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Tensor Forgs1alism for Coulomb Interactions and Asymptotic Properties
of Multipole Expansions*
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A tensor notation for electric multipole interactions between molecular charge distributions is developed
and applied to the evaluation of first- and second-order interaction energies. An equivalence theorem between
cylindrically symmetric and linear assemblies of charge is established. The mathematical implications of
using a multipole Taylor expansion in regions of configuration space where the series has no validity is
discussed for the first and second orders of perturbation theory.

I. INTRODUCTION AND SUMMARY

ALUABLE information on the properties of Cou-
~

~

~ ~

lomb potentials may be inferred from develop-
ments in series of certain types. In the literature
pertaining to long-range molecular interactions it has
been a practice, since the early papers of Debye' and
Keesom, ' to expand the electrostatic potential at a
distance R from the center of a charge distribution as a
Taylor series of inverse powers of E.. This expansion
may be written explicitly in terms of Legendre's func-
tions (tesseral, sectorial, and zonal harmonics) or, more
formally, as a suin of products involving tensors of
increasing rank. The first general notation, given by
Frenkel, ' was in tensor form. Later this notation was
abandoned in favor of the Legendre functions. In either
form for the electrostatic potential, part of the coe%-
cient of 1/R "+' is a homogeneous polynomial of degree tt
in the Cartesian coordinates of the elements of charge of
the distribution. This term is. associated with the
multipole moment of order n of the charge distribution.
The (ground state) expectation value of the potential
then contains the expectation values of the multipole
moment operators. These quantities will be referred to
as (being associated with) the "molecular" multipole
moments. 4

There is a great deal of confusion in the literature on
molecular interactions regarding the general definitions
of the moment operators and the molecular multipole
moments. We mention that three different definitions
for the molecular quadrupole moment are used in the
literature. ' It will be shown in Sec. II of this paper that
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through the Air Force Once of Scientific Research, Air Research
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~ P. Debye, Physik. Z. 21, 178 (1920).' W. H. Keesom, Physik. Z. 22, 129 (1921).
e J. Prenkel, Z. Physik 25, 1 (1924).
4 For a detailed discussion of multipole moments and long-range

interactions we refer to the review articles by K. F. Herzfeld,
Haldbgeh der Physeh (Verlag Julius Springer, Berlin, 1933), Vol.
24, Part 2, and by H. Margenau, Revs. Modern Phys. 11,1 (1939),
which have become classics in this field. A recent quite complete
treatment of the subject is found in Hirschfelder, Curtiss, and
Bird, 3d'oleerdar Theory of Gases and Iiqaids (John Wiley and
Sons, Inc. , New York, 1954), Chap. 12.

'Hirschfelder, Curtiss, and Bird, reference 4; Chap. 12.

the moment operators of arbitrary order may be defined
in an unambiguous manner on the basis. of a tensor
notation for the electrostatic potential. The explicit
expressions for the molecular moments then follow from
the expectation value of the potential. These definitions
for the molecular moments depend on the symmetry
properties of the distribution; they are, however, iden-
tical for all distributions with an axis of symmetry which
is at least threefold. The tensor formalism is charac-
terized by two sets of quantities: the interaction tensors
T&"' of rank rt and the multipole moments N&"' of order
n. It leads to a short notation for operators such as the
electrostatic potential, electric field strength, and the
perturbation Hamiltonian. Therefore, in contrast w'ith

the notation in terms of Legendre's functions, it is easy
to apply in problems involving the expectation values of
general operators to relatively high orders of perturba-
tion theory. The tensor algebra may be worked out in all
relevant cases on the basis of two general theorems for
solid spherical harmonics: a general theorem in differ-
entiation and an integral theorem, both of which are due
to Hobson. ' Examples are given in Sec. III and Sec. IV
of this paper, in a discussion of first- and second-order
interaction energies. Interactions between three-dimen-
sional distributions with "cylindrical" symmetry are
often replaced in the literature by those between linear
assemblies of charges. We shall prove that the.equiva-
lence exists in a multipole-type expansion for first-order
interactions between distributions which have at least a
threefold axis of symmetry (Sec. IID).

Since the Taylor series involved in a multipole ex-
pansion converges uniformly only if the point of refer-
ence lies outside the charge distribution, the multipole
series is applicable only in a limited region of configura-
tion space. If Taylor's series are to be retained for the
whole of space, then the above condition necessitates
the use of two series for the electrostatic potential and
four different series for the perturbation Hamiltonian.
Instead, one often uses only the series applicable if the
point of reference lies outside the distribution, but
integrates over all space. The mathematical implications
of this procedure have only recently received attention.

