating charge distributions in one molecule with those in an adjacent molecule, will cause
preferential association of identical molecules or macromolecules from among that mixture. The fluctuating
charge distributions in question may be due to quantum-mechanical fluctuations of charge distribution of
electronic oscillators, as considered by London, Eisenschitz, and Wang, and they may also be due to fluctua-
tions of distributions of mobile protons as investigated by Kirkwood and Shumaker.

INTRODUCTION School, notably by H. C. Hamaker twenty years ago;
and it has been subjected to a theoretical analysis in the
present papers.

The implication of the property of association of
identical molecules is basic for the problem of crystal-
lization and polymerization. It is also basic for the
problem of solubility, in particular for an understand-
ing of the fact that structural similarity between solvent
and solute molecules makes for good solubility (with the
exception of solutes whose molecules have interactions
among each other of a kind which they cannot have
with a solvent molecule). And it is basic for the problem
of specificity.

The notion of specificity designates a property of
. intermolecular interactions frequently encountered in
biochemistry. It implies that a particular type of macro-
molecules can have a highly selective discriminatory
interaction with just one other type of macromolecule
which quite frequently is identical or nearly identical
with the first one.

At this point we would like to give an idea about pre-
vious approaches' to the problem of specificity, different
from our approach. Pauling4 has looked into the prob-

~W~UT of the variety of intermolecular interactions
the present paper will be concerned mainly with

the interactions between molecules due to the circum-
stance that the molecules' representative oscillators
always imply charge Auctuations. London, Kisenschitz,
and Wang' first recognized this phenomenon; they had
in mind the quantum-mechanical zero point fluctuations
of electronic oscillators. Extending the types of charge
fluctuations under consideration, Kirkwood and Shu-
maker' studied the corresponding effect due to Ructua-
tions of mobile proton distributions over the surface
of molecules when they are immersed in an aqueous
medium. LAS these fluctuations are comparatively slow,
they contribute to what will be called the classical part
st=0, 't)l7o= —2R srrs, Eq. (23), of the interaction. )

The property of these forces (which makes for asso-
ciation of identical molecules rather than nonidentical
molecules) has first been given attention by the Dutch
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' F. London, Discussions Faraday Soc. (1936), pp. 8—26;
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lem of biological specificity from the point of view of
complementarity, following the lock-and-key concept
of biological specificity. In particular, Pauling has
shown that structures whose surfaces are closely com-
plementary, i.e., which fit like a cast to its mold, prefer
association simply because of the absence of empty
interstices. This simply means that the general London-
van der Waals attraction (between any kinds of atoms)
prefer structures which have as few interstices as
possible. Taking the complementarity principle in a
somewhat different formulation, Crick and Watson, ' to
whom we owe the knowledge of the structure of the
genetically all-important desoxyribose nucleic acid
(DNA), have attempted to sketch a scheme of replica
formation of DNA which implies that it is ripped into
halves during each replication process.

Muller, ' on the other hand, made another approach
to the understanding of biological specificity by pointing
to the instances in which association of similar or
identical macromolecules is in evidence, and he pointed
to a possibility of understanding the replication of
genetic material, based on this principle of association
of like molecules. This approach would permit the
parent genes to stay intact, and not to be ripped apart
during replication, and it would make their stability
and the accuracy of their replication understandable.
Under this view one may assume that molecules out of
which genetic material can be assembled are available
among other molecules in the surrounding medium.

The specificity of the van der Waals force, if strong
enough, may cause the retention of medium molecules
which happen to be identical with the constituent
molecules of the parent genetic material, respectively,
when these daughter molecules happen to come near
their corresponding parent molecules. This will con-
siderably facilitate the assembly of a replica.

The important physical phenomena which are at
play in the processes to which attention has been drawn
here, are the following: Brownian motion, which shufnes
aIl molecules around so that like molecules in a mixture
get introduced to each other; van der Waals attraction,
which will be shown to have the property of being
specific; and static electric repulsion between identical
pairs —which cari be regulated by changes of concentra-
tion of small ions in the medium~; these gegee-ions

Breinl and F. Haurowitz, Z. physiol. Chem. 192, 45 (1930);
Stuart Mudd, J. Immunol. 23, 423 (1932); D. H. Campbell,
Principles of Immunology (McGraw-Hill Book Company, Inc.,
New York, 1957).'F. H. C. Crick and J. D. Watson, Proc. Roy. Soc. (London)
A223, 80 (1954).' H. J. Muller, Am. Naturalist 56, 32 (1922); Sci. Monthly 44,
210 (1937); Cold Spring Harbor Symposia Quant. Biol. 9, 290
(1941);Proc. Roy. Soc. (London) $134, 1 (1947); Geneticsin the
ZDth Century, edited by L. C. Dunn (The Macmillan Company,
New York, 1951),pp. 77 ff.

