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The potential scattering cross section for slow neutrons, 5,
has,been measured for seventeen elements in order to determine
the nuclear potential radius and to investigate the predictions of
nuclear optical models. The measurements were based on total
cross sections resulting from transmission experiments performed
with the Brookhaven fast chopper. In the energy region where
individual resonances can be resolved and their parameters
determined with reasonable accuracy, o, is obtained by subtract-
ing the resonance contribution, including interference effects,
from the measured total cross section. In the kev region, where the
chopper resolution permits determination - of cross sections
averaged over many resonances only, different sample thicknesses
are used and ¢, derived from the slope of the transmission curve.

The results in the two energy regions agree, thereby justifying
the concept of potential scattering as a cross section constant
with energy, once effects of nearby resonances are removed.
The variation of potential scattering with atomic weight is
compared with predictions of optical models of the nucleus. The
data reflect rather strongly the effects of the deformation of the
nuclear shape from spherical, and good agreement is obtained
for a potential well with a diffuse surface and nuclear deformations
corresponding to known quadrupole moments. The radius of the
potential (the distance to its half-value) is given by R=r4},
with 7o=(1.35+0.04)X10"3 cm. The radius parameter 7, is
thus distinctly larger than the 1.09%X10® cm obtained from
electron scattering experiments.

L. INTRODUCTION

“HE use of neutron, proton, or alpha-particle
scattering experiments to give information on
nuclear radii is not as straightforward as electron
scattering, because of the still rather poorly understood
nature of nuclear forces. As a result, all conclusions
concerning nuclear size and shape resulting from such
experiments are more or less model-dependent. Thus
the scattering of protons of several Mev energy gives
the quantity V R? where V is the well depth, rather than
the nuclear radius R itself.! Other experimental results,
or a well depth computed from some model, must be
utilized to obtain R from the proton scattering. In the
present paper we report measurements of the potential
scattering, o,, of low-energy neutrons, a quantity that
is reasonably directly related to the nuclear potential
radius rather than the quantity V-R% The experimental
problem of extracting o, from the total cross section
requires careful analysis but the results can be inter-
preted in terms of R with little dependence on the well
depth.

As R is the radius of the nuclear potential well that
is appropriate for the particular bombarding particle,
care must be taken in its definition if it is to be independ-
ent of the nature, charge, and energy of the particle
used in its investigation. Various experiments measure
different moments of the radial potential distribution,
and in the analysis different shapes for the distribution
are often used. It thus is often necessary to define
equivalent radii that can be directly compared, such
as an equivalent radius defined as that of a uniform
(square) distribution that will reproduce the features
of the actual distribution employed. For the measure-
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ments reported in this paper we shall take the radius R
to be the distance at which the potential attains half
its central value.

The optical model of the nucleus, which is the usual
means for interpreting scattering experiments, is a
compromise between the independent-particle and the
compound-nucleus models. In their adaptation of this
model to low-energy neutron scattering Feshbach,
Porter, and Weisskopf? used a potential well that has a
real (elastic scattering) and an imaginary (compound
nucleus formation) part,

V=—=V,1+i) forr<R,
V=0 for »> R,

where R=r0A4% and ¢ is the ratio of the imaginary to
the real component of the potential.

On the basis of this model they define the elastic
scattering as made up of ‘“shape elastic” plus “com-
pound elastic” scattering. We shall use the more
customary ‘“potential scattering” for the former, even
though it has often been applied rather vaguely. The
potential scattering is the analog of hard-sphere scat-
tering, resulting from the nonpenetrability of the
nucleus to neutrons of nonresonant energies. For
s-wave neutrons its cross section is given by

op=4r(R'), (2)

where R’ is a length of the order of the nuclear radius
R. The compound elastic scattering is the part of
elastic scattering that results from formation of a
compound nucleus and re-emission of a neutron into
the entrance channel. Between resonances the elastic
cross section is mainly potential scattering and at
resonances mainly compound elastic scattering. Because
of the interference of these components, their separation
in practice is difficult, as we shall see.

It can be shown that Eq. (2) has some very interest-

¢y

2 Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954).
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ing properties at the points (R'/R)=1, where, for the
potential of Eq. (1),

2m 3
KR= ﬁvozez) =inm, 3)

with 7 an integer, and K, and m the wave number in
the well and mass of the neutron. The points where
R=R’ are determined by the product V,R? which is
well determined by strength function measurements for
low-energy neutrons. At these points a measured value
of R’ gives R with no corrections and at other atomic
weights R’ differs somewhat from R but the dependence
on the model parameters is usually not great. It is
because of the weak dependence on model parameters
that the potential scattering at low energy is a useful
method for obtaining R independently of V.

Feshbach, Porter, and Weisskopf® have recently
carried out calculations of low-energy neutron scatter-
ing for a rounded potential well of the form

(1+45)

V(T) =—T, ) (4)
14-exp[2(r—R)/d]
with the following parameters:
Vo=42 Mev, {=0.08, K d=1.65, ®)
R=r,4}, with 7,=1.35X10"% cm.