6 E. W. Hobson, The Theory of Spherical and Ellipsoida/ Har-
monics (Cambridge University Press, New York, 1931),Chap. IV.
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Brooks~ noted the divergent character of second-order
series representing long-range interactions between a
hydrogen atom and a proton and also for interactions
between harmonic oscillators. He established that the
divergent series are the asymptotic expansions (in in-

verse powers of the separation R) of the true energy of
interaction. Brooks ascribed the origin of the divergence
to the use of the "multipole Taylor series" in regions of
configuration space where it is not valid. However,
Dalgarno and Lewis pointed out that the exact second-
order expression for the hydrogen atom —proton inter-
action energy yields for large values of E, when ex-
panded in inverse powers of E, identically the same
divergent series as the multipole expression. Thus the
divergence must be regarded as a characteristic property
of the expansion in inverse powers of the separation. It
will be shown in Sec. V of this paper that the same
properties are exhibited by divergent erst-order multi-

pole series.

II. ELECTROSTATIC INTERACTIONS IN
TENSOR NOTATION

A. Interaction Tensors T(")

Suppose that we have a Cartesian coordinate system
(x,y, s) with origin Or. Let a point charge e; be situated
at vector distance r; from O~, then the scalar potential
at a point at vector distance R from Or is

V(R) =e;~R—r, ~-'.

For r;&E this expression may be expanded as an
absolutely-convergent power series in ascending powers
of r;/R; we write the series as

(—1)" (1 )
r, (&: V(R) = Q e, (r,' V)"

~

—
~. (1)

n=o I! ER)

It is understood in (1) that V operates on E but not on
r;. On the other hand, the appropriate series for r;&E is

V(R) = 2 e'(R V*)"~ —
I (2)

oss! =(r; i

For the following, it is convenient to write (1) in tensor
form by introducing the eth-rank tensor'

T(nl — Vn(1/g) ~ (3)

the components of T'"& are spherical harmonics" of
degree ss 1.The —exp—ression (1) for the potential may
then be written as follows

( 1)++1

r;(8: V(R) = P T&"&[ss7e,r;". (4)
n, =p

r F. C. Brooks, Phys. Rev. S6, 92 (1952).
s A. Daigarno and J.T. Lewis, Proc. Phys. Soc. (London) A69,

57 (1956).
o L. Jansen, Physica 23, 599 (1957).' We shall use the name "spherical harmonic" as an abbrevia-

tion for "solid spherical harmonic, " i.e., any function which is
homogeneous in x, y, s and satisfies Laplace's equation.

In this equation (n7 denotes that the product of the two
eth-rank tensors T&"& and r," is contracted e times.
Further, since we use only rectangular Cartesian
coordinate systems, we shall not distinguish between
covariant and contravariant tensors.

In the course of the following calculations frequent
use will be made of two general theorems, in a form
given by Hobson. ' The first is a special case of a
theorem in differentiation and states that if f„(ss,y, s) is a
rational algebraic homogeneous function of degree e
ln x) p] 8)

|'8 8 8) (1i
Ec!gay cls) (R)

(2so)! 1—( 1)n
2~~1 g»+&

X + " f-(&a,s) (5)
2(2n —1)

For example, we mention as a rather trivial application
of (5) that any component of a tensor T&"', with m&~1,
when averaged over the orientations of the coordinate
system, vanishes identically. (This result follows also
from the orthogonality properties of solid spherical
harmonics. ) An equivalent form of the theorem (5), first
given by Maxwell in his theory of poles of a spherical
harmonic, will be applied in evaluating first-order
interactions between cylindrically symmetric molecules.
Hobson's integral theorem will be discussed in connec-
tion with first- and second-order molecular interactions
(Sec. III and Sec. IV). As a further useful property of
the T tensors we note" that summation over one re-
peated coordinate in any component of T&"&, with n) 1,
gives zero result. These identity relations will be used in
the derivation of an expression for the (scalar) molecular
multipole moments of arbitrary order for cylindrically
symmetric distributions of charge.

The expansion of (1) in terms of Legendre's func-
tions is well known and will therefore not be developed
here; for details the reader is referred to the work of
Hirschfelder ef, al.' The expressions for the electrostatic
potential are not yet in a suitable form for the calcula-
tion of the interactions between two charge distribu-
tions, since in that case one normally makes use of two
Cartesian coordinate systems with origins O~ and 02,
respectively. Let the position of a point in configuration

space be specified by a vector r; with respect to O~, a
vector r; with respect to Os, and the vector distance R
between Oi and Os. Instead of

~

R—r;
~

' we now have to
evaluate

~

R—r;+r;~ ', and instead of two Taylor ex-

pansions we have four di8erent series associated with

"These relations were already applied by Frenkel, reference 3.
See also the review article by K. F. Herzfeld, Hundbuch der
Physik (Verlag Julius Springer, Berlin, 1933), Vol. 24, Part 2,
p. 444.
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the diR'erent relative magnitudes of r;, r;, and E."The
case equivalent to r; (R is that r;+r; (R; we give only
some formulas pertaining thereto. " In the tensor
formalism one has simply

—r r

( 1)ng+1

r,"'LNijT'"'+"»LNs)r "' (6)
%1=0 @2=0 el fe2

It is expedient to specify the sign of the differential
operator V by the convention that it is directed from the
charge distribution on the left of the symbol Tt"'+"s& to
that on the right; thus, in (6), V is directed from
distribution 1 to 2. We note that (6) does not contain
the relative orientations of the two coordinate systems
explicitly, in contrast with the expansion in terms of
Legendre's functions. The necessity of specifying at the
outset the coordinate systems used does not arise in the
tensor formalism. If Legendre's functions are used, then
the expansion of

~
R—r,+r;

~

' may be accomplished by
direct application of Maxwell's theory of poles. Alter-
natively, this expansion can also be obtained from group
theoretical considerations. The results depend on the
relative orientations of the two coordinate systems with
origins O~ and 02, respectively. Carlson and Rushbrooke"
have derived such expressions for two special cases:
(a) the two sets of coordinate axes are parallel, with
coinciding z axes; (b) parallel sets of axes, the line OiOs
has nonzero polar angles relative to the axes at O~.