r P. Debye and E. Hiickel, Physik. Z. 24, 185 (1923); L.
Onsager, Chem. Revs. 13, 73 (1933);H. Kallmann and M. Will-
staetter, Naturwissenschaften 20, 952 (1932);J. Rubin Vinograd,
in Thzxotropy, edited by H. Freundlich (Hermann et Cie. , Paris,
1935), Act. Sci. 267; J. H. De Boer, Trans. Faraday Soc. 32, 21
(1936). H. C. Hamaker, Rec. trav. chim. 56, 3 (1937); Chem.

compensate the static electric charges without having
much eGect on Quctuating charges.

Only the London-van der Waals and Kirkwood at-
tractions will be investigated here; the interacting mole-
cules are assumed to be as somewhat globular, compact,
and of a well-defined structure. The Ructuating charge
distributions, electronic or protonic, are represented by
oscillators / which, in the electronic case, show a well-
defined distribution of their (static) polarizabilities crt

over the frequencies co~ and over the oscillator orienta-
tions; the unit vector ut indicates the orientation of the
/th oscillator which is assumed to be one-dimensional.

MOLECULE PAIRS AND MOLECULE
CONFIGURATIONS

The energy levels E„of a pair of molecules depend
on the separation E of their centers; the molecule pair
occupies these levels according to a Boltzmann distri-
bution. The interaction is characterized by the partition
function Z or the Helmholtz free energy for a system of
localizable particles, A= —kT lnZ, and the attractive
force is

F=P„(BE„/BJt') exp( —E„/kT)/Z= (BA/BR) &. (1)

For simplicity all that is needed is DA= —kT(lnZtt
—InZ„), denoted by AA i ii when a molecule pair I-II is
considered.

For molecules immersed in a medium, "buoyancy"
effects (not against gravity) have to be included. This
could be illustrated with the following scheme. Consider
two identical macromolecules imbedded in an otherwise
homogeneous isotropic medium of smaller molecules,
and compare these two configurations

II II II II II II II II II II
II I I II II and II I II I II
II II II II II II II II II II.

Buoyancy is taken care of by grouping part of the
medium molecules into aggregates II, each occupying
the same volume as does a macromolecule I. In general

Weekblad 35, 47 (1938).See also K. J. W. Verwey and J. Th. G.
Oberbeek, Theory of Lyophobic Colloids (Elsevier Publishing Com-
pany, Inc. , New York, 1948), pp. 161 and 162; or J. Th. G. Over-
beek, in Colloid Science, edited by H. R. Kruyt (Elsevier Publish-
ing Company, New York, 1952), Vol. I, pp. 276 and 277; E.J.W.
Verwey and J. Th. G. Overbeek, Trans. Faraday Soc. 42B, 117
(1946). J. Th. G. Overbeek, in Colloid Science, edited by H. R.
Kruyt (Elsevier Publishing Company, New York, 1952), Vol. I,
pp. 58, 115 ff., Vol. II, p. 184; in E. Verwey and J. Oberbeek,
Theory of Lyophobic Colloids (Elsevier Publishing Company, New
York, 1948);in Discussions Faraday Soc., Coagulation and Floccu-
lation 18, 9, 12, 52 (1954).S.Levine, Trans. Faraday Soc. 42B, 102
(1946);44, 833 (1948).B.Derjaguin, Acta Physicochim. U.R.S.S.
10, 333 (1939); 12, 181 (1940); 12, 314 (1940); Trans. Faraday
Soc. 36, 203 (1940); Discussions Faraday Soc., Coagulation and
Flocculation 18, 24, 85 (1954). B. Derjaguin and L. D. Landau,
Acta Physicochim. U.R.S.S. 14, 663 (1941); H. S. Harned and
B.B. Owen, Electrolytic Solutions (Reinhold Publishing Corpora-
tion, New York, 1950); I. M. Klotz, in The Proteins, edited by
H. Neurath and K. Bailey (Academic Press, Inc. , New York,
1953), pp. 727 G. ; I. Progogine and A. Bellemans, in Discussions
Faraday Soc., Nonelectrolytes 15, 80 (1953).
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For completeness one may assume the following, and
thereby cover the case of several different types of
macromolecules 'A. ssume (a) equality of the volume of
these different, somewhat globular, molecules, and con-
sider solely the nearest neighbor interactions, all at
the same separation R (for two identical macromolecules
I immersed in a homogeneous isotropic medium, as
discussed above, this assumption is evidently satisfied
automatically); (b) isotropy and additivity of the
interactions; (c) entropy of mixing to be neglected; (d)
numbers of nearest neighbors, statistically speaking, to
be the same for every kind of macromolecule. Let e;, be
the number of molecules j which are nearest neighbors
to molecules i. So E,=P;e;;=total number of all
nearest neighbors to molecules of type i; because of
(d), 0=8N;=P; br';, , for all i. The rearrangement
free energy is