The shape of the imaginary potential was kept the
same as that of the real part, mostly for convenience
in calculation, and the nuclei were assumed spherical.
The results are in general similar to those for the square
well but some quantitative differences exist, the
rounded-well results giving closer agreement with
experiment than the square well.

The fact that some nuclei are deformed from their
spherical shape is expected to affect the predicted
scattering and is important to consider, particularly
for comparison with accurate experimental results.
A qualitative investigation of the effect of constant
deformations on the strength function and (R’/R) has
been made by Margolis and Troubetzkoy.* Chase,
Wilets, and Edmonds® have calculated the strength
function and R’ for the optical model, using the actual
measured nuclear deformations. The experimental
results reported in the present paper will be compared
with the latter calculations, as well as with those of
Feshbach, Porter, and Weisskopf. The experimental
values of o, give R’ immediately, through Eq. (2),
and use of the calculations of the optical model then
gives R.

3 Feshbach, Porter, and Weisskopf (unpublished); reported by
V. F. Weisskopf, in Physica 18, 952 (1956).

4 B].) Margolis and E. S. Troubetzkoy, Phys. Rev. 106, 105
(1957).

§ Chase, Wilets, and Edmonds, Phys. Rev. (to be published).
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II. EXPERIMENTAL METHOD

The results reported in this paper are based on
total cross sections, resulting from transmission
measurements performed with the Brookhaven fast
chopper.~8 Changes in the design of the chopper?
to enable it to attenuate v rays more effectively, as
well as development?® of detectors, have been described
before. A new 1024-channel time-of-flight analyzer,
designed by M. Graham of Brookhaven National
Laboratory, is now in use. It uses 16 cathode-ray
tubes for memory, and a cathode-ray tube for analog
display. At the end of an experimental run, the data
stored in the memory, which are displayed on the
analog, can be printed out on a teletype machine or
plotted directly as a curve of counting rate vs flight
time. In the present work, the use of thick samples,
hence low transmissions, to insure good accuracy in
absolute cross sections, required the use of short
cycling procedures in order to normalize transmission
measurements made over long periods of time.

The observed total cross section consists of a rather
involved combination of potential scattering, resonance
scattering, and resonance absorption. In order to obtain
the potential scattering and hence R’, it is necessary
to separate it from the resonance contribution. Because
of the interference of potential with resonance scatter-
ing, the separation requires careful consideration of
the interference effects. In addition it is necessary to
investigate the wvalidity of the potential-scattering
concept, i.e., that subtraction of the contributions of a
number of nearby resonances will produce a residual
cross section, the potential scattering, that is constant
with energy.

The partial cross sections for absorption and scatter-
ing at energy E, resulting only from a single resonance
at energy E, and potential scattering, are given by

drR gl Ly (Eo/ E)?
Tabs = ’ (6)
4(E— Eo)*+1?
ﬂ%‘ MWZ L plbraea—g @y ()
Tse g (E—Ey)+ir'/2 ’ |

Here Xo=1/(2w) times the neutron wavelength at
energy E,, the I’s are widths expressed as values at
Eoy, and

1
g=%(u:— , ®)
2741

for I=0 (s-wave neutrons). If we denote the two
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7 Seidl, Hughes, Palevsky, Levin, Kato, and Sjéstrand, Phys.
Rev. 95, 476 (1954).

8 Seidl, Palevsky, Hughes, and Zimmerman, J. Nuclear Instr.
1, 92 (1957).

9 Muether, Palevsky, and Zimmerman, Bull. Am. Phys. Soc.
Ser. IT, 2, 217 (1957).
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possible values of g for J=I4% by g, and go, we can
express the total cross section, including contributions
from all levels, as

4akgi T Ty (Eo/E)}
Ea  4(E—Eg)*+1I?
drRo’gal ATy (Eo/ E)}
Bz 4(E— Eg)*+T7?
Rol'n/2

S S— - 1
z (E—E))+il'/2

0t=0abs 05 =

2

+47rg1

2

Aol'a/2
» (9

P ¥ {

+41rg2
Eoy (E— Eo)+il'/2

where the summation Eo, is taken over all resonances
with gi=3[141/(2I4+1)], and Eq. is taken over all
resonances with go=%[1—1/(2I4+1)].

Equation (9) is the correct multilevel formula that
expresses ¢; at any energy, including the coherent
addition of amplitudes for levels of a single spin.
However, it cannot be used as such, because of lack of
knowledge of the J values of most of the resonances
involved, which makes it impossible to assign them to
either of the summations correctly. Of course for target
nuclides of zero spin only one spin state is possible and
Eq. (9) can be directly used, but for most nuclides
Eq. (9) cannot be used and an approximation must be
utilized in obtaining R’ from the experiments. In the
present work, the procedure we have used consists of
calculating the cross section individually for each
resonance and then adding the results algebraically
to get the total cross section. This procedure corre-
sponds approximately to Eq. (9), with the modification
that the resonance-resonance interference, which is
automatically taken into account in Eq. (9),is neglected.
The resonance-potential interference is of course
included. An estimate of the resonance-resonance effect
shows that it is usually negligibly small (~0.01 barn).