They showed that the expansions may be obtained from
group theory and expressed, in terms of reduction coe%-
cients for the direct product of two irreducible repre-
sentations of the rotation group (Wigner coefficients).
The general expansion, valid for arbitrary relative
orientations of the coordinate systems, and involving
the representation coefFicients of the rotation group,
was given by Hirschfelder, Curtiss, and Bird. '

The complete procedure of employing four diferent
Taylor series for the expansion of Coulomb interactions
between two distributions of charge has, to this author' s
knowledge, not been applied in the literature. In the
theory of molecular interactions it is often possible to
avoid the series with complicated boundary conditions
by using diferent mathematical methods for small
values of the separation. '~ In the region of relatively
large values for E one uses only the Taylor series for
r;+r; (E, and extends the integration over all space.

'2R. J. Buehler and J. O. Hirschfelder, Phys. Rev. 83, 628
(1951); 85, 149 (1952). The four possibilities are: R&r,+r;;
r;&R+r;; r;&R+r;; and ~r; —r;~ ~&R~&r;+r;"Explicit expressions for the expansion in Legendre's functions
for all cases are given in Hirschfelder, Curtiss, and Bird, reference
5, Chap. 12.

'4 B. C, Carlson and G. S. Rushbrooke, Proc. Cambridge Phil.
Soc. 46, 626 (1950).

"See, for example, J. O. Hirschfelder and J. W. Linnett, J.
Chem. Phys. 18, 130 (1950);J. S, Dahler and J. O. Hirschfelder,
ibid. 25, 986 (1956);E. A. Mason and J. O. Hirschfelder, ibid. 26,
173, 756 (1957).

The limitation to one Taylor series leads to a simple
expression of Coulomb potentials in terms of interactions
between electric multipole moments of the two distri-
butions. It is consistent with this procedure to assume
that the wave functions need not be antisymmetrized
with respect to interatomic, exchange, so that no such
exchange contributions appear in the result. We restrict
ourselves in the following to large values of E, i.e., we
use the tensor notation (4) or (6), or the equivalent
expressions in terms of Legendre's functions.

Also, the expectation value, (V(R)), of the electrostatic
potential at vector distance R from Oi is, from (3),

- (—1)"+'
(J'(R))= r. T'"'L~j(N'"')

n=g ~!
(9)

The expression for the electric field strength at R
assumes a particularly simple form in this notation,
namely

( 1)n
I'(R))= —&(J'(R))= 2 T'"+"L~j(N'"') (1o)

n=O

The corresponding expressions in the notation involving
Legendre's functions will not be given here; they are
usually considerably more complicated than (8), (9),
and (10).They involve, in the general case of arbitrary
relative orientations of the coordinate systems, products
of complex operators Q„ for the separate distributions,
as well as the representation coefficients of the three-
dimensional rotation group. '

In contrast with the notation in Legendre's functions,
it is relatively easy to apply the tensor formalism for the
evaluation of expectation values of general operators to
relatively high orders of perturbation theory. " The
necessity of going beyond the erst order usually arises,
since the equations may only be applied for large

"P. Mazur and L. Jansen, Physics 21, 193, 208 (1955); L.
Jansen and A. D. Solem, Phys. Rev. 104, 1291 (1956).

B. Multiyole Moment Tensors N(")

To obtain the electrostatic interaction between two
distributions of charge, (6) must be summed over all
charges of the assemblies. To this end we introduce' the
multipole moment operator of order e, Nt "&, as the nth-
rank tensor

Nt"&=+; e;r ".
the summation extends over all charges. The tensors
Nt"& define the multipole moments of the charge dis-
tributions: N'" is the total charge, No& represents the
dipole operator, N's& stands for the quadrupole tensor,
etc. The operator for the electrostatic interaction be-
tween two distributions of charge, B', is"'then

( 1)sly
H'= P P Nt"»PriijTt"~+"»tes)N&"» (8)

»=0 ~2=0



664 LAURENS JANSEN

separations. If the charge distributions are neutral and
in their unperturbed ground states, the 6rst order of
perturbation theory often gives only trivial results. In
the next section we shoe that the tensor notation gives a
unique definition for the (scalar) molecular multipole
moments of arbitrary order for cylindrically symmetric
charge distributions. "

