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inverse width of the echoes is a direct measure of the
magnitude of the defects. However, the theory is valid
only if the condition (4), yH:>>a, is fulfilled; and in an
early stage of this work we found the width of the
echoes to be strongly dependent upon the magnitude
of Hi. This fact can be understood in a somewhat
elementary manner by saying that H; turns only the
iodine spins for which e <vyHj, so that the distribution
of the spins contributing to the signal has a width
vH;. Therefore, one should expect for small H; an
inverse echo width proportional to H,. Figure 4 shows
that this is indeed the case. The fact that the inverse
echo width becomes independent of H, for the larger
values (H;>350 gauss) makes us believe that we have
reached the real distribution. Since the signal is too
small to study in detail the distribution of the gradients
f(a), we define an average value AH expressed in gauss
(or Av expressed in frequency units) by

AH=1/~T,
Av=1/24T,

T being the half-width of the echo E; at half maximum.
AH is the quantity plotted on Fig. 4. Sample 4 is a
tube filled with small crystals (~1 mm?) of KI of
commercial grade and shows a AH of 18 gauss (Av
=15.3 kc/sec). Sample B is a single crystal of KI and
shows a AH of 35 gauss (A»=29.8 kc/sec). After
crushing crystals of sample 4, we get a AH of 25 gauss.
By melting and quenching of the same crystals, we get
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F16. 4. Inverse echo width AH as a function of the rf field H;.
In the limit of large Hi, AH is a measure of the average inter-
action between the quadrupole moment of iodine and the random
gradients due to the defects in the KI crystals.

AH=36 gauss. Melting and quenching of sample B
did not change, within experimental error, the distri-
bution of the gradients. This method seems to be a
powerful tool for the study of strains and defects of
cubic crystals.
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The measurement of electron spin-lattice relaxation times for paramagnetic crystals at low temperatures
is complicated by the fact that the spin specific heat can be much larger than the lattice specific heat.

At low temperatures direct processes dominate in

the spin-lattice relaxation mechanism and evidence

exists that indicates that only a narrow portion of the phonon spectrum takes part in the relaxation processes.
This situation is not encompassed by usual treatments of the spin-lattice problem and a microscopic treat-
ment is presented which allows for this selective excitation of the phonon spectrum. It is pointed out that
phonon relaxation times can be the dominant quantity measured in the usual saturation spin-lattice relax-
ation measurements. The analysis indicates how pulse measurements may be used to evaluate the actual
spin-lattice relaxation time independent of the phonon relaxation time. A discussion of some conditions
under which the concept of temperature may be applied to quantum-mechanical systems interacting with
electromagnetic fields, such as in solid-state amplifiers or absorbers, is given.

INTRODUCTION

ONVENTIONALLY, in tracing the transfer of
energy between interconnecting systems thermo-
dynamic considerations are used for deriving the
* This work was supported in part by the U. S. Army (Signal
Corps), the U. S. Air Force (Office of Scientific Research, Air

Research and Development Command), and the U. S. Navy
(Office of Naval Research).

necessary conditions that must hold between the sys-
tem parameters. In applying thermodynamic principles
to a system such as an electron spin that transfers
energy to its surrounding lattice, we imply that the
source of energy, the spins, has low heat capacity and
that the thermodynamic bath, the lattice, has very
large or infinite heat capacity. A more general approach
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considers the transfer of energy from the source to a
system that plays the part of a thermal conductor
connected to a bath of infinite heat capacity, with
properties that can be expressed in terms of temperature
gradients and thermal conductivities.! Even this system
is unnecessarily restrictive because the simple notion
of thermal conductivity assumes that there is an
interaction that brings about an equilibrium among all
of the energy levels contributing to the conductivity of
the conductor so that a simple temperature has some
meaning or can even be defined.

The attempt to define a temperature for any of the
elements of a system, source, conductor, or bath,
requires the further assumption that the system can be
described in terms of phaseless constants which describe
the average behavior of the system. To state it differ-
ently, the density matrix described by the eigenrepre-
sentation for the system must have off-diagonal ele-
ments whose time average is zero. [Added in proof.—
That this is a general requirement is supported by W.
Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).]
For example, the description of a phase-coherent sys-
tem, such as a sample of water in a state that gives rise
to a free nuclear induction signal, in terms of tempera-
ture is unnatural. The radiation rate is far too high
and the radiation signal is coherent, a condition not
envisioned by the averaging concept of temperature.

A particular system which illustrates this difficulty
is an electron spin relaxing through lattice phonon
states, especially at low temperatures.?? It is well
known that the spin specific heat at sufficiently low
temperatures is many times the lattice specific heat;
hence the lattice cannot be considered as an infinite
bath. This is not the case when the relaxation of nuclear
paramagnetic energy states to the lattice is considered.
Unfortunately, the elegance and simplicity with which
the nuclear spin-lattice relaxation problem has been
handled have created an aura of understanding in the
field of electron spin-lattice relaxation so that the
inherent difficulties in the electron spin-lattice relax-
ation problem have been overlooked. Since the lattice
specific heat is so small at sufficiently low temperature,
a conduction problem must be visualized; that is, the
electron spins relax with their energy going selectively
to lattice modes that are resonant with, or, to use
Van Vleck’s apt phrase, on “speaking terms” with the
spin.* The lattice phonons that are in direct contact
with the spin then relax to thermal equilibrium by
transferring their energy to other phonon states and to
the actual bath. The concept of temperature is irrele-
vant here, since it is not a useful parameter with which

17. Eisenstein, Phys. Rev. 84, 548 (1951).

2 Strandberg, Davis, and Kyhl, Proceedings of the Fifth Inter-
national Conference on Low Temperature Physics and Chemistry,
Madison, Wisconsin, August 30, 1957 (to be published).