= sQ; Q, bm;;DA;, spy DA, ;Q, brr—g;

=-,'P; P, b~„(aA,,—aA, ,)
=-;P;P; b~;, (~A, ;—aA;,).

Because of be;, =be;; and hA;;= AA;;, this becomes

—sQ; Q, brl;; (AA, ,+hA;; —26A;,).

CLASSICAL AND QUANTUM OSCILLATORS

(3)

The London force may be pictured in terms of
molecules each having a single isotropic oscillator of
frequency ro (in contrast to &o which will later be used
to indicate a normal mode frequency' of a molecule
Pair) .

The classical limit case of low frequencies im-
plies an interaction of a pair of oscillators, hAzzz
= —3R '&Tei&zz Thus

64Ar n= —3R skT(nr —crrr)'&0.

This rearrangement free energy 643 z zz depends on only
one parameter, the polarizability difference.

An inequality in two variables n and ~ has been dis-
covered by de Boer' and Hamaker. "In the case of two
isotropic oscillators whose ~))kT/fs, the interaction
free energy is

~AI II sR trrrrrrfrrorreII/(rer+~II)

(London'; n= static oscillator polarizabilities). There-

' J. M. Yos, Ph.D. thesis, University of Nebraska, 1936 (un-
published).' J. H. de Boer, Trans. Faraday Soc. 32 118 (1936).

'0 H. C. Harnaker, Physica 4, 1038 (1937). We are deepiy
indebted to H. T. Epstein for having drawn our attention to
these papers, and to T.Y. Wu for a comment on this inequality.

this rearrangement corresponds to a free energy change

~4AI II=+AI I++AII II 2~AI II

foie

o'zz o'zz+zz +zzz &z o'zz

64~z zz= —4E '& &0. (5)
rer+~rr

The expression (A times an average of the frequencies)
in the quantum-limit London formula essentially re-
places kT in the classical formula.

To proceed to a more general case, let each molecule
be represented by a set of oscillators: essentially no
change occurs in the classical limit formulas, and one
obtains an inequality involving again only one inde-
pendent expression, the difference of the total polariz-
ability of molecule I and that of molecule II, squared.
A similar statement holds for the quantum limit
formulas if all the oscillators have the same frequencies
f(20) makes this evident). On the other hand (5) and
its generalization for many oscillators gets special
importance if the oscillators cover a wide range of
frequencies and have different polarizabilities and
orientations.

In the quantum limit case the many-oscillator gen-
eralization (14) of the inequalities (5) contains a set of
negative definite terms, i.e., a set of inequalities. One
should point to the far-reaching implications which
these inequalities have, and one should show how many
effectively independent inequalities there are in a given
situation, and one should demonstrate that specificity
may be understood on this basis —after a definition of
degree of specificity has been introduced.

Specific interaction refers to a type of high dis-
crimination between different molecule-partners even
though there is only a moderate spread in interaction
free energies at stake. In the present theory this phe-
nomenon is simply a consequence of the considerable
number of effectively independent parameters upon
which 64Ar rr depends.

The oscillator scheme is very convenient but not
necessary; part II of these communications readily
permits inclusion of anharmonicities, permanent elec-
trical moments, and quadrupole interactions by treating
the general quantum mechanical problem.

In order to cover the actual case, which certainly
involves classical limit as well as quantum limit situa-
tions and much in between, and in order to define a
measure of that discriminatory rearrangement, i.e., of
the degree of specificity, it is necessary to calculate the
partition function Z for molecule pairs. These calcula-
tions were done before the authors knew of the work
of the Dutch school.