C. Cylindrically Symmetric Distributions
of Charge

Since the Taylor series (8), or its equivalent in terms
of Legendre's functions, 'is applicable only for relatively
large values of I', it.s use is appropriate in problems
which may be treated by perturbation methods. In that
case the symmetry properties of the interacting charge
distributions often cause a considerable simplification of
the equations. Of particular importance in the theory of
molecular interactions js the class of distributions with a
symmetry axis which is at least threefold. The group
includes spherically- symmetric distributions, diatomic
and "linear" polyatomic molecules, as well as certain
nonlinear structures (such as ammonia). The following
derivations pertain to this class of molecules; for our
purpose we may call them "cylindrically symmetric
distributions of charge'. "To avoid complicated subscript
notation we shall use the symbols T&"'(x'y'z') and
E&"&(x~y'z') to denote components of T&"' and N'"'
which are a, b, and c fold in x, y, and s, respectively.
However, components of the lowest multipole moments
(dipole p, quadrupole q and octupole 1) will be writteri,
following convention, as p„q„or q 2, l„m, m, etc. We
consider the expectation value of the electrostatic po-
tential at distance R from the center (of positive charge)
of a cylindrically symmetric distribution; the axis of
symmetry is denoted by s. For symmetry reasons, only
even powers of x and y will occur in the components of
(N&"'). From repeated application of the relations

2'&n) (zn) — 2'&s) (xszn —
2) 2'&n) (y2zs 2)—

it is easy to show' that

T&s)L22j(N&~i)= p b T&s)(zs)(/&si(x2Pz~ —2P)) (11)
P( m/2

with

bu= (—1)"
(2p) (&-2p)!

We may now define scalar molecular multipole moments
of order

'

22 for cylindrically-symmetric charge
distributions by

5J|is) —Q b (ll!'&ni(x2pzn 2y))—
P& ~z/2

(—1)'- (1V&
"& (x'"z" '&)) (13)

p& /2 s(2p) !(22—2p) !
~7 Only the tensor I( & appears to have been used regularly in the

literature. See also A. D. Buckingham and J. A. Pople, Trans.
Faraday Soc. 51, 1029 (1955), and R. W. Zwanzig, J. Chem. Phys.
25, 211 (1956).

The general term in the expression for (H') is, from (8),

(N&~»)$222$T&s~+~»L222)(N&~») ~

this term may be rewritten in a way similar to (14) as

2'&nz+n» (Z- s&Z ns)g&n»gin»

where %&"" and 5&"' are the inolecular multipole
moments of order n~ and e2 of charge distribution 1, 2,
respectively. The axes si and s2 coincide with the two
symmetry axes. Thus

(—1)""'
(+')—p p T&'~1+~» (zi&lz '~2)Q&»)p&s» (15)

=o -o ei te2t

Equations (14) and (15) show that for interactions be-
tween cylindrically-symmetric charge distributions, the
multipole moment tensors occur only in certain combi-
nations of their components. In addition, the expressions
contain only components of the T tensor along the axes
of cylindrical symmetry.

There exists a very simple relationship between the
molecular multipole moments 9t&"', defined by (13),and
the scalar coefficients Q„occurring in the expression for
the potential in terms of Legendre's functions. With the
help of the definition for the Legendre polynomial of
degree 22, we write (14) as

~ P„(cos8)
(v(R))= p-

~=o g "+'
(14')

On the other hand, the equivalent expression in terms
of the Q„reads

P„(cos8)
(v(R)) = P

"
(Q„o). (14")

It follows then that

%'" =(Q )=(P; e,r;"P„(cos8;)), (16)

for cylindrically-symmetric distributions of charge. The
identity (16) may also be proven directly by expressing
x; and z; (substituted for x and z) in (13) in polar
coordinates, integrating over the azimuth angle, and
making use of the alternate expression'

e~
P (cos8;)= P (—1)&

p&„/2 220(p&)2(22 2p) 1

Xsin'i'8; cos" '"8 (1'/)

for the zonal harmonic of degree e. Molecular multipole
"E. W. Hobson, reference 6, p. 23.

in terms of a combination of components of (N&"i). The
potential then assumes the form

{ 1)n+1

(v(R)) = Z T'"'( ")Jt'"'.
n=o gt
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with

p(r', e') = Z p. (r*)P-(cosi)'),
n=o

2n+ 1
p„(r,) = ! P (cose;)p(r;, f);) sine, d8, .