A convenient expression for the difference between
the total and potential cross section obtained by this
procedure is

(0.6509 X 108)T",0
or=0—4r(R')?= 3,
Eo (E— Eo)+I‘2/4:

r
X[I‘n0+—z—+0.879R’(E——E0)], (10)
VE ’

where E, Ey, T, T',® (the neutron width at 1 ev=T,/
v/Ey), and T'y are in ev, and R’ is in units of 107 cm.
The cross section o, is the amount that must be sub-
tracted from o¢: to obtain the potential scattering
47 (R')2

Two energy regions were used to obtain the potential
scattering; low energy, where individual resonances
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could be clearly resolved, and “high” energy (kev
region), where only the cross section averaged over
resonances was observed. In the former region, where
most of the measurements were made, Eq. (10) was
applied between the resonances, and in the latter a
thick-sample procedure was used to eliminate the
resonance contribution experimentally.

A. Between-Resonances Method

This method is applied in the energy region, typically
below 1 kev, where individual resonances can be clearly
resolved and their parameters measured. For most of
of the nuclei investigated, the parameters for the
significant resonances were available from the extensive
tabulation in BNL-325 and its supplement. For the
few cases where resonances had not been analyzed, a
determination of their parameters was made by the
usual methods of area analysis.!!

From the known resonance parameters, o, is cal-
culated as a function of energy from Eq. (10) for all
the known contributing resonances, and subtracted
from the experimental o;. The resulting cross section
in many cases is remarkably constant with energy as
is shown in Fig. 1 for uranium, for example. The
constancy of o,—o, with energy as well as the agreement
of its numerical value with the result of the measure-
ments in the kev energy region, justifies the identifica-
tion with potential scattering.

For some elements, however, ¢;—a, is not constant,
especially at low energy, and it is necessary to investi-
gate possible contributions of unknown levels at great
distances, or more likely, nearby negative-energy
levels, that is, bound levels of the compound nucleus.

40 T T T T T T T T T T T

}
350 yasse B
30 \ 1
Q

(o)

1 1 1 1 1 1 1 1
20 25 30 35 40 45 50 55 6'0 65 7I0 7l5 80
ENERGY-ev
Fic. 1. The determination of the potential scattering for
uranium by the between-resonances method. The open circles

are the measured total cross sections and the solid points are
obtained by correcting for the effect of resonances.

©D. J. Hughes and J. A. Harvey, Neuiron Cross Sections,
Brookhaven National Laboratory Report BNL-325 (Superintend-
ent of Documents, U. S. Government Printing Office, Washington
25, D. C., 1955); D. J. Hughes and R. B. Schwartz, Neutron
Cross Sections, Brookhaven National Laboratory Report BNL-
325, Supplement No. 1 (Superintendent of Documents, U. S.
Government Printing Office, Washington 25, D. C., 1957).

1], J. Hughes, J. Nuclear Energy 1, 237 (1955).
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If it is assumed that the interference term contribu-
tions, the term involving R’ in Eq. (10), arising from
distant negative- and positive-energy resonances are
equal and opposite and therefore cancel out, the
remaining effect of such levels on ¢, can be evaluated
as an integral over the first two terms in Eq. (10).
This integral can be easily evaluated, in terms of
average level properties, and under the assumption that
Ec>E or Eo>T, leads to a particularly simple answer
for the contribution to ¢, from distant positive and
negative energy levels,

Ady=0.6509X108(T',0/D) (I',04- T, /»/E)1/+/E1.  (11)

Here all quantities are in ev, E; is the positive energy
up to which individual resonances have been taken into
account in Eq. (10), T',? is the average reduced neutron
width, and D is the average level spacing per spin
state. It can be shown that, even in the extreme cases,
like Pb?7, where both ', and T'y are large, the contribu-
tion from distant levels, Ao, is negligibly small (=~0.002
barn).

The cross section o, calculated from Eqgs. (10) and
(11) takes into account the effect of individual levels
between energies 0 and E, and the integrated contribu-
tion of levels beyond +E; and —E;. It remains to
consider possible levels in the interval —E; to O.
The presence of such levels is indicated by the non-
constancy of (o,—o,) near zero energy, as shown in
Fig. 2 for Th, for example, as well as by a discrepancy
between the measured value of the thermal absorption
cross section relative to that calculated from the con-
tribution of the known resonances at low energy. The
behavior of (6;—0,) near zero energy and the thermal
absorption often give sufficient information to compute
the properties of the important negative energy levels.

The contributions to the thermal absorption cross
section of the known positive-energy resonances and
the positive and negative energy levels beyond E,
are given by

Bl 4.119% 10T, gT',0
Oabs = Z
Ee=0 (0.0253— Eo)*+1?/4
1-4.119% 10°T,(T',0/D)1/E,,

(12)

where all parameters are in ev, and the second term is
the estimated effect of the levels more distant than
E;. The difference between the measured and calculated
absorption is attributed to negative-energy resonances
in the region 0 to —E; ev, which could be expressed
similarly to the summation in Eq. (12) if the individual
level parameters were known. Usually an attempt is
made to explain the difference in terms of a single
predominant negative energy level, which can also
account for the energy variation of o;—o,. This method
of investigating negative energy levels will now be
illustrated by two typical examples.