OSCILLATOR PAIR INTERACTIONS
IN THE GENERAL CASE

The molecules I and II may have Xz and Ezz oscil-

lators, respectively. The normal mode frequencies
co~/2s. of the pair I—II depend on the intermolecular
distance R, The partition function and Helmholtz free
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energy of the pair are
Nz+Nzz

Z= g [2 sinh(Iz(uz/2kT)]
—', (6)

one gets

zIA=A A—„=2kT-tr P ln(I+U, )

A= —kT lnZ

=kT g [-,'- lnVt'+P ln(1+Vi'/s'~')+ln2], (7)
L s=l

where U 'z=fzcuP/4k'T' are the eigenvalues of a poten-
tial energy matrix V whose diagonalized form will be
denoted by V'. Equation (7) permits expansion in
powers of the intermolecular interaction, an expansion
which is convergent for all positive V~ . The matrix V
can be written in the form

fuz 0 y PO
I+I I= V„yU

( 0 U ~ ('tlr 0)
= U„(I+V„'U), (8)

where T means transposition. V„and U usually do not
commute. The summation over I in (7) can be written
as the trace of the function kT[ ] of the diagonal
matrix V . This trace is invariant under the transforma-
tion which beings V into diagonal form. Thus

A=kT tr{-z, lnLV (I+V 'U)]

+Q 1 n({I+ V/ 'sr'z)
s=l

XP+(I+V /s'7r') 'U/s'zr'7)+I ln2). (9)

From the Baker-HaussdorG theorem, or by direct cal-
culation (tr lnX=ln det X), two noncommuting ma-
trices X, 7' are seen to satisfy tr ln(XV) =tr lnX
+tr lnV. Therefore, with the abbreviation

=-', kT tr Q {—-', U' — . ). (11)

REARRANGEMENT INEQUALITIES

At this point a new assumption must be introduced,
vis. , that the intermolecular interaction tt in Eq. (8)
can be written as a product of two matrices, one de-
pending on molecule I only, the other on II:%.=%.z'llzz .
Dipole interactions evidently satisfy this assumption;
'ttz is an 1Vz by three matrix (17). Introducing the ab-
breviated notations for the three by three matrices

V),z —='tlz r(s'zr'I+'Uz) "t4, (12)

The oscillators are distributed all over the volume
occupied by each molecule. If they are shifted into the
centers of the molecules, quadrupole, etc., terms arise.
The assumption of an interaction matrix (8) is equiva-
lent to neglecting quadrupole and higher multipole
terms in the expansion in terms of R. The results of this
paper are simple because they are based on dipole
interactions; "large" separations E would, in view of
this, be a desirable assumption. Besides, for "large R"
one has the added advantage of being entitled to break
off the expansion (11) with the term UP, which means
neglect of R " terms. The assumption of "large R" is
evidently a compromise for the sake of achievement of
easily interpretable simple results; the actually interest-
ing situation is one of close approach where sizable
interactions occur.

(s'm'I+V ) 'U=—U„ (10) one can write

) (s'~'I+Uz) —"tt(s'~'I+'Uzz) —"tt'
trU, 2= tr

~

0

0
~
=2 tr(tz) z'|S),zz).

(s'~'I+'U, )-%,'(s'~'I+V, )-zW &

(13)

Here s is an integer, positive, negative, or zero. Dropping
higher powers of U,2, the rearrangement free energy (2)
becomes (as the %,z„„are symmetric).

—zI4Az zz= 2&T P P [(W.z —W,zz) .]' (14)
s=—oo p, v=1

This trace is positive definite if ('%,z
—'VP.zz) has real

eigenvalues for every s and any pair I—II, that is, if
~ z and g zz are Hermitean matrices. That provides a
sufficient condition for the specihcity theorem:

64Hz zz&0) (15)

to hold in the limit of large R.
As (s's'I+Uz) is a symmetric matrix, 'P, z and %Razz

are, by (12), symmetric matrices. The Hermiticity
condition for VP,z, 'VP, zz therefore implies that all ele-

ments of%,z and '%,zz are real. Since (s'zr'I+'Uz) ' has
only real matrix elements, and as %.=%,z'll, » is real,
'P, z and Vl, zz will be real if the elements of 'll, z and %l,zz

are either all purely imaginary or all real. There are
therefore two different sufIzcient conditions for the
inequality (15).

Let molecules I and II be referred to the same axes
(x,y,s), where the s axis connects the centers of the
molecules. (8) becomes in detail

'14,= (fz'/4k'T') eznzz
—le,m,-lE—'
X.)QkxQ jz+lky'zzjy 2zzzgQ js]. (16)—

The e, 's are charges, the m, 's are masses, and the u s are
orientation vectors of the oscillators. The oscillator
orientations can be referred to axes fixed in the mole-
cule, e.g., the axes of the permanent moments.