2 0

(19)

moments of order e& 2 may also readily be found on the
basis of (13). If we abbreviate the octupole and
hexadecapole moments by I. and M, and the corre-
sponding tensors by 1 and m, respectively, then

mol. octupole moment I=(l, l)—3(l,2, ~),

mol. hexadecapole moment M=(m, 4) —6(ns ~,~)+(rn 4),

where l,~=g; e;z; ns, *.2=P; e,x;sz;s; etc. It should be
noted that the choice of 5&"&=(Q„') for the (scalar)
molecular multipole moments of cylindrically-symmetric
distributions is consistent with the definition N&"&

=g; e,r,"for the moment operators. For example, the
expression Q=(q„)—(q, ) for the molecular quadrupole
moment follows from the definition q= P; e,r;r, for the
quadrupole moment operator. Often used is a definition
for this operator as the traceless tensor (U is the unit
second-rank tensor)

q'= P; e;L3r,r,—r;sU7,

which shows some similarity" with T&'&. For cylin-
drically-symmetric distributions the molecular quad-
rupole moment is then defined as (q„')= —2(q„')= 2Q.
A logical choice for the definition of multipole moments
should, however, be based on a general expansion of the
electrostatic potential. The tensor formalism and the
expansion in terms of Legendre's functions lead without
ambiguity to the same definition. The multipole mo-
ments associated with a given cylindrically-symmetric
distribution of charge may be found by using the
de6nition (13).However, if the charge density p(r;, 8,) is
given as a series of Legendre polynomials, it is simpler to
employ the identity (16). In that case we write'

with

p(z) =s.—i P a„H„(Pz) exp( —P'z'),
n=o

( 1)k9(t(n 2k&—
a.= P p n—2k+I

k & sj2 k!(n 2k) !—2'k
(21)

For a chosen value of the scale parameter P, the linear
distribution p(z) can in principle be determined if the
multipole moments of the three-dimensional assembly
are known. A simple problem is to find the equivalent
p(z) for a three-dimensional anisotropic harmonic oscil-
lator. The normalized charge density for the ground
state is given by

p(x, y, z) =rr'pw '* expL —n'(x'+y') —p'z'7. (22)

The axis of cylindrical symmetry is again 2'; 0, and p are
positive and y&~0.. The multipole moments associated
with (22) are, for even n,

D. Equivalent One-Dimensional Distributions
of Charge

In the previous section it was shown that the expres-
sions for (V(R)) and (H') contain the multipole moment
tensors only as certain combinations of their components
if the distributions of charge are cylindrically symmetric.
In addition only components of I&"& along the axes of
cylindrical symmetry occur. Consequently, such as-
semblies of charge may be replaced by equivalent one-
dimensional distributions for the determination of
(V(R)) and (H'). The one-dimensional distribution may
be obtained by solving the moment problem. '0 The axis
of the linear distributioD coincides with the axis of
cylindrical symmetry of the three-dimensional assembly
and the linear charge density p(z) must be chosen such
that the associated linear moments 9l i& "& are the same as
the molecular multipole moments 5'"& for all n. We
choose as the limits of integration (—~, +~) and
expand p(z) as an infinite series of Hermite polynomials
(for dimensionless &(iz):

4x
pi~i = p„(r;)r "+'dr, .

2n+1 "s
(20)

The multipole series is finite if the charge density is
represented by a finite series of Legendre polynomials;
the order of the highest multipole moment is the same as
that of the highest polynomial occurring in. p(r;,8;). The
three-dimensional anisotropic harmonic oscillator is an
example of a charge density for which it is much simpler
to use (13); this case will be discussed in the next
section.

The molecular multipole moment of order e is then
given by

n! (1 1q ""
ski-i =

2"(n/2)! &q' ~')

After inserting this expression into (21), we find

Pe+i - (1 1 ) 1-n/2
~n=

2"(n/2)! (y' rr') P'

The simplest solution for p(z) is thus given by

P2 ~2 ~2

ap ——P; a„=0, for nW 0.

(23)

(24)

'9 The use of the Taylor series (2) for r;)R leads to multipole
moments of negative order; the moment of order —3 has the form
Z, (e,/r;s)! 3r;r; —r,sU), which is a traceless tensor similar to (18).

~ P. M. Morse and H. Peshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 947.
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The resulting charge density is that of a linear harmonic
oscillator. The multipole moments associated with p(s)
are

the angle between the radius vector R and the direction
of h;, and let p;; denote the cosine of the angle between
h; and h;. Then we have

nt
l
(n)

2-(e/2)!P-
(25)

cl" (1 )
Bh}8hs c}h„(R3

When o. approaches infinity the molecule reduces to a
linear structure and P approaches y. For an isotropic
oscillator the equivalent charge distribution is that of a
8 function, etc. The equivalence between a three-dimen-
sional and a linear distribution for large values of R
applies in general only to the unperturbed expectation
values of V(R) and H'. By combining (14') and (25), we
obtain

~ P„(cose) re!
(l'(R)) = 2

n=p g~+r 2n(re/2) (pn
(26)

It follows that the multipole series, representing the
electrostatic potential at distance R from the center of a
three-dimensional aniso tropic harmonic oscillator is
divergent for all values of R. It will be shown in Sec. V
that the series (26) is the asymptotic expansion (in
inverse powers of R) of the correct potential.

X(N(~1))Lg.,jT(~1+~»[re,](N(~»). (27)

If the molecules are cylindrically symmetric, we may
write instead

( 1)tu+1
2'(tu+n» (s&tussns)g(n1)g(11» (28)

nl=o nQ-0 nl tn2.