Gold.—From BNL-325, we have 0a,=98.041.0
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Fic. 2. The determination of the potential scattering for
thorium by the between-resonances method. The o;—a;, obtained
by correction for known levels is not constant but inclusion of a
level at —7.0 ev produces a constant cross section, which is
taken as the potential scattering.

barns, I',=0.125 ev, and the strength function T',%/D
= (0.840.2) X104 Using Eq. (12), we calculate the
contribution to o of all individual levels listed in
BNL-325 up to 200 ev as 97.124=3 barns, and of levels
beyond this energy as 0.2 barn. Thus we have a cal-
culated cross section of 97.34=3 barns compared with
the measured 98.04-1.0 barns, showing that no negative
energy level need be invoked to account for the thermal
cross section. This does not mean that there are no
levels between 0 and —E;, but only that they are
small enough not to affect o5, hence certainly not o
in the region of energy in which we are interested.

Thorium.—Harvey and Schwartz!? give oaps=7.45
=#+0.15 barns, I',=0.0304-0.010 ev, T',%/D=(1.04-0.2)
X104, and T',0= (1.540.6) X102 ev. The contribution
of all known levels up to E;=70 ev is equal to 0.355
=+0.19 barn, and the total calculated o.ps is 0.77540.27
barn. The unaccounted thermal absorption is thus
6.6720.43 barns, in great contrast to the case of gold.
A single negative energy level must have I'.)/Eg
=0.054024-0.02 to supply the missing absorption. A
large number of combinations of I'.? and E, are possible,
but of these only a level at E,=—7.0 ev with
I',.2=0.0055 ev produces a constant (¢;—0,), shown in
Fig. 2. This is the single level that removes the dis-
crepancy in o and (o:—o,). Although in actuality
there may be more than one negative energy level, the
net effect is the same as for the single level.

The examples of gold and thorium illustrate the
manner in which corrections were applied to the total
cross sections between resonances in order to get op.
Seventeen elements were investigated in this way and
their results are presented in Sec. III. For most cases,
the magnitude of the corrections for negative energy
levels was negligibly small. Where their contribution
was significant, however, larger errors in ¢, indicate
the uncertainty resulting from such levels.

127, A. Harvey and R. B. Schwartz, in Progress in Nuclear

Energy, Physics and Mathematics, edited by D. J. Hughes and
J. Sanders (Pergamon Press, London, 1958), Vol. 2.
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B. Average-Cross-Section Method

In the kev region, the instrumental resolution of the
fast chopper is insufficient to resolve individual res-
onances, especially in heavy nuclei where the average
level spacing is of the order of a few ev. Rather the
average cross section is observed, which depends on
the average properties of the nuclei, such as the strength
function, various widths, etc., rather than on individual
resonance parameters. The study of the cross section
in the kev region can therefore be expected to yield
information about these average properties, rather than
parameters of specific levels. While the average cross
section is an important method”® for measuring the
strength function, its use for ¢, is valuable mainly in
establishing that the value in the kev region is equal
to that at low energy. This equality has important
theoretical implications, however, in establishing the
validity of the potential scattering as a cross section
that is constant with energy. Thus, once “nearby”
resonances are subtracted, the cross section is constant
and the present work shows that constancy is attained
after removal of the effect of only a small number of
resonances, of the order of 5 to 10.

The transmission vs flight-time curve averaged over
resonances has a slope that for thin samples is propor-
tional to the strength function, T'.%/D, and can be
used® for its accurate determination. Although the
intercept of the curve at zero flight time gives the
potential scattering, the transmission is too near
unity for accurate results. For a thick sample, on the
other hand, the average transmission is

Tu
Th= T,,[1 - zv:?qrx—D\/n], (13)

if we assume that g=4%, that I'=T, in the kev region,
and that interference terms cancel. Here T, is the
transmission corresponding to ¢, alone, D is the average
spacing for levels of a single spin state, and # is the
sample thickness. From Eq. (13), by neglecting second
and higher powers of (I'»/D), we get

(d/dn)(logTw)=[o,+V2r(R/A/1)(T»/D)]. (14)

This equation shows that for very thin samples the
slope is much greater than o,, because the resonances
are also effective in selectively removing the neutrons
from the beam and therefore lowering the average
transmission. However, as the sample thickness
increases, the beam get improverished in the neutrons
of the resonant energies, and after a certain thickness of
the sample, the slope of (d/dn)(logTw) is essentially
equal to 0.

b In deriving Eq. (13) it was assumed that the areas
due to negative and positive interference between

13D. J. Hughes and V. E. Pilcher, Phys. Rev. 100, 1249(A)
(1955); Schwartz, Pilcher, Hughes, and Zimmerman, Bull. Am.
Phys. Soc. Ser. II, 1, 347 (1956).
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resonance and potential scattering are equal and can
be neglected. While the equality always holds for cross
sections, it is only true for a thin sample when the
average transmission curve is being considered. Because
of the nonlinear relationship between transmission
and cross section (T'=e¢~™), for thick samples the
average transmission curve has a slope that corresponds
to a cross section less than o, This ‘“hardening” of
the beam is clearly illustrated by the curves of Fig. 3,
and it definitely must be taken into account in obtaining
op from the thick-sample transmission curve, rather
than a simple application of Eq. (14).