Refer the two molecules to right-handed coordinate
systems (xz,yz, sz) and (xzz, yzz, szz), respectively, whose
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s axes are parallel and x and y antiparallel, then the interaction matrix 'LLI'LLzzr has the value (16) if

) )
I I ~ in

&&l~l N'lx &&l~l Nly) A'46l~l Nl

) )
(17)

%,zz is made up in a corresponding fashion. With this
convention, 'llz'll. z represents the interaction matrix of
a molecule I located at the origin I with a molecule II
at origin II whose dipole distribution referred to
(xzz,yzz szz) is exactly the same as the diPole distribu-
tion of I with respect to (xz,yz, sz). II is rotated 180'
around the s axis with respect to I, otherwise identical;
this is the energetically most advantageous orientation.
With that definition of pairs of identical molecules I—I
and II—II, the matrices 'H, z and VP, zz are Hermitian,
a statement which implies (15).

Suppose the two molecules are referred to two mirror
image coordinate systems whose s axes are antiparallel,
and x and y axes parallel. The interaction matrix
'LLI'LLII = 'lL is of the form (16) if 'LLI is given by —I' times
(17), and similarly for LLII. In that case, 'LLI'LLzr denotes
the interaction of one molecule with another which is
the mirror image of the first one with respect to a plane
parallel to the xy plane; this is the orientation of lowest
free energy for these molecules. The inequality (15)
holds again. In this mirror case, the interaction may no
longer be specific, however, if the representative oscil-
lators are anharmonic, or for other reasons have perma-
nent dipole moments.

The static polarizatilities and the dynamic polariz-
ability tensor are de6ned by

&I &I /ZZZllall s IZ(lal) Zl 4ZZnlul/L1 (Zal/lail) j' (18)

u~u~ is the dyadic product of orientation vectors. The
co~ are normal-mode frequencies of the isolated mole-
cules; that is, the eigenvalues of 'Uz are A'zdz2/4k'T'.

Equations (12), (17), and (18) give
Nz

('Pal) as = —R—'(aa nz/L1+ (2lrkT/540l)'s'j) 244z,'. (19)

'K, z is essentially the dynamic polarizability analyti-
cally continued into the purely imaginary argument
zd=is2mkT/A. Experimental data about dispersion and
absorption gives n~, co~, and u~ because the partial frac-
tion expansion (18) is unique. 'W, z then follows from
these quantities. The Appendix shows how the classical-
and the quantum-limit London formulas are derived
from (11), (13), and (19).

(15) actually represents six inequalities for every
~
s~,

one for each component p, v of the symmetric sum
—zL4AI zz in (14).Equation (14) means that z1+z zz 0
if and only if the molecules I, II have the same set of
('LlL'l, )„„values; i.e., according to (19), if they have the
same dynamic polarizability ellipsoid as function of
frequency. This defines "identical" molecules in regard
to charge fluctuation forces.

For the attainment of specificity, strong oscillator
polarizabilities distributed over a wide frequency region,
including the quantum region, are necessary. The
question might be brought up why one could not deal
with the present problem by the use of the ground state
alone rather than dealing with the entire partition
function. The answer is that only the present complete
calculation will properly delimit the importance of low-
frequency oscillators, sand of only a small range of dis-
tribution of frequencies of the oscillators, for attainment
of specificity.

The use of the full partition function turns out to
be mathematically more elegant and convenient than
ground-state calculations; it shows the rearrangement
free energy to be of the form of the square of a Euclidean
distance (14) in a %", space t the s originally provided
for the series expansion (7)$. The rearrangement free
energy (14) is a sum over s, and not a sum over the
normal modes l. This is evident from

the result for one-dimensional oscillators oriented in the
s direction.

SPECIFICITY'"

Specificity refers to the sharp discrimination which a
certain type of macromolecule (I) exerts in its preferen-
tial association with a particular macromolecule, e.gs)
its like. The point is that this discrimination rejects an
enormous number of different types of macromolecules
II even though the energies 64Hz zz are quite moderate.
When one talks about specificity, one is thinking of a
property of a manifold of macromolecule types II, in
particular about the following question: for how many
types II out of this manifold is the quantity

~4a4I II gkTZa (~azz ~sz) (21)

(forgetting about the anisotropy subscripts p, I) greater
than the thermal energy kT P Choosing as inolecule I an
average molecule out of the manifold, the question is:
what is the measure of the subset of molecule types for
which the signal,

—zL4A = ', kT p, ('N, —(V).),)-') kT, (22)

Henry Quastler, Information Theory in Biology (University
of Illinois Press, Urbana, 1953), p. 41.

