" SCATTERING OF 25-87 MEV PHOTONS BY PROTONS

contributions from unwanted processes, and may in this
sense be considered upper limits on the desired cross
sections. In the section on backgrounds, however,
estimates of other processes have been made. Con-
sidering the energy sensitivity of the counters, the
responses to these processes are found to be small com-
pared with the observed cross sections, with the ex-
ception of the contribution of radiative pair production
to the 70° data which may amount to 159,.

An additional error of 89, is assigned to the
absolute scale.

DISCUSSION

The results may be compared with theoretical pre-
dictions (Fig. 6). The scattering calculated by Powell
for a point proton with the static anomalous magnetic
moment has the correct amplitude terms independent
of and linear in frequency.

With the experimental data is also shown the 0°
scattering which is predicted by dispersion theory from
the analysis of the photopion production experiments.?
Several theoretical studies have been made in which the
dispersion theory is extended to angles other than 0°.7
This process contains ambiguities which require the
use of a model. Detailed discussions of the problems
involved are yet to appear in the literature.

The data may be compared with that of Pugh et al.1¢

17 J. Mathews and M. Gell-Mann, Bull. Am. Phys. Soc. Ser. II,

2, 392 (1957); and Watson, Zachariasen, and Karzas, Bull. Am.
Phys. Soc. Ser. II, 1, 383 (1956).
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Fic. 6. Experimental and theoretical differential cross sections.

who worked with energy-resolved detection and 135-
Mev bremsstrahlung. Their data are in fair agreement
with the Powell formula at 90° and 135°, showing a
decrease from it at 45° for energies above 100 Mev.
Our data show no qualitative disagreement with theirs.
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The volume integrals of the A-nucleon potentials in the triplet and singlet spin states are deduced from
hyperfragment binding-energy data. The effects of tensor forces are neglected in the calculation but are
discussed qualitatively. Results are sensitive to the sizes and shapes of the nuclei in which the A is bound,
but are not very sensitive to A binding energies. Results also depend on the range of the A-nucleon potential
and on the spin configurations of the nuclei. Within the approximations made, the A-nucleon potentials are
consistent with experiment and agree with theoretical potentials due to pion exchange. A crude determina-
tion of the A-nucleon potential from the observed lifetime for mesonic decay of hyperfragments is consistent

with the binding-energy determination.

1. INTRODUCTION

HE purpose of this work is to interpret hyperfrag-
ment data, especially binding energies, in terms

of two-body A nucleon (hereafter written AN) poten-
tials. We assume throughout that the spin of the A is 3.
Several analyses of hyperfragment binding energies

* Supported in part by the National Science Foundation.
+ This work was begun while the author was at Indiana
University.

have appeared recently.'? This new discussion, which
is very similar to that of Dalitz,! is distinguished by two
features:

1R. H. Dalitz, Proceedings of the Sixth Annual Rochester Con-
ference on High-Energy Physics, Session V (Interscience Publishers,
Inc., New York, 1956), and Midwest Conference on Theoretical
Physics, State University of Iowa, 1957 (unpublished); B. W.
Downs, Bull. Am. Phys. Soc. Ser. IT, 2, 175 (1957); J. T. Jones
and J. M. Keller, Nuovo cimento 4, 1329 (1956). G. H. Derrick,
Nuovo cimento 4, 565 (1956).

2 L. Brown and M. Peshkin, Phys. Rev. 107, 272 (1957).
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(1) Accurate information on the nuclei underlying
the hyperfragments in question is essential to inter-
preting the binding energies. New data® on electron
scattering from lithium have just become available.
The new data enable a simple consistent explanation
of the several hyperfragment binding energies which
can be reliably treated.