In order to test the validity of the above considera-
tions, four elements, Ag, Ta, Th, and U, were experi-
mentally investigated, and in each case the experimental
transmissions for thick samples were compared with
computed curves based on the known average resonance
parameters. In order to take hardening into effect
accurately, detailed transmission curves were calculated
for typical resonances, rather than by use of Eq. (14).
In the computation, a typical resonance is drawn
including interference effects, and this resonance is then
Doppler-broadened point for point and converted to
average transmissions for various values of sample
thickness. Computed transmissions for tantalum ob-
tained in this way are shown in Fig. 3 for various
single values of T'», as well as for a weighted distribu-
tion of I',’s corresponding to that actually observed.?
The experimental points agree best with the curve
based on the distribution of I',’s. The departure of
points at low transmission from the theoretical curve
may result from uncertainty in the background, which
affects low values of T markedly.

For each of the other elements, only a single T',
(the average for the element) was used in the computa-
tions, because, as Fig. 3 shows, while the absolute
value of the average transmission changes with the

10 N T T T T T T T T
N TANTALUM
N,
<
N,
S \\\ .
N,
N\,
NG @ Tay -AVERAGE OF Tops AT 1 kev
SN AND 2kev
N,
% 20 Th=02 \\\\
7y T'n=.06 \\\
a Tn=.10 N
% A0 In=.14 \\\ -
E A -n oy
& In = NT=e %P
= WEIGHTED S
w 05 DISTRIBUTION N
2 OF ALL FOUR
o4
w
2
02+~ -
Kell L L 1 1 ! L

1 1 ]
O 04 08 12 6 20 24 28 32 36 .40
THICKNESS n (ATOMS x1024)

Fic. 3. The measured transmissions for thick samples of
tantalum in the kev energy region. The calculated curves are
based on a potential scattering cross section of 8.5 barns and
various assumed values of neutron widths.
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I', assumed, the slope is affected only slightly by the
choice of I',. Figure 4, for normal silver, illustrates
how this behavior is utilized in practice. Here the
value of I', chosen for the computed transmission is
too small, but the value of ¢, used in the computation
6.2 b, is correct for the computed transmission because
the computed curve has a slope in agreement with
experiment. In order to estimate the error in ¢, deter-
mined by this method, transmission curves were also
computed for slightly different values of ¢, and com-
pared with the experimental points, resulting in an
error for silver of 0.5 b.

Because of the lengthy calculations involved and
the difficulty in measuring low transmissions, the
average-cross-section method was used only for the
four elements listed. However, the verification in the
kev region of the values of ¢, obtained at low energy
is a valuable confirmation and, in addition, helps to
establish the validity of the concepts of potential
scattering as constant with energy, regardless of the
fluctuating resonance structure.

III. EXPERIMENTAL RESULTS

The measurements of potential scattering reported
here were made for normal isotopic mixtures of each
element. For all cases the between-resonances method
was used and for four elements, silver, tantalum,
thorium, and uranium, the potential scattering was
also measured by the average-cross-section method.
In Table I the results of all the determinations are
summarized. Wherever the measurements were made
by both methods, the weighted average is quoted in
the table. Where the contribution of resonances was
not large, o, could be measured to about 29, or 19,
in R’, but the error is several times larger where the
correction for resonances is large. The measured
potential scattering is listed for each element and the
value of R’ obtained from the relation ¢,=4w(R’)%.
The values of R, the radius of the nuclear potential
well, listed in Table T will be discussed later. They are
the radii obtained from R’ by utilizing the theoretical

Lo T T T T LA R T T T T T

S0 7
.20 —

SILVER )
THEORETICAL ( op =6.15 barns
CURVE fy =.066 ev
* Toy AT lkev
s Ty AT 2kev
02 ]

05+

AVERAGE TRANSMISSION
S
T
1

01

A T S SO S T S S S S S
O .04 08 .2 .6 20 24 28 .32 .36 .40 44 48 52
THICKNESS n(aTOMS x 10°2)

F1c. 4. The measured transmission as a function of sample
thickness for silver in the kev region compared with the theoretical
curve calculated for the constants shown.
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TaBLE I. Summary of the experimental results. The values of
R’ are obtained from the measured ¢, by the relation o,=4x(R’)?
and the radii R are calculated by use of the theoretical R’/R ratios.