III. FIRST-ORDER INTERACTIONS

The electrostatic energy of interaction in the 6rst
order of perturbation theory is given by the unperturbed
expectation value of EP. According to (8), the general
expression is

( 1)n1jl
&i= p

nI=O n2=0

(—1)" (2ss—2m)!
( 1)m p (7 nsna+, v—1) (30)

g 11+} m & /s2 2 s ('Q —rg) !

where the summation extends over a range of integral
values for s}s from s)s= 0 to rm = ri/2 or (I—1)/2 according
as re is even or odd. The symbol P (X" '

tu ) stands for
the sum of the products of m of the quantities p, and
(ss—2r)s) of the quantities X, each suffix occurring only
once. The 7 components in (29) represent therefore only
a special case of (30), namely with ss& coinciding axes si
and n2 coinciding axes z2.

If the charge distributions deviate from cylindrical
symmetry, the 6rst-order interactions are no longer
given by (28). In such cases one may still derive ex-
pressions similar to (28) by making use of the specific
symmetry elements involved (for example for "planar"
molecules). The scalar molecular quantities at which one
arrives in this manner may again be de6ned as molecular
multipole moments, although their definition will differ
from that for the quantities %(").In the most general
case we may compute (H') and obtain a multipole series
which consists either of a 6nite or an in6nite number of
terms, depending on the analytic form for the charge
density. The expansion (19) of p(r;) now contains also
the Legendre associated functions. The order of the last
term of the series is the same as that of the highest
Legendre function occurring in p(r~) This .property
follows also readily from the tensor formalism. Note
that in (27),

(N(~1))Lrr j'f (~1+~2)

is a spherical harmonic of degree n~ in xi, y~, s~, since it
is proportional to

(r&"')LretjV"'V"'(1/R) =((ri V)"')V"'(1/R); (31)

where
c)111+11s ( 1 P

2'(tu+11» (S n'1S 11s)

r)si (!ss (g ) (29)

we abbreviate this harmonic by I'e&(xt,yt, sr) We sup-.
pose that the charge density of distribution 1,p(x&,y&,si),
may be represented by an absolutely convergent power
series, each term being of the form

and where g("') and %("') are the molecular multipole
moments of order ni and n2, respectively. The axes of
cylindrical symmetry are denoted by s& and s2. The
"mixed" tensor components (29) may be evaluated
directly by applying Maxwell's theory of poles. " Sup-
pose that in three-dimensional space the directions of n
axes h~, h2, , h„are given with respect to a 6xed
Cartesian coordinate system. Let X, denote the cosine of

"E.W. Hobson, reference 6, pp. 129 ff. ; T. M. MacRobert,
SPherical Harrr}onecs (Dover Publications, New York, 1947),
p. 231 ff.

xt"'yr 1'sr"'g(rr), (32)

~ E. W. Hobson, reference 6, p. 154 ff.

with pi+ps+ps&~s. It is assumed that the radius of
convergence is infinite and that the power series is
uniformly convergent on the surface of a sphere with
arbitrary radius. We multiply (32) by (31) and integrate
over the surface of a sphere with radius r~. The result is
given in Hobson's integral theorem's (we omit sub-
scripts 1):
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Iv. SECOND-ORDER INTERACTIONS

In conventional perturbation theory, the second-
order interaction energy is given by the matrix sum

IIo.'II.o'

jV, =
+0 +a

(34)

where ~ labels the energy eigenstates of the system. E„
is the energy eigenvalue of the state I(., and the summa-
tion extends over all excited states. To simplify the
evaluation of (34), it is assumed that the ground state is
nondegenerate and that the excited levels lie in a
relatively narrow band on the energy scale (narrow
compared with the average distance to the ground
level). In that case the energy denominators may be
replaced by a single "average excitation energy" of the
system, ""and the problem reduces to the computation
of the first and second powers of the perturbation
Hamiltonian in the ground state. We need here only be
concerned with (H"). For "nonoverlapping" charge
distributions the general term in (H") may be written as

x»y»z»I'„(x, y, z)dS

2-E-:(s+~)3!—4 ys+n+2

Ll (s—~)3.(~+~+1) '

(B B B)
XV' "F'

~

—,—,—~x"'y"'z"', (33)"
(.Bx'By'Bz&

where x, y, and s' are put equal to zero after the operation
is performed. The result is zero if s(rl (and also if s—I
is odd). Thus the multipole series (27,28) terminate with
the term e~=s; this result holds, under the above
conditions for the charge density, even as s approaches
infinity. A characteristic property of first-order inter-
actions between permanent multipole moments is that,
if E» is averaged over the orientations of either one of
the two charge distributions, the result is zero, except
for the term n~= n2=0. This follows, as was established
before (Sec. IIA), from the properties of the T tensors.

is a spherical harmonic of degree k& in x&, y&, s&. However,
the surface integral of the product of two spherical
harmonics of unequal degree is zero. /The same result
follows directly when we apply the integral theorem (33)
twice to (35).j Accordingly, there are no "mixed"
second-order multipole interactions between spherically
symmetric distributions of charge. Next we choose an
arbitrary component of N('», say»2'yipzl", multiply by
the spherical harmonic (36), and integrate over the
surface S of a sphere with radius y~. If we abbreviate
(36) by Fli(»,yi, zr), we obtain for the surface integral,
according to Hobson's theorem (33),

f
»'yr'»" I'll(» y1 zl)d~)

2"li! ( B B B )
=4)rr&2 "+' Flr~, , ~»1'yr pzi", (37)

(2li+1)! E B» By& Bzi)

evaluated at the origin x~=y&=s&=0. After inserting
(37) and (36) into (34), one obtains

2(1+is(r 2 ll)(r 2(2)

(&")= Z Z—
ll-() ls-p (2li+1)!(2l2+1)!

