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and hence

aa (—ts„+tt„ar)—pD ———0.0078 nm.

Nuclear Fine Structure Widths
and Spacings*

The spin-orbit contribution is

(Dts) eL = —0.0125 nm,
so that

Ap = —0.0203 nm.

There remains, therefore, a difference of —0.002 nm,
which is certainly within the limits of the unknown
eGects.

The new set of triplet potentials, of course, still fits
the e6ec tive range and deuteron binding energy
exactly. It leads to a deuteron quadrupole moment
of 2.77)&10 " cm' and a root-mean-square deuteron
radius of 2.3&(10 " cm. Figure 1 shows the three
components of the potential. Compared to those of
reference 2, they are somewhat deeper and narrower;
the repulsive centers have become smaller and stronger,
while the repulsive "humps" have disappeared. The
spin-orbit part is practically zero from about 1.2X10 "
cm on.
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ITHIX the past few years, high-resolution
measurements' have led to a rather complete

qualitative understanding of the statistical properties
of nuclear fine-structure levels from an empirical point
of view. There have been proposals suggested to
provide justification for the width distributions' and
the spacing distributions, but the connection between
the two has so far not been emphasized. It is the purpose
of this note to present some recently obtained results
which show that both distributions can be derived from
a single statistical hypothesis: the matriot elements of the

Hamiltontan operator which dertnes the eigenstates of
the compound nucleus follow normal distributions Thes.e
normal distributions are not entirely unmotivated.
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FIG. 2. Deuteron wave function corresponding
to the potentials of Fig. 1. I.O-

The deuteron wave function is shown in Fig. 2.
The S component is much more rounded than it had
been previously, and it does not become equal to its
asymptotic value until about 8&10 "cm. The negative
part of the D component at the origin has become
quite small. Scattering wave functions were not plotted
but can be easily obtained. '

It is perhaps worthy of note that we have here a set
of triplet potentials which fits all the low-energy data,
and for which the D-state probability in the deuteron
contributes much less to the magnetic moment than
does the spin-orbit force.

* Supported in part by the National Science Foundation.
t National Science Foundation Predoctoral Fellow.' Herman Feshbach, Phys. Rev. 107, 1626 (1957).' R. G. Newton and T. Fnlton, Phys. Rev. 107, 1103 (1957).
'Anyone who wishes to use it is welcome to a copy of the

IBM-650 deck for the rapid computation of scattering wave
functions of any energy.
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FiG. 1. Plots of the differential probability P as a function of
the ratio x of spacing S to average spacing D or as a function of
eigenvector component a. The histograms are the results of runs
on the Los Alamos IBM 704. The solid spacing-distribution
curves are analytic results for a two-by-two matrix while the
solid eigenvector-component curves are the predictions for the
component of a randomly oriented unit vector. The experimental
points are the "corrected" points from Fig. 9 of reference 1,
divided by 37 to convert them to relative frequency. Parts (a)
and (b) of the figure show the results for five-by-five and ten-by-
ten matrices. In part (a) the spacing histogram is the result of
300 total counts, and the component histogram is the result of
1875 total counts. In part (b) the spacing histogram is the
result of 153 total counts, and the component histogram is the
result of 1700 total counts.
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The eigenvector X~ has the components a~;, i.e.,

X),——gai„q;,

where the p; are a basis choice. The integral of Eq. (1)
becomes

)t XiC,dS=+ai„p4,dS, (3)

If configuration space is divided up into cells of size
greater than or equal to a particle wavelength on an
edge and if the central limit theorem is then applied
to the matrix elements represented as sums over cells,
assuming random variation of the integrand within
cells, a normal distribution is inferred for the matrix
element. 4