R R
(spherical (deformed
R’ nuclei)  nuclei)

ap (1071 (10-18 (10-18
Element Group A4 at (barns) cm) cm) cm)
Copper 1 63.5 399 68405 74403 4.8+0.2
Zinc II 654 4.03 5.7+03 6.740.2 4.4:40.1
Yttrium II 889 446 5702 6.740.1 5.7+0.1
Zirconium I 91.2 450 63=+03 7.1:+0.2 6.2:+0.2
Niobium I 923 452 6.24+0.2 7.020.1 6.2+0.1
Molybdenum I 96.0 4.58 5.8+0.1 6.8+0.1 6.1+0.1
Silver I 1079 476 5.7+04 6.7+0.2 6.6£0.2
Tin I 118.7 492 443401 59401 6.1+0.1
Barium I 1374 516 43+1.0 5.8:+0.6 7.0+0.8 7.4=40.8
Neodymium II 1443 5.25 5.0+0.6 6.3+04 7.5+04 8.6+0.5
Tantalum I 1810 566 8514038 8.2:+0.4 6.3+03 8.6:+0.3
Gold I 197.0 5.82 11.2403 9.4+0.1 7.7+0.1 8.0+0.1
Thallium II 2044 589 115308 9.6£0.3 8.0--0.3 8.3+0.3
Lead II 207.2 592 113405 9.5+0.2 8.0+0.2 8.3:+0.2
Bismuth I 2090 593 10.2+40.2 9.0+0.1 7.7+0.1 7.82+0.1
Thorium II 2320 6.15 12.0403 9.84+0.1 8.9:+0.1 8.8:0.1
Uranium I 2381 6.20 10.7+0.3 9.2:£0.1 8.64:0.1 8.4:0.1

treatments of Feshbach, Porter, and Weisskopf,? and
of Chase, Wilets, and Edmonds.?

Some of the results of Table I deserve particular
mention and these will now be considered. For the
purpose of brevity in this presentation, the elements
investigated are divided into two groups: (I), those
in which the negative energy levels did not affect the
results of the between-resonances method significantly,
and (TI), those in which the negative levels resulted in
significant corrections. In general, the results are not
comparable with previous measurements of potential
scattering in the resonance region because, in former
analyses, usually only a single resonance was subtracted
from the total cross section, the remainder being
considered the potential scattering.

Group I

In this group of nuclei, as already discussed, param-
eters of negative energy levels are assigned only to
establish that a level of average strength can remove
any discrepancy in ogbs at thermal. In Group I, the
negative levels have no effect on the measured o,
hence no special significance was attached to their
energy assignments, and we shall not consider them in
detail. Thus zirconium, niobium, molybdenum, silver,
tin, and barium all have thermal absorption cross
sections that are greater than can be accounted for
by the known resonances. In each of these cases,
however, it was possible to account for the discrepancy
in terms of a level of reduced neutron width equal to
I',% the average value for the element, located at a
reasonable negative energy. For the other elements of
Group I, copper, tantalum, gold, bismuth, and uranium,
the resonances at positive energy accounted completely
for the thermal absorption cross section, so no negative
energy levels were necessary. For gold, a hitherto
unreported resonance was found at 46.5 ev with a
T of 2.0X107% ev.
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Fic. 5. The determination of the potential scattering for zinc
by the between-resonances method; inclusion of a level at —300
ev accounts for the thermal absorption cross section and produces
a constant o;—o,, giving a potential scattering of 5.740.3 barns.

Group II

For these elements, negative energy levels have
sufficient strength so that they must be taken into
account in the potential-scattering determination.
Because of the greater importance of the negative
energy levels relative to those of Group I, we shall
briefly consider each case individually.

Zinc.—A thick sample of zinc (0.435X10* atoms/
cm?), run in the energy interval 10 ev to 2000 ev,
yielded the total cross section shown in Fig. 5. After
correction for the known positive energy levels, the
(s:—0,) revealed an energy variation below 400 ev.
Also, of the measured o.,s of 1.064=0.05 barns only
0.61 barn was accounted for by the known levels.
It was found that a level at Eo=—300 ev with gI';?
=0.023 ev accounted for the discrepancy in cans and
the slope in (o:—o,), Fig. 5, within the limits of the
experimental accuracy.

Yitrium.—The measured cross section showed no
resonances in the region of observation from a few ev
to 2 kev. Nevertheless, the cross section decreased
with increasing energy, strongly indicative of the
presence of a nearby negative energy level. The observed
cross section was corrected for the four known res-
onances between 2 and 12 kev, and the resulting
shape was fitted to a single-level Breit-Wigner formula
for the negative energy level. The resulting parameters
for the resonance are: Eq=—300 ev and gI',=0.13 ev.
These parameters, chosen to give a constant ¢;—o,
were found to account for the thermal absorption
cross section, only a negligible part of which can be
attributed to the positive levels.