—IL4AI zz = z~kT Q 4R ' Q
s l=l 1+(2lrkT/lzlzal, ) g

uz+wzz

(20)
I=~I+I 1+(2n-kT/fia)z)'s'
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i.e., is greater than the noise ? That measure, if it is
close to unity (unity is chosen as the measure of the
total set of molecule types), indicates specific dis-
crimination .

The quantity —hAA is made up of positive definite
terms. They are not independent for al 1 s. If one con-
siders VP, as function of s for two simplif ed very

different kinds of molecules, one of which has strong
polarizabilities only in a narrow region in the far ultra-
violet (si =75), the other only in the near ultraviolet
(st= 25), their VP„

—'N, = 2R ski ni/(1+s'/si'), (23)

(where
~

si
~

=Arri/2wkT) would have distributions like
the two which are represented in Fig. 1 . If the molecules
of the manifold were characterizable by two parameters,
their polarizability in the far ultraviolet and their
polarizability in the near ultraviolet, they could be
represented by the two-parametric manifold of dots on
the left-hand side of Fig. 2. —AAA LEq. (22)7 is given
by the square of the Euclidean distance of the repre-
sentative do t from the origin of the coordinates. The
circle quadrant indicates the noise limit.

If, on the contrary, another manifold had its polariz-
abilities only in a fixed narrow frequency region, a
one-parametric manifold would ensue (right side of
Fig. 2) . In the case that, for comparison's sake, the two
kinds of manifolds had the same values (—64A )A„

t Eq. (22)7, one would immediately realize that for the
two-dimensional manifold the measure of the dis-
criminated subset is much closer to unity than for the
one-dimensional manifold.

~ ~

~ ~
~ ~ ~ ~~ ~
C ~ ~ r ~
~ ~ ~ ~

~ ~ ~ ~
~ y ~ ~

~ ~ ~
~ ~

~ 0

FIG. 2. Comparison of a two-parametric manifold of molecule
types with an eftectively one-parametric manifold.

Abscissas = ( (vf o
—(% o)A~)'+2 ('%Pi —(% r)Av)'+

+2 (% AA
—(% AA)A )'1&;

ordr'nates {2(VAA (VAA)Ay) +2(%37 (%37)Av) + ' ) .

E I l I I I I I I

-IO 0 lO 20 30 40 50 60 70 80 90 s

FIG. 1. Re resentation of the rearrangement free energy
LEqs. (2) and 14), (21)j showing the discrimination between two
hypothetical molecule types I and II, one of which has its prin-
cipal polarizabilities in the far ultraviolet, the other in the near
ultraviolet.

Qualifying details may be omitted here, but it inay
be appropriate to remark that anisotropy terms in-
crease the number of effective parameters, and that the
Kirkwood-Shumaker fluctuations bring about an im-
portant contribution towards the term VP p (from low-
frequency oscillators s& =0), thus adding another im-
portant parameter on which the VP, distribution
depends.

The order of magnitude of the interaction energies
should be estimated. " If one uses atomic polarizabilities
(ground state contributions only) and adds their effect
according to Eq. (19), one arrives at a low estimate.
That estimate is roughly obtained if one takes 50% of
the electrons in the valence shells and assigns to each
of those electrons static polarizabilities e E according
to (18) where si ——charge of the electron and)itoi=ioniza-
tion energy. LOr one takes all electrons in the valence
shells and includes an oscillator strength f=0.5 into
the formula (18) for the polarizability rr& of such an
electron. ) The dependence of the strength of interaction
upon the average electronic oscillator frequencies co can
already be inferred from the London formula (28): as
Pn =Pfe'/~', one gets AA cc (Pn)'oi rc (Pf)'/res where

Pf is limited by the number of electrons in the valence
shells per molecule (Thomas-Reiche-Kuhn) . Actually
the polarizabilities for macromolecules are higher than
the low estimates obtained with atomic far ultraviolet
co values: they are specially strong if high electron
mobilities arise. The presence of thermally excited states
often involves strong electron mobility. The low-limit
estimates give about the fol 1owing contributions for
pair interactions DA i iz . if the pair of interacting
molecules is at their closest approach, the electronic
contribution of mostly far ultraviolet polarizabilities
(London-Eisenschitz-Wang) amounts to a DA t tt at
least of the order of kT and the mobile proton contribu-
tion (Kirkwood-Shumaker) amounts also at least to
something of the order of kT. Both these estimates
refer to the case of fairly smal 1 groups like aminoacid
side chains. For pairs of larger spherical molecules,
again at closest approach, their total polarizabilities
squared might cautiously be taken as proportional to
the square of the molecular volume. E ' just compen-
sates that, so one may again get kT' or a few kT for the
interaction.