(2) The interpretation of binding energies in terms
of a AN potential depends sensitively on the volume
integral of the potential, but also depends significantly
on the range of that potential. There is not yet any
direct empirical basis for determining that range. We
feel that we can reliably determine the range by field-
theoretical arguments. We have considered, in par-
ticular, = and K-meson theories of hyperon-nucleon
forces.* The theory in which the = plays the major role
appears to be more readily successful; but, in either
case, the theoretical potential (including an added
hard core at small distances) has certain general fea-
~tures of shape. That is, the AN potential has a hard
core plus an attractive tail of characteristic range
h/2mc or h/mgc. This singular potential is not readily
amenable for use in calculation of hyperfragment bind-
ing energies. Instead, because of the core, it is simpler
to construct an equivalent smooth and monotonic
potential which leads to the same low-energy scattering
behavior as the singular potential. We feel it is this
behavior which is principally involved in the hyper-
fragment binding-energy problem. If the singular po-
tential is adjusted in strength to yield very roughly the
correct AN low-energy interaction, then the associated
equivalent smooth potential has a characteristic range:
For example, if the potential is a Gaussian [exp(—ar?)],
its mean square radius is 7¢?=3/2a=(1.1X10"8 c¢m)?
if pions are responsible for the forces. If K particles
are responsible, the range is probably similar. The
range of this equivalent potential is certainly more
significant to the problem at hand than the range of the
tail of the actual potential. This point is discussed fur-
ther, and some numerical details exhibited in reference 4.

We shall limit our calculations at present to frag-
ments with good binding-energy measurements and
good information on associated nuclei. Good binding-
energy data have been obtained by the Wisconsin
group,® Chicago group,® and others for 4H? (i.e., A+H?),
AHY aHe?, j\He®, 5Li7, ,Li% and ;Be’. We shall do
calculations for AH?, yHe5, sLi’; and Li8.

We omit the four-body fragments and ,Be® because
the sizes of the corresponding underlying nuclei H3,
He?, and Be® have not been well determined, as have

3 R. Hofstadter and G. R. Burleson, Bull. Am. Phys. Soc. Ser.
11, 2, 390 (1957).

4D. Lichtenberg and M. Ross, Phys. Rev. 107, 1714 (1957);
109, 2163 (1958).

5 Schneps, Fry, and Swami, Phys. Rev. 106, 1062 (1957).

6 Levi Setti, Slater, and Telegdi, reported by V. Telegdi, Pro-
ceedings of the Seventh Amnual Rochester Conference on High-
Energy Nuclear Physics (Interscience Publishers, Inc., New York,
1957;, Session VIII. A Filipowski ef al., Acta Phys. Polon. 16, 139
(1957).
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the sizes of H?, Het, Lif, Li". For the latter nuclei very
fine electron-scattering data exist®? (in addition to
further detailed information on H?). We shall base our
numerical work on these data (using the shapes sug-
gested by Hofstadter),” after unfolding (subtracting
out) a Gaussian distribution corresponding to the finite
proton size. The conclusions are sufficiently sensitive
to size and shape to make it unprofitable to consider
the cases where good experimental information is not
yet available.

In Sec. IT we incorporate the new material above into
the simplest calculational method for deducing a two-
body potential from the binding energies. (The three-
body system has already been treated by somewhat
more elaborate variational methods. The results of
these treatments will be adopted without being re-
peated here.) That is, we assume that the nucleus, to
which the A is attached, is undistorted in the presence
of the A. Given a binding energy and knowing the
nuclear density distribution and range of the AN
potential, one directly finds the A-nucleus potential.
Knowing the probability of different nucleon spin
orientations in the nucleus, and neglecting complica-
tions such as many-body effects and tensor forces, we
can immediately interpret the A-nucleus potential in
terms of 1S and 3§ AN potentials. We will briefly dis-
cuss in Sec. ITI possible effects of nuclear distortion on
the results; their dependence on nuclear range and
shape, and on the various other approximations
mentioned.

II. CALCULATION OF THE AN POTENTIAL
FROM BINDING ENERGIES
Consider that a two-body AN potential U(r), in-
cluding spin dependence, is responsible for hyper-
fragment binding. The potential the A sees at a nucleus
(by nucleus we will mean the 4 nucleons in a hyper-
fragment of mass A1) is then

v=2:U(ra—7u3),
where 7, is the position of the A and 7.,,; are the positions
of the nucleons. We assume, as stated in the intro-
duction, that the hyperfragment wave function has
the form
\II=1[/(7'M'$' : ',an>¢<fA),

where ¢ is the nuclear wave function and ¢ is the A
wave function. The Schrédinger equation in the A
variable alone is

hZ
(..__V2+ V(’))¢=E¢7
2
where —E is the binding energy of the A, p is its re-

duced mass, 7 is the distance of the A from the center
of mass of the nucleus, and

V()= )= f Bl (r—1.))p ().