Thallium.—Two thick samples (»=0.0697 and 0.2082
X10% atoms/cm?) of thallium were run at 6000 and
10 000 rpm, respectively. As Fig. 6 shows, excellent
agreement was observed in the data for the two different
thicknesses. Out of the known oas=3.34£0.5 barns,
only 0.5 barn is accounted for by the known levels.
Estimation of the parameters of the negative energy
level is rendered extremely difficult because of insuffi-
cient knowledge of the parameters of the positive energy
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levels. An area analysis of the observed resonance at
Ey=1108 ev was made, and fgI'.0=0.34 ev was
obtained, where f is the unknown abundance of the
responsible isotope. It was estimated that a resonance
at Ey=—40 ev, with fgl',’=0.14 ev, accounts for the
discrepancy in oabs, but uncertainty in the location of
this level increases the final error in the potential
scattering.

Lead.—A thick sample (#=0.158X10* atoms/cm?)
of lead was run in the energy region 250 ev to 10 kev,
and no resonances were observed. Existing data! on
the 46.5-kev resonance in Pb*? were analyzed, on the
assumption that I'y=3 ev', giving gI',=3 ev. Correc-
tions to the total cross sections were applied for this
resonance alone, as the contribution of higher energy
resonances would be canceled by the approximately
equal and opposite contribution of negative energy
resonances. Of the measured ¢as=0.17 barn, only
0.02 barn is accounted for by the known levels, and
the rest must be attributed to a negative energy level.
Since little is known concerning the parameters of the
resonances in lead, the assignment of the negative
energy level is rendered very difficult. Depending on
whether this level is at —1 kev or —10 kev, its contribu-
tion to oy, in the region of energy observed, would be
0.07 barn or 0.7 barn. This uncertainty is reflected in
the quoted error of the final value of ¢, in Table I.

Thorium.—The determination of ¢, by the between-
resonances method has already been discussed in
connection with the explanation of the method in
Sec. II. There it was found that a level at —7 ev with
gl':0=5.5X10"2 ev removed the discrepancy in oans
and produced a constant ¢;—a,. Four different thick-
nesses of thorium were also run for the average cross-
section method in the kev energy region, with a resulting
opof 12.240.8 b compared with the 12.00.3 b of the
between-resonances method. Although the latter value
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Fi1G. 6. The determination of the potential scattering of thallium
by the between-resonances method. A negative energy level is
necessary to account for the thermal absorption but it produces
no significant effect on ¢;—o,, which gives ¢,=11.540.8 barns.

14 Newson, Gibbons, Marshak, Williamson, Mobley, Toller,
and Block, Phys. Rev. 102, 1580 (1956).
15 A. G. W. Cameron, Can. J. Phys. 35, 666 (1957).



SCATTERING OF LOW-ENERGY NEUTRONS

is more accurate, the averaging method helps to
establish the constancy of potential scattering over
energy ranges covering many resonances.

Neodymium.—Two thick samples (#=0.145 and
0.072X10* atoms/cm?) were run in the energy region
0.5 ev to 70 ev. The cross section, Fig. 7, exhibits a
strong 1/v component, suggesting a negative energy
level, and there is also a large o5 discrepancy. The
discrepancy in thermal cross section can be removed
by a resonance at Ey=—14 ev, with fgI',=0.021 ev,
where f denotes the isotopic abundance. It is seen in
Fig. 7 that there is a slight departure from constancy
of (¢:—0,) in the region 0 to 5 ev, even after taking
the resonance at —14 ev into account. This result
indicates that another small negative energy resonance
exists near zero energy. However, it does not materially
affect o;—o, in the region above 5 ev, which is the
basis for the final value of o,.

IV. CONCLUSIONS

Because the present results cover a wide range of
atomic weights, it is possible to obtain from them the
radius of the nuclear potential well with little depend-
ence on model details, and to use the same information
to check the predictions of the various optical models.
Table I contains, in addition to the measured values of
R’, the nuclear radii R resulting from the theoretical
(R'/R) ratios given by Feshbach, Porter, and Weisskopf®
(spherical nuclei), and by Chase, Wilets, and Edmonds®
(deformed nuclei). Since the latter computed R’/R
for A>130 only, no results for R are shown at lower 4
based on their calculations. The potential radii thus
obtained are about the same for both models for nuclei
of small deformation but differ widely for values of 4
corresponding to large deformations. In order to
determine R from the measurements, as well as to
investigate the details of the model predictions, it is
necessary to consider the variation of R’ and R with
atomic weight.

In Fig. 8 are plotted the measured values of R’ as a
function of A, as well as the computed curves of
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Fic. 7. The determination of the potential scattering of neo-
dymium by the between-resonances method. A single negative
energy resonance isassumed to account for the thermal absorption;
this level produces a constant o;—o except for the lowest energies,
implying that a second negative energy resonance near zero
probably exists.
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Fic. 8. Comparison of the experimental values of R’ (in units
of 1078 ¢m) with the predictions of optical nuclear models. The
constants shown are for the calculations of Feshbach, Porter,
and Weisskopf for spherical nuclei and the dashed line corresponds
to the calculations of Chase, Wilets, and Edmonds for deformed
nuclei.