The work of Wigner' suggested the exploration of
the properties of the eigenvalues and eigenvectors of
matrices with random matrix elements. With this in
mind, a code was written for the I os Alamos IBM 704
computer to generate random matrices, diagonalize
them, and then sort the output spacings and eigenvector
components so that histogram plots could be made.
Typical results of such calculations are shown in
Fig. 1, in which are plotted average differential probabil-
ities P as functions of the ratio x of spacing S to mean
spacing D, or of eigenvector component a under the
assumption that the root-mean-square values of the
diagonal and oR-diagonal matrix elements are the same.
The solid spacing-distribution curves shown are
identical and are the result of an analytic calculation
for a two-by-two matrix, while the solid eigenvector-
component distribution curves are those for the
distribution of a component of a randomly oriented
unit vector in a vector space of the appropriate number
of dimensions (five or ten). In addition, experimental
data on four zero-spin target nuclei taken from Fig. 9
of reference 1 on the spacing distribution is shown.

Two features of these plots stand out. The first is
that the spacing distribution (including the so-called
"repulsion effect" ) is not very strongly dependent on
the dimension of the matrix, while the eigenvector-
component distribution is (its width varies as the
inverse of the dimension). The second feature is that
the results are independent of the choice of basis in

the vector space, since the eigenvectors are randomly

oriented.
The neutron width distribution can be inferred from

the eigenvector-component distribution since the
neutron width F~. for level 'A and neutron channel c

is proportional to the square of the surface "overlap"
integral between the level eigenfunction X), and the
neutron channel function C, :

to which the central-limit theorem can be applied to
infer a Gaussian distribution for the integral which
corresponds to the previously suggested distribution. '

Examination of the effect of assuming diRerent
dispersions for the diagonal and oR-diagonal matrix
elements is in progress. This is known to have consider-
able effect in the two-by-two case, for which an analytic
formula can be obtained, but preliminary IBM 704
runs indicate that this may not be the case in higher-
dimensional vector spaces.

We would like to thank Dr. Kenneth Ford and
Professor J. A. Wheeler for valuable comments.

~ Work performed under the auspices of the U. S. Atomic
Energy Commission.

$ On leave of absence from Brookhaven National Laboratory,
Upton, New York.' J. A. Harvey and D. J. Hughes, Phys. Rev. 109, 471 (1958),
and references cited therein.' R. G. Thomas and C. E. Porter, Phys. Rev. 104, 483 (1956).' E. P. Wigner, Gatlinburg Conference on ¹utron Physics by
Time-of-Flight, Oak Ridge National Laboratory Report ORNL-
2309, 1957 (unpublished), p. 59. See also E. P. Wigner, Proceed-
ings of the International Conference on the Neutron Interactions
with the Nucleus, 1957 (unpubhshed).

4 This argument is parallel to that used previously by Thomas
and Porter (reference 2) to motivate the neutron width distribu-
tion. It was applied then in a somewhat different way and resulted
in only the width distribution.
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Beta-Gamma Correlations from Polarized
Manganese-52
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A RECENT calculation by Curtis and Lewis' and
by 3~Iorita and Morita' gives a distribution and

correlation function for the beta and the following
gamma radiations from oriented nuclei in a J—+J beta
transition. An experimental determination of the
parameters in this function can give information on
the magnitude and relative phase of the Fermi and
Gamow-Teller interactions involved. We have made
such experimental determinations on polarized Mn".

In order to evaluate each parameter uniquely, certain
assumptions must be made about the nature of the
beta interactions. The recent recoil experiments' on
A" and Ne" and the balanced recoil experiment'
on Eu'" using resonance

fluorescence

techniques,
together with the re-evaluation of the He' recoil experi-
ment, ' indicate that vector and axial vector are the
predominant forms of the Fermi and Gamow-Teller
interactions, respectively. Furthermore, nearly all
of the recent experiments measuring the longitudinal
polarization of electrons and positrons and also their
angular distribution in beta decay are in accord with
the two-component neutrino hypothesis where neutrinos
of negative helicity (left-handed) are emitted in both
Fermi and Gamow-Teller decays. We can consider,