" R. Hofstadter, Revs. Modern Phys. 28, 214 (1956).
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Here ( ) denotes the average over nucleon spin orienta-
tions and p(7) is the nuclear density distribution. We
shall refer to V(r) as the A-nucleus potential. In prac-
tice we shall start by determining V. From V we deduce
the nuclear spin average over the volume integral of U,
ie,

@=— f (U (1) =— (1/4) f &V ()

On determining (Q) for two nuclei, we obtain the volume
integrals of the potentials in the 1S and 3S AN states.
On comparing the volume integrals with those obtained
from other nuclei, we determine whether the method
gives consistent results.

In the following, we shall determine V (and {2)) for
simplicity by variational methods (this approximation
leads to an overestimation of () of the order of 19%).
We will write down general analytical expressions for
(2) for two general shapes for p(7) so that results for
additional hyperfragments can be found immediately
when sufficient data become available.

The AN potential is assumed to be of the form
U=Ujexp(—ar?) where U, is spin dependent and «
=1.24X (10® cm™)2. We shall assume a trial wave
function for the A of the form

¢=N'texp(—08r2/2), with N'=(5/m)} (2)

(except for ,H? where a Hulthén trial function is used).
Now consider two nuclear density distributions:

(1) p=AN exp(—pr*) )

where N= (8/w)* and 7,=3/28. Then V~exp(—v#?)
with y=0a8/(a+8). One determines § from

3% 264y
E=——6(1———— , (4)
4 u 3 v
and then () from
@ i (6+ ) (5)
Q)= -—+1}).
2udd\y
We use this Gaussian shape for He®.
(1) p=AN(1+4pBr*) exp(—pr?), (6)

where
2 /B\} 245p /3
et 22
24+3p\r 2+3p\ 28
and 3p is the relative number of P-shell nu-
cleons [with the #* exp(—@r?) distribution] to S-shell
nucleons [with the exp(—pgs2) distribution]. Then

Ve~(1+cpyr*) exp(—vr®) where y=af/(a+8), and
¢=1/(143pv/2a). One determines § from

3%
=-—(1-D7), (7
4u
where
3 56 F)

2 264w l d+y+iepy
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TaBLE I. Values of parameters for several hyperfragments.
Here V is the A-nucleus potential, —E is the A binding energy,
8 is a measure of the A wave function [see Eq. (2)], and (Q) is the
average volume integral of the A-nucleus potential (per nucleon).

Rms Rms
radius of radius
nucleust of V 8 (Q) Mev
Hyper- Shape of nucleus (10713 (1018 —Epb (10-18  Xcms?
fragment and of V cm) cm) Mev cmT)2 X103
AH3 Hulthén 196  2.10¢  0.64 oee 3400
AHe®  Gaussian 1.61 1.81 2.5 0.372 220
ALi”  Mod. Gauss. 220 237 42 0.286 220
ALi8 Mod. Gauss. 2.15 232 5.2 0.318 190

» References 3 and 7. These numbers are, as yet, uncorrected for finite
proton size.

b See references 5 and 6. .

¢ The AN potential was approximately folded in, assuming that V is of
Hulthén shape as well as the nucleus H2,

d These binding energies are not too well determined. For example, since
this AH® calculation was completed, the accepted value of —E dropped to
0.25 Mev, due to more hyperfragment measurements, and now it has risen
by perhaps 0.5 Mev due to new and larger Q values for the A decay. (See,
for example, D'Andlau e? al., Padua-Venice Conference on Mesons and
Recently Discovered Particles, 1957 (Nuovo cimento, to be published). The
numerical calculation of (Q) was not repeated, as (Q) is insensitive to E,

e This number becomes 300 after correction for deuteron distortion.

and then (Q) from

302 16\t (143p)c
(@)= 1(—+1) — 2 p(®
4ud ot \y 8/v+143pc

We use this modified Gaussian shape for P-shell (Li)
nuclei.