Feshbach e al? and Chase ef al.® The theoretical
curves give R’ for the R shown, 1.35 4¥X10% cm.
The optical-model parameters quoted in Fig. 8 are
those of the spherical model of Feshbach ef al.3 Chase et
al.’ used a model in which the absorption, or imaginary
component, is confined to the nuclear surface, and the
asphericity corresponds to the known quadrupole
moments. The general validity of the semitransparent
nucleus is immediately obvious because the measured
points do not correspond to the 1.35 43 curve, as they
would for a “black” nucleus for which ¢,=47R2

In the region 4=90—130, where nuclei are nearly
spherical, it is seen that the agreement between the
theoretical curve and the experimental data is very
good. From 4 =130 to 190, the experimental points are
in considerable disagreement with the theoretical
curve of Feshbach et al., based on spherical nuclei.
As it is in just this region of A that the nuclei are
considerably deformed, a better qualitative agreement
with the curve of Chase et al. is therefore to be expected.
It is seen that the more complicated nature of the
latter curve agrees with the experimental points in
general. Perhaps some change in the rather arbitrary
parameters assumed in the calculation for aspherical
nuclei will improve the agreement.

Thus the general trend with A of the measured
values of R, and in particular for 4’s of high deforma-
tion, serves as a verification and test of the optical
models. In addition, the nuclear potential radius can
be obtained from R/, with the most certainty for nuclei
of small deformation, for which the dependence on the
details of the model is small. In addition, as already
pointed out, the values of 4 where R'=R are partic-
ularly suited for radius determination, because these
A’s are fixed essentially by VR?, and the latter values
are established separately, by the strength function
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results,”® independent of the present measurements.
Thus the measurements for A4’s in the range 90-130
and 210-240 can be used to obtain R with only slight
uncertainty arising from the optical-model parameters.
The radius shown in Fig. 8 is given by R=r,4} with
ro=1.35X10"8 cm. It is felt that the present results
fix 7o as
ro=(1.35240.04) X 10~ cm,

considering both experimental errors as well as the
slight model dependence. The accuracy of the results
is not sufficient to rule out an alternative form of the
radius formula sometimes used, which includes a
constant of the order of 107 cm, but there is no need
for such a constant in fitting the results.

Nuclear potential radius determinations have recently
been made by a number of proton-scattering experi-
ments analyzed! on the basis of the optical model.
The measured angular distributions have usually been
interpreted in terms of an 7o about 1.2X107% cm, but
it has become clear more recently that the 7o obtained
depends critically on the potential depth assumed.
Actually, proton-scattering experiments in the range
1 to 100 Mev determine the product VR", where
n=2 at low energies and may be as large as 3 at
energies of the order of 100 Mev. In the analysis there
is a large amount of arbitrariness in breaking the
product into ¥ and R. However, the range of 7o that is
consistent with the proton scattering, even though not
accurately fixed, seems to be about (1.2—1.3)X107%
cm and thus in reasonable agreement with the present
value of 1.35X107" cm. As the well depth is different
for protons and neutrons it is not possible to use the
depth determined from neutron scattering, 42 Mev, to
aid in analysis of the proton experiments.

In contrast to the present results on the nuclear
potential radius, measurements'® on the nuclear charge
radius by scattering of high-energy electrons lead to

70=1.09X1078 cm

16 R)eviewed by R. Hofstadter, Revs. Modern Phys. 28, 214
(1956).
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for heavy elements. Here r,4? is the distance to the
halfway point of the charge distribution, similar to
the R of our Eq. (4), which is the distance to the
halfway point of the potential distribution. (Reference
16 uses the notation 7,4} for this distance to the
halfway point.)

We thus have conclusive evidence of a large difference
between the nuclear potential and charge radii, which is

(1.35—1.09) X 10~8=0.26X 10~ cm

if expressed in terms of the parameter 7,. As already
mentioned, the present results do not cover a sufficiently
large range of A to determine accurately the functional
dependence of R on 4. In terms of a particular nucleus,
gold (4%=5.82), the radius of the potential is larger
than that of the charge distribution by 1.5X107%3 cm.
The possibility that this result is caused by a further
extent of neutrons than protons in the nucleus!” now
seems to be eliminated, for recent w-meson scattering
measurements'® indicate that protons and neutrons
in the nucleus have the same extent. The difference is
probably to be ascribed to the range of nuclear forces,!?-2
which enables the incoming neutron to be affected by
the neutrons and protons in the nucleus before it
reaches the actual nuclear surface. This explanation
would lead one to expect a variation of R with 4
somewhat different for potential and charge. Extension
of the present measurements to lower 4 might help
to reveal this difference.

Drell and Williams? have recently suggested that the
effect of the nuclear force range should decrease at
relativistic energies and that as.a result the potential
radius should approach the nuclear charge radius for
incident protons or neutrons of several Bev energy.
No clear-cut measurements of the nuclear potential
radius by elastic scattering are available as yet in
the energy region of interest, however.

17 M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954).
18 Abashian, Cool, and Cronin, Phys. Rev. 104, 855 (1956).

1 S, D. Drell, Phys. Rev. 100, 97 (1955).

2 K. A. Brueckner, Phys. Rev. 103, 1121 (1956).

21 S, D. Drell and R. W. Williams (private communication).