XT(11+12)Dr+is]T(11+12& (38)

Thus the scalar product of two 'T:tensors occurs in the
expression for the second-order energy between two
spherically symmetric charge distributions. There are
several methods for deriving a more explicit expression
for the tensor product; the simplest one is the following.
Consider the identity

(V V) "(1/R') = (2&)!/R'"+'

The left-hand member of this equation gives upon
evaluation, remembering that

V2(1/R) =0,

(V V) "(1/R') = 2 "V"(1/R) Lri)V" (1/R)
= 2 "T("&L22)T("&.

Thus we find that

(N(11)N(21))P&jT(&1+ss)Lhsg
Substitution of (39) into (38) gives

(39)

(2li+2ls)!(r '")(r ' ")
(&")= Z Z (4o)

ll=p 12=p (2li+ 1) !(2ls+ 1) !R2l1+212+2'
We consider first spherical distributions. It follows from
(35) that in this case hr ——ll and hs= ls. This may be seen
by noting that

N( 1»Dr)T( 11+12) (36) If the distribution 2 consists of a point charge (a
proton, for example), then is= 0 and (40) goes over into

is a spherical harmonic of degree lj in xI, y&, 2'&, on the
other hand,

N(s )p $T(s +s )

y12 lI

ll=o (2li+1)R'"+'
(41)

2' A. Unsold, Z. Physik 43, 563 (1927}.
J. P. V)nt& Phys. Rsv. 41, S13 (1(g2} A. Dslgsrno snd J

Lewis, Proc. Roy. Soc. (London} A240, 284 (1957}. Legendre's polynomials. In case of a harmonic oscillator
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it is found~ that the second-order energy is still pro-
portional to (41), except that each term in the summa-
tion is divided by (ti+ts). For a Gaussian distribution,
p(r) exp( —P'r'), we have

(r")~ (2t+ 1)!/2"l!P" ' (42)

whereas, for a charge density proportional to exp (—Pr),

(r")~ (2t+ 2)!/2)(P ' (43)

V. ASYMPTOTIC PROPERTIES OF THE
MULTIPOLE SERIES

It was established before that the first-order multipole
series (26), representing the electrostatic potential at
distance R from the center of an anisotropic Gaussian
charge distribution, is divergent for all values of R. In
addition, the second-order multipole series (40) was
found to be divergent both for a Gaussian charge

ms J. H. de Boer and G. Heller, Physics 4, 1045 (1937).

When (42) and (43) are inserted into (40) and (41), or
into the expression representing second-order inter-
actions between harmonic oscillators, it is found that the
series diverge as / for a Gaussian distribution, and as 1'
for a charge density exp( —Pr), for all values of R.
The divergent character of second-order multipole series
was first pointed out by Brooks. 7

The second-order interactions between nonspherical
distributions of charge do not exhibit any new charac-
teristics as far as the asymptotic properties of the
multipole series is concerned; we shall not discuss them
in detail. To illustrate the use of the tensor formalism in
this case, let si and s2 denote the axes of cylindrical
symmetry of two molecules. We suppose that these
molecules are identical and do not possess permanent
electric dipole moments. Further, let I( denote the
anisotropy factor of the polarizability; we indicate by
(p')A„one-third of the sum (p,')+2(p '). For ki ——li ——ks
= le = 1 (second-order dipole interactions) the expression
(35) reads, if we replace the symbol fn7 for n= 1, 2 by
the more conventional notation ( ) and (:),
(1 iui). T'" (PsPs): T'"

=(ps) s((1—s)sT(s) ~ T(s)/3s(] —s)r (T(s) ~ T(s)) (sisi)

+ (T'" T"&) (ssss) 7+9s'$T "&(siss) 7'}. (44)

If it is assumed that the fundamental frequencies parallel
and perpendicular to the length axis of the molecule may
be taken as equal, then (44), divided by —2 times the
average excitation energy, represents the second-order
London dipole interaction. The equivalent form of (44)
in terms of the orientations of the molecular symmetry
axes was first derived by de Boer and Heller. "Aniso-
tropic components of higher-multipole interactions may
be evaluated in a similar manner. Note that the first-
order expressions contain s components of one T tensor,
whereas in second order the s components of the product
of two T tensors occur.

Ei(x) = t ' exp(+t)dt;

Ei(—x) = t ' exp( —t)dt.