The A binding energies — E, and the volume integrals
(Q), along with various other parameters involved in
the above relations, are presented in Table T for yHe?,
ALi", and sLi® The result for 4H?, assuming no deuteron
distortion, as above, but using a Hulthén density dis-
tribution p, is also presented.

The (@) for y\H?, assuming no deuteron distortion,
will not be used directly. Instead we use the previously
calculated reduction in (2) when the no-distortion
approximation is improved by solution of the three-
body problem by variational methods.!:? This reduction
is about 109,. Thus the value of (Q) we will use for
AHB is 300 Mev cm®X107%.1

The remaining step is to note how many nucleons are
in the triplet state and how many in the singlet state
with respect to the A. This depends on whether singlet
or triplet forces are more attractive. The information
for these two cases is presented in Table II. It is noted
that there is some uncertainty in the distribution of
spins in Li, depending on whether jj coupling or LS
coupling is assumed. It is most probable that the actual
situation lies between these two cases. Our procedure
is to use the (@) for yH? and ,Li’ shown in Table I to
compute the AN triplet potential Q; and the singlet
potential Q,. In doing this, we make use of the distribu-
tion of spins shown in Table IT. These values of Q; and
Q; are then used to calculate (@) for ,He® and ,Li8.

1 Note added in proof.—Recent work by Dalitz and Downs on
AH? (Phys. Rev., to be published) shows that this value for (Q) is,
rather fortuitously, not too bad. The problem is complicated by
the fact that one uses different shape AN potentials in this nucleus
than in other hypernuclei.
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TaBrLE II. Fractions of nucleon spin directions which are
triplet or singlet with respect to the A, depending on whether the
A spin lines up with the nucleon spin, or not (i.e., whether AN
forces are most attractive in the triplet state, or singlet state,
respectively).

Triplet favored Singlet favored

Singlet Triplet Singlet Triplet
3 3 1
ﬁges g é i :
ALi7® 0.22 0.78 0.31 0.69
aLid ® 0.21 0.79 0.27 0.73
ALi7e 0.17 0.83 0.42 0.58

» These numbers were calculated by using a (p3)? configuration.

b These numbers were calculated by using a configuration (two particles
~with J =0) p3.

¢ These numbers were calculated using @ L =0, S =1 configuration.

Results are shown in Table ITT assuming 77 coupling for
the P-shell nucleons, and in Table IV assuming LS
coupling. The values of (2) for A\He® and 5Li® in Tables
IIT and IV should be compared to the values for
these hyperfragments deduced directly from the binding
energies (shown in Table T).§

The results can be fit about equally well in the singlet-
favored and triplet-favored cases, as is shown in Table
III for jj coupling. Table IV shows that the fit is not
so good for LS coupling. One can remark that in the
triplet-favored case @, is not accurately determined
while in the singlet-favored case both Q; and Q; are
fairly reliably determined.

It should be noted that the value of (2) for ,He®
(calculated from Q, and Q,) must be smaller than for
any other hyperfragment we have considered. This is
because the « particle, alone of all the nuclei considered
here, cannot make any adjustment to take advantage
of the spin dependence of the forces. This is not in
agreement with the values of (?) deduced directly from
the hyperfragment binding energies (last column of
Table I), but the discrepancy is not large. A somewhat
smaller range for the AN force would improve the agree-
ment by decreasing (2) for yHe® more than for other
hyperfragments. One may argue that either or both

Tasire III. Fit to the A-nucleus potential strength (@) with
either singlet-favored or triplet-favored AN potentials of strength
Q; and Q, in triplet and singlet states, respectively. Units are Mev
cm?3X 107%, The hyperfragments AH? and 5Li7 were used to deter-
mine Q; and Q,. The values of (2) for s.He’ and zLi8 were calcu-
lated from Q, and Qs and should be compared with the values of
() deduced directly for these latter two nuclei (shown in Table I).

Triplet favored Singlet favored

Q 300 165
Q, —65 345
AH3? 300 300
ALi7 220 220
AHeS 210 210
ALi® 220 220

§ Note added in proof—New absolute cross section measure-
ments of electron scattering from Li indicate a longer tailed
distribution than the harmonic well function used above (R.
Hofstadter, private communication). The value of (2) shown for
Li in Table I will be increased, very roughly, by 10%,.