The order of magnitude of the interaction is strong
enough to bring about a high degree of specificity, in
particular in a situation like the following:

Consider protein n helixes (Pauling, Corey, and
Branson"), with a variety of I -aminoacid side chains.
Two identical ones of those helixes may lie in parallel,
side by side, so that corresponding side chains of the

'0b H. .A. Kramers and R. de L. Kronig, Z. Physik 48, 174
(1928); E. M. Lifshitz, Zhur. Eksptl. i Teoret. Fiz. 29, 94 (1955);
Doklady Akad. Nauk S.S.S.R. 97, 643 (1954); 100, 879 (1955);
Derjaguin, Abrikosova, and Lifshitz, Quart. Revs. (London) 10,
259 (1956).

1 Pauling, Corey, aAnd Branson, Proc. Natl. Acad. Sci. U. S. 37,
205 (1951).
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two helixes interlock in such a fashion that correspond-
ing, pairwise identical side chains come to lie next to
each other. One gets a particularly strong specificity
due to the interaction of pairs of side chains which,
by the way, have the energetically favorable orientation
with respect to each other. The rearrangement free
energy 64A is made up from a sum of expressions (14),
due to the side group pair interactions; all interaction
terms have the same signature and thus one has to do
with a many-parametric speci6city.

Imagine, on the other hand, a right-handed protein
helix being confronted with a left-handed protein helix,
both built from the same sequence of amino acids, "
all amino acids being of the laevo type. The helixes
can roll over each other, exert speci6c interaction, and
provide for an extremely rapid recognition. The motion
is a rotational Brownian motion, hindered by some
occasional big side chains. It is to be anticipated that
such a mechanism might also be an ideal tool for the
synthesis of protein helixes along the lines indicated in
the introduction.

An n helix can, in a very oversimplified manner, illus-
trate the replica formation. Suppose the surrounding
medium supplies all kinds of activated amino acids, and
Brownian motion shufHes them around. They will

preferentially be retained next to the corresponding
amino acids of the parent helix, in a mantle region sur-
rounding that helix. The formation of the replica helix
may occur after a change of pH, permitting the amino
acids from the mantle region to be unrolled with simul-
taneous peptide bond formation between them. Another
possible mechanism would be a similar assembly process
of activated amino acids around a nucleoprotein helix,
or of nucleotides around a nucleic acid helix. Or else,
extended chains might be all that is involved. "

The charge fluctuation e6ects which have been dis-
cussed in this paper dier from static electrostatic
interactions of polarized side chains insofar as the
static charge distributions are readily compensated by
small gegee-ions from the medium. That compensation
depends very much upon the ionic concentration of the
medium. Decreases of that ionic concentration permit
the repulsive forces between identical pairs of groups or
molecules to become predominant over the attraction
due to charge fluctuation forces. Because of their
rapidity, the charge fluctuation forces are not much
influenced by gt,gen-ions from the medium.

One may return briefly to the question of the relation-
ship of the approach to speci6city outlined in this paper
to the approach on the basis of complementarity. In
the present approach a particular model of interlocking
pairwise identical side chains has been envisaged.
There are plenty of empty spaces between these inter-
locking molecules which are randomly filled with smaller
molecules from the medium. The space-filling principle
is thus satis6ed in a statistical fashion, but the cumula-
tion of positive definite terms in —64A is responsible
for the specific association of identical macromolecules.
In the complementarity approach the space filling is

somehow attempted to be made complete.

+00

DAr Zr = —lokT P tr(% zPF.ZZ), (24)

and of (19), i.e.,

APPENDIX: LONDON FORMULAS

The pair interaction formulas are special cases of the
present matrix calculation results (11), (13), i.e.,

xz NI

(~oz)-= —2R 'P zz, gnr ———2R ' Q Nr. zero/reer,

(%,I)„=—2R ' p (kooi/2kT)'zlrzo«lf s'rr'+ (I'zror/2k&)'1 (26)

a~=co~ vs~ indicates the force constants; the polarizabili-
ties (18) are ni= pro/~r. That means that 2 tr(%OFPOII)
is independent of A and the masses for given force
constants. The part s=0 of the series (11), i.e., for
&x=&xx= &,

AAI II= pkT tr(VzoFPOII) = —2kTR 'nInII (27)

gives the classical part of the interaction free energy and
is the one-dimensional equivalent of the formula given
before (4). The corresponding quantum limit case is
obtained by replacing the sum over s by an integral.
sz and srr are defined below (23).