When (45) is expanded as a series of inverse powers of R
and exponentially decreasing terms are neglected in-the
result, then it reduces to the same divergent series (41).
Thus, if the point of reference lies inside the charge
distribution, the second-order series diverges, whether or
not a Taytor expansion is ernptoyed for H'. Apparently
the divergence is inherent in the type of expansion used
(power series in R '). It can now readily be shown that
the series (41) is the asymptotic expansion in inverse
powers of R of the true energy of interaction; this was
already concluded by Brooks. If a real function f(R) of
a real variable R can be formally expanded as

f(R)= Q a„/R",
n=P

(46)

and if f~ represents the sum of the first X terms of this
series, then (46) is said to be the asymptotic expansion
of f(R) if

for all positive cV (Poincare). It follows that the series
(41) is the asymptotic expansion of (45) and, since

I G. M. Roe, Phys. Rev. 88, 659 (1952).

distribution exp( —P'r') and for a simple exponential
exp( —Pr). It is therefore important to analyze the
relation between the multipole representations and the
(correct) finite energy of interaction between distribu-
tions of charge.

Brooks~ asserted that the second-order series diverges
because of the use of Taylor's expansion for r;&R in
regions of space where this condition is not satisfied. He
removed the divergence by limiting the integration to
the region (r;(R) of configuration space, neglecting
contributions to the energy of interaction outside that
region. The new series is then convergent for R&0.
However, it was pointed out by Dalgarno and Lewis'
that Brooks' assumption concerning the origin of the
divergence is incorrect. The second-order energy be-
tween a ground-state hydrogen atom and a proton had
been evaluated by Roe' without the use of Taylor's
expansions: the result, expressed in atomic units, is

(H")—(H')'= (2/R) f (2R+1) exp (—2R) Ei(2R)
+ (2R—1) exp(+2R) Ei(—2R)
—2/R+4(1+1/R) exp (—2R)

—2R(1+1/R)' exp( —4R)}. (45)

In this expression Ei(x), Ei(—x) are the exponential
integ rais
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(V(R))= 2u'ysr l exp(+u'R')

exp/(n' —y') s' —2n'Rz jds

X exp L
—n'I')dg. (47)

Next, expL(n' —y')z'j is expanded as a power series in
z', which gives

(n2 ~2) n/2

(V(R))= 2n'ysr *' exp(+n'R') Q I„, (48)
ts=o (ts/2)!

'" H. Jeti'reys and B.S. Jeffreys, Methods of 3luthematscal Physics
(Cambridge University Press, New York, 1950), p. 500.

28 Jeffreys and Jeffreys, reference 27, p. 502.
stt J. Airey, Phil. Mag. 24, 521 (1937); D. Shanks, J. Math.

Phys. 34, 1 (1955); Ph.D. thesis, University oi Maryland, 1954
(unpublished).

asymptotic expansions are unique, 'r (41) is the appro-
priate representation of (45) even though the series
diverges. For each value of the distance R there is an
optimal number of terms of the series to be used to
represent f(R) Th.e error involved is of the order of the
last term retained; the smaller R, the larger the error
and the smaller the optimal number of terms. To
minimize the error it is usual practice to include for a
given R all terms up to the smallest one and to add half

of the smallest term. " If this proves too lengthy a
procedure then other approximate methods are avail-

able."
It will now be shown that similar properties are

exhibited by the divergent first order m-ultipole series

(26). Let x, y, z denote the Cartesian coordinates of an
element of charge of an anisotropic Gaussian distribu-

tion; the normalized charge density is given by (22)
and the z axis coincides with the axis of cylindrical

symmetry of the distribution. We evaluate the electro-
static potential (V(R)) for convenience along the s axis,
and we restrict ourselves to such large values of R that
terms decreasing exponentially with increasing R may
be ignored. In terms of the coordinates st=

~
R—r j and

z, the expression for the potential is

for even e, with

n/2

I„=exp(—u'R') P.=o (e—2P)!(2nsR)s~t

p+8
X ~ exp( —n's')ds. (50)

~ —a

Next we insert (50) into (48), rearrange the resulting
double summation, and find, after some minor rnanipu-
lations (again ignoring exponentially decreasing terms),

p1 1q & (2p)!
(V(R))= 2 I

——
I

o=o Ey n ) 2 op!R o+~
(51)

This result is just the same as that obtained from the
multipole expression (26) for cos8= 1.Since we have not,
in the present derivation, made use of a Taylor expan-
sion f'or V(R), we conclude that the divergent character
of the first-order multipole series (26) is not induced by
the use of a multipole Taylor expansion in regions of
con6guration space where it has no validity, but that it
is a characteristic of the series in inverse powers of R. It
follows that (26) is the asymptotic expansion of (51).
The smallest term in the series will occur approximately
for the integral value of tt nearest to 2(PR)'. The order
of this term is the higher the larger the value of R; the
error involved is of the same, order of magnitude as
that of the last term retained.
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s"exp( —2n'Rs)ds exp( —n'I')dl. (49)J )R—z(

When I„ is integrated by parts and only those terms
which do not decrease exponentially with increasing E.
are retained, then the result is