M. ROSS AND D. B.

LICHTENBERG

aHe® and 4Li8% are less reliable cases than ,H? and ,Li".
The very high nucleon density in y\He? raises some diffi-
cult questions which are briefly discussed in the next
section. In the case of ,Li® we have the simple worry
that the proton-density radius employed may be sig-
nificantly smaller than the nucleon-density radius
which should have been used. If so, the calculated
value of (2) in Table I is smaller than it should be for
aLi%. This effect would improve agreement with experi-
ment. A quantitative estimate of the sensitivity of
results to nuclear radius can be easily made. For a
potential well of radius 7, if the binding energy is small
compared to the well depth, the calculated volume
integral of the potential, A(R), varies linearly with 7.
The results are insensitive to another source of error,
the experimental error in the binding energies, since the
binding energies are small compared to the A-nucleus
well depth. For example, in the case of ,He?, a 209,
decrease in the experimental binding energy will de-
crease the volume integral (@) by only about 19,. On
the other hand, a 109, decrease in 7 (i.e., a 209, in-
crease in B) will decrease (2) by about 69.

TasrE IV. Fit to the A-nucleus potential strength (Q) with
either singlet-favored or triplet-favored AV potentials of strength
©Q; and Qs, assuming LS coupling of the nucleons in Li. See caption
for Table III.

Triplet favored Singlet favored

Q 300 115
Q, —170 360
AHe? 180 175
ALi® 200 180

It may be of interest to compare these results with
the NV potentials, and to check whether the AN system
itself can be bound. It is readily seen that the values of
{@) above are not very sensitive to the assumed range of
the AN potential because that range is always folded
in with a (larger) range of the nucleus. The question
of binding the two-body system is sensitive to this
range. Following Blatt and Weisskopf,® let us consider
the well-depth parameter s. For the Gaussian well,
5=0.00216(Q)/ ({(*))}~V7? using units of Mev and
10~ cm. For the singlet well in the singlet-favored
case, s=0.68. For binding, one needs s=1; therefore
the AN system is not bound. Meanwhile the neutron-
proton singlet and triplet forces have s=0.90 and
s=1.45, respectively. This comparison of values of s is
more meaningful in the two-body system than a com-
parison of &’s (one finds that the values of @ for singlet
and triplet two-nucleon states are Q,=1000 and £,
=2000, respectively, using standard Yukawa poten-
tials; but these values are misleadingly large because
of the long tail of the Yukawa potential). On the other
hand, the proper comparison in heavy nuclei involves
a comparison of @’s. In nuclear matter, where the depth

8 J. Blatt and V. Weisskopf, Theoretical Nuclear Physics (John
Wiley and Sons, Inc., New York, 1952), pp. 55, 201.
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V=40 Mev and the radius R=1.454%¥X10" cm for
the nucleon-nucleus square well,®* we find (Q)=510,
compared with (2)=210 for the A-nucleus potential
(per nucleon). The depth of the A-nucleus potential, as
compared to 40 Mev, is then 17 Mev.

III. RELIABILITY OF BINDING-ENERGY
CALCULATIONS

Let us briefly consider several effects beyond the
scope of the above calculation: (1) possibility of three-
body forces,? (2) exchange properties of the AN poten-
tials, (3) distortion of the nucleus due to the presence
of the A, and (4) tensor forces in the AN interaction.

The effect of three-body forces has been examined by
Brueckner, Levinson, and Mahmoud® in the case of
nuclear forces, and they find the contribution to the
nuclear potential is very small. If pions are mainly re-
sponsible for the AN interaction, three-body forces are
relatively more important for hyperfragments than for
ordinary nuclear matter. But since the effect is small
to begin with, we do not believe that it is important
even for hyperfragments. If K mesons are mainly
responsible for the forces, the effects will be smaller
than in the nuclear-force problem. This is because the
shorter range of the K-particle forces makes it relatively
less likely that the A will find itself within the range of
two nucleons at the same time. The effect will be most
important for sHe?, since this is the densest nucleus we
have considered.||

We next mention exchange properties of the AN
potential. If the potential is due to pions, exchange
forces are absent. To the extent that K mesons con-
tribute, exchange forces are present, but are probably
less important than in the nuclear-force problem, since
the range is shorter. (It does not matter whether forces
are ordinary or exchange, if they have zero range.)
Thus, compared to nonexchange forces, K-meson forces
would lead to slightly smaller values of (@) for the Li
hyperfragments.