12 L. Pauling and R. B.Corey, Istituto Lombardo di Scienze e
Lettre 89, 20 {1955).

"H. Jehle, Proc. Natl. Acad. Sci. U. S. 44 (1958).

DAI rz= —pkT tr(VPOIWOII)

)+00

X„8+(s/»)'j-'L1+ (slszz)'?'~s

p k2 (~pl) zz (KOII) zzOrSISII/(SI+»I)

= —R 'nznzz&rortozz/(roz+oozz), (2g)

i.e., the one-dimensional London formula.
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With intermolecular interactions due to fluctuating charge distributions (van der Waals-London-Kirk-
wood), a system of molecules has some interesting properties as regards its rearrangement free energies.
They have been investigated in the preceding paper. It was found desirable to look into the corresponding
results on the basis of a general quantum mechanical model for the molecules.

NEED FOR A MORE GENERAL QUANTUM
MECHANICAL CALCULATION

'HE foregoing calculations' have all been based on
the representation of a molecule by an oscillator

model. In the following, a general quantum mechanical
model is used to consider the problem anew.

The harmonic dipole oscillator model had the ad-
vantage of ease of calculation and it was readily possible
to evaluate the e6ects in terms of polarizabilities, orien-
tations, and frequencies of the oscillators. The general
quantum mechanical calculations are needed because
the foregoing oscillator calculations are based on some
rather drastic assumptions. The following reasons show
the desirability of these general calculations.

(1) The assumed level scheme and the transition
matrix elements for a set of harnzoeic oscillators are
quite different from those of an actual molecule. In
the quantum limit of high oscillator frequencies, this
difference may not be of much importance. In the
general case when many levels are in thermal reach (this
general case is the object of the present investigation)
and when we have to deal with a complicated set of
strong and weak transition matrix elements, it is wise,
however, to And out what the calculation based on an
arbitrary level —and transition —scheme has to tell.

(2) The foregoing oscillator calculations started with
the consideration of the intermolecular interaction
between a pair of molecules and assumed that this
interaction can be expressed as part of a potential
energy matrix of a pair of dipole oscillator sets.
The calculations took advantage of the simplicity of
matrix calculations based on that potential energy
matrix which implies the interaction to be bilinear in

*National Science Foundation predoctoral fellow 1954-1956.
Present address: Research and Advanced Development Division,
Avco Manufacturing Corporation, Lawrence, Massachusetts.

~ Jehle, Vos, and Bade, Phys. Rev. 110, 793 (1958), preceding
paper.

the oscillator amplitudes of the two molecules. An ac-
tual molecule, even if representable by a set of oscil-
lators, has these oscillators distributed all over the
molecule. Such a distribution is equivalent to a set of
oscillators, located at the center of the molecule, but
there appear quadrupole, octupole, etc. terms because
of the displacements of the dipole oscillators. (Evi-
dently, a general time-dependent charge distribution in
a molecule can always be expanded into charge, and
dipole moments, quadrupole moments, etc.).' Inter-
molecular interaction which takes these quadrupole
terms, etc. , into account, can no longer be handled by
the simple matrix methods which had been used so far.

(3) The question also might arise whether higher
order perturbation theory may be needed, in cases
where the linear polarizability theory is inadequate.

HAMILTONIAN FOR A MOLECULE PAIR

The Hamiltonian for a pair of interacting molecules
is of the form

&=3Cr (qr) +err (qrr) +'ttr rr (qr, qrr), (1)

where X(q) is a shorthand notation for a Hamiltonian
3C(q,ih 'Bq) and GCr(qr), Krr(qn) are the Hamiltonians
of the two isolated molecules. The symbols q& and q&I

represent the whole set of independent variables for the
molecules I and II, respectively. H, Xr (qr), and
err(qn) have the usual properties of Hamiltonians;
namely, they are Hermitean and have complete sets of
eigenfunctions over their respective function spaces.
Since the theory will be applied to cases in which the
operators Xr(qr), ~rr(qrr), and ttr rr(qr, qrr) are "real"
(i.e., produce real functions whenever they operate on
real functions) and in which t4 rr(qr, qrr) is a "pure"

' For an elegant method, see J. Frenkel, Elektrodynumik
(Verlag Julius Springer, Berlin, 1926), Vol. 1, pp. 98 6, or Z.
Physik 21, 1 (1924).