The effect of nuclear distortion in the presence of the
A was included for the loosely bound ,H?® fragment
where it should be most important. A 109, reduction
in the volume integral of the AN potential (Q) resulted.
An estimate of the effects of compression of the He!
nucleus can also be made. (A simple compression is
probably the most important distortion to consider.)
A crude a-particle wave function ¢ can be determined
by choosing a suitably adjustable central potential for
the interaction Hamiltonian and performing a varia-
tional calculation (adjusting the well to obtain the

82 R, K. Adair, Phys. Rev. 94, 737 (1954).

9 E. Henley, Phys. Rev. 106, 1083 (1957).
( 1°SB)rueckner, Levinson, and Mahmoud, Phys. Rev. 95, 217

1954).

|| Note added in proof.—R. Spitzer (to be published) has recently
found that 3-body forces calculated () meson theoretically may
be significant. Although we feel the correction is not important in
AH3, it could be large in pHe®. For the time being, however, it
seems sensible to try to base an empirical analysis on 2-body forces.
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correct binding energy and radius). This calculation
yields a compressibility :

AB,= —100(Aro/70)? Mev. 9)

Here B, is the binding energy, —E,, of He* and 7, is
the rms radius of |¢|% A nuclear compressibility can
also be determined in the heavy-nucleus region merely
by examination of the semiempirical mass formula.
Extrapolating this result to He* gives essentially the
same result. It is clear that AB,~(Ar,)?, since 7, is just
that value of the radius which makes dB,/dro=0. On
the other hand, dB,/dr#0, where B, is the binding
energy of the A to He'. The change in binding energy
with radius can be obtained for a square well of depth
Vo and radius R as follows: if ByKV,, Ba=V,
X[R(2uVo)i—=/2] so that, letting (Q), i.e., V R®, be
constant, we obtain

AR Arg
ABAz-——R—l:sBA—i—(Z,uBA)%VQR]%--20— Mev. (10)
7o

Thus, keeping (Q) constant, we find that (B.+Ba)
increases by a maximum of 0.9 Mev, associated with a
compression of the « particle Aro/ro=—0.1. To offset
this increased binding energy, we must decrease (Q):

AQ)/ (@)= —3%.

Actually the situation in the interior of 4He® may not
be so simple. One might argue, for example, that the
simple approximation of the true AN potential by a
smooth one with the same low-energy scattering be-
havior is not valid when the A is in the midst of nuclear
matter of saturated density. The hard core in the AN
potential may require that the density at the center of
a1He® not be greater than the corresponding density of
He*. If one simply asks what loss in binding would
follow from expanding He! so that the central density
of sHe® is not higher than that of normal He* then
one finds roughly A(Q)/{(Q)=%. This probably over-
estimates the effect of saturation. In ordinary nuclear
matter, the Pauli principle, exchange forces, and re-
pulsive cores combine to produce saturation. Therefore,
it is not really clear that the a particle is of saturated
density—i.e., that if another particle could be added
in an S state, that the total volume would increase.
The effect of saturation, if present for yHe?, can also be
expected for the lithium hyperfragments. But here the
increase in (2) would be smaller percentage-wise, since
the P-shell nucleons in Li are not very closely packed.

It is rather difficult to determine a rough correction
due to tensor forces to the results found in Sec. II. We
shall just make a few qualitative remarks here by
examining the comparable problem in nuclear binding.
The main question to ask is whether the triplet AN
force, when of mixed central and tensor character, will
be more important for 4H? than for heavier fragments,
relative to a pure central force. The role of tensor
forces in the light nuclei has been discussed extensively
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by Feingold.* One fact seems to be established: the
strong nucleon-nucleon tensor force is essential for the
binding of H? and somewhat less important for He%
Li¢, Li", etc. This change is probably associated with
some kind of angular averaging. Yet it should be kept
in mind that the tensor force is still prominent in these
heavier nuclei, with ~% the binding being contributed
by it. The effect of tensor forces for H? has been con-
sidered in detailed variational calculations by many
authors.’? Here the shape and range of the tensor force
are very important for the binding. Only if the tensor
force is given a Yukawa tail and is chosen of longer
range than the central force, can the binding energy
of H? be explained. In this case, the tensor force con-
tributes nearly half of the binding energy. There are
good theoretical reasons why the tensor force should
be longer-ranged than the central in the two-nucleon
problem. The tensor force is associated primarily with
the exchange of one pion, while the central force is
primarily associated with the exchange of two pions.
But the AN force cannot be associated with the ex-
change of one pion, so that the tensor force cannot be
long-ranged. Thus, we would expect that even if the
AN tensor force is strong, it will not be very effective in
contributing to the binding of ,H? and will be even
less important for the binding of the heavier hyper-
fragments. (Of course, since AH? is so lightly bound, the
tensor force may be necessary for its binding even
though its relative effectiveness compared to a central
force of the same volume integral is less than in the
ordinary nuclear-force problem.)

Another property of the tensor force is that its
effectiveness relative to a central force of the same
volume integral is not linear in its strength. This is
meant in the sense that even if a A (or a nucleon) is in
an S state in a nucleus, there is tensor coupling via
the D state, but that this coupling is a “second-order
effect.” A qualitative idea of the effectiveness of the
tensor force may be obtained by considering standard
Yukawa potentials for the deuteron. The volume inte-
gral of the tensor potential (the coefficient of Si2) plus
the central potential is slightly more than the corre-
sponding quantity for a pure central potential giving
rise to the same scattering length and effective range.
If the tensor force were weaker, it would be substan-
tially less effective than a central force with the same
volume integral.

In light of the above remarks we may say the follow-
ing: in the case of triplet-favored AN forces, if there is
a strong tensor force, it will be more important for ,H?
than for the heavier fragments. (However, it will not

11 A, Feingold, Phys. Rev. 101, 258 (1956).

2 For example, R. L. Pease and H. Feshbach, Phys. Rev. 88,
945 (1952).
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be so important as in the nuclear-force problem because
of the shorter range.) Thus, the volume integrals (Q)
should be increased more for the heavier fragments
than for ,H?® The spin dependence of the forces is
thereby reduced. Thus, we would predict a more
attractive singlet potential than shown in Table II.
In the singlet-favored case, the tensor force will be
rather ineffective, since the wave function will not
adjust itself very much to accommodate a weak tensor
force (compared to the singlet force). Nevertheless, the
tensor force would probably still be more effective
(relative to the central force) in ,H? than in the heavier
fragments. Thus again the apparent spin-dependence
of the forces is reduced, but by a small amount. This
can be seen by referring to Table IT and noting that:

for JHP, 3Q,4-10/=300,
for He% 10.42Q,=220.

If Q/>Qy, the predicted value for Q, is still essentially
equal to the previously predicted value. Thus we guess
that in the singlet-favored case a rather strong tensor
potential would be required to provide some of the
triplet-state interaction predicted. This point is of
some interest when these empirical AN potentials are
used to test a K-meson theory of hyperon-nucleon
forces.*

Finally, as a check on the binding energy calculations,
it is of interest to note that if one calculates the in-
hibition, I, of mesonic decay of hyperfragments®® (due
to the Pauli principle), that one also obtains a measure
of the A wave function. One finds, using §=0.29 as
determined in Sec. I for ,Li?, that 7=0.04. This is in
agreement with other quoted results, and roughly
agrees with the measured value. The total lifetime of
hyperfragments is roughly the same as the free life-
time, so that the inhibition must be approximately
equal to the mesonic to nonmesonic ratio. For Li frag-
ments, the mesonic to nonmesonic ratio is approxi-
mately 1/15. If the accuracy of these measurements
could be improved, an improved version of this method
of determining ¢ (i.e., of obtaining the A wave function)
would become valuable for determining (2). In an im-
proved version it would also be necessary to consider
the “‘stimulated” mesonic decay via virtual £ hyperons
in the nucleus.* At present, it is obviously much less
sensitive than the binding-energy determination of ().
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