3 Gorter, van der Marel, and Boljer, Physica 21, 103 (1955);
van der Marel, van den Broek, and Gorter, Physica 23, 361 (1957).

4J. H. Van Vleck, Phys. Rev. 57, 426 (1940).
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to discuss the problem. We propose to discuss this
problem without persistent reference to temperature.

In a previous paper, which was a discussion of the
inherent noise of quantum-mechanical amplifiers, we
chose to abandon the use of temperature as a primary
parameter in the discussion of the problem.5 It turns
out, however, that a temperature can be introduced to
characterize the thermal emission from the quantum-
mechanical amplifier, since the problem is simple enough
to be reduced to a suitable description in terms of a
temperature parameter. In a very exact sense this
problem of thermal emission of quantum-mechanical
amplifiers was stated initially in a form which allows
the introduction of a temperature parameter. The
quantum-state populations were described in terms of
phaseless population numbers. This implies that the
quantum states are simply describable in terms of the
average over all possible phases of the eigenrepresen-
tation for the unperturbed system. It should be noted
that this is a powerful, albeit popular, assumption.
Many reasons can be presented to justify it. For
example, in paramagnetic systems spin-spin dipole
coupling provides a convenient mechanism to produce
this necessary averaging within the eigenstates of the
system. Several writers use the presence of this coupling
as an argument for the meaningful application of a
temperature to such a system.® We would prefer to
keep the assumption about the system in sight and to
introduce the temperature, if it is indeed useful, at a
later point.

The use of the smeared eigenpresentation for the
dipole-broadened system, which was introduced by
Kronig and Bouwkamp,” is of long standing. Its use
assumes that the observations on the state will measure
the average of the coupled system that the dipole
coupling creates, and thus the phaseless, single-spin
representation is adequate. This averaging effect of the
dipole field is important and, in fact, such a system is
describable as an average (which will eventually allow
the introduction of a temperature parameter if it is
important) only as long as the dipole term in the
Hamiltonian is the dominant perturbation. It would
be inappropriate to use such an average over all possible
state phases in a case in which an electromagnetic field
perturbs the system so that the transition probability
is greater than the inverse of the transverse relaxation
time, 7, which is the spin-averaging time. Thus, for,
example, for our calculations of the inherent noise in
quantum-mechanical amplifiers to be applicable to a
system of three or more levels that interact with a
strong electromagnetic field, the following inequality
must hold:

(71'7'2)_2>> I i H,f I 2/h2,

5 M. W. P. Strandberg, Phys. Rev. 106, 617 (1957).
N. F. Ramsey, Phys. Rev. 103, 20 (1956); H. B. G. Casimir
F. K. du Pré, Physica 5, 507 (1938).

R. de Kronig and C. J. Bouwkamp, Physica 5, 521 (1938).
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where the latter expression may be greater or less than
(w71)7% with 7, the spin-lattice relaxation time. This
restriction is also necessary for the discussion of other
properties of the system, e.g., its polarization, if the
discussion in terms of simple state populations is to be
accepted without more extensive proof.

We intend to discuss a system with dipole averaging
which is describable in terms of phaseless constants;
hence one or several temperatures can be introduced
eventually to describe the relevant state populations.
We still avoid the apparent attractiveness of such a
procedure for the reasons already given; the lattice is
far from being an infinite bath and possibly it is not
even in thermal equilibrium within itself. Under these
conditions, the use of a temperature parameter is not
only artificial, but misleading, and tends to cause
uneasiness because it allows the ready comparison of a
nonequilibrium system with better understood, but
essentially different, equilibrium systems.

STATEMENT OF THE PROBLEM

Consider the system of a spin with its characteristic
energy states broadened so that it exhibits an equiva-
lence with a system of coupled spins. We follow Van
Vleck* exactly [starting from his Eq. (18)]. As he
delineates clearly, the spin is coupled to the lattice
through the mixing in second- and higher-order per-
turbations of the spin-orbit and orbit-lattice coupling.
Such mixing gives rise to spin-lattice matrix elements
that depend on the parameters of the spin and electronic
state of the ion, and on the phonon excitation expressed
in terms of the phonon quantum number, #. The
orbit-lattice terms that are linear in the lattice-mode
displacement have the familiar (z|n==1) off-diagonal
matrix elements for their dependence on phonon exci-
tation. The harmonic oscillator representation that is
used makes these elements proportional to 4/(n+1)
and 4/% for the + and —, respectively. The absolute
squares of these elements appear in the perturbed
Hamiltonian. If we keep sight of these elements ex-
plicitly, we can indicate the necessary change in the
equilibrium values of the phonon quantum number
which is necessary to accommodate the spin energy
that is being transferred to the lattice. The power
transfer for a pair of levels z and 7, with spin populations
N; and Nj, an energy difference E;— E;=hv;;, and a
spin transition probability per unit of phonon excita-
tion, A4,;, can be given as

Pij=hvp(vi)) [N:Asj(ni+1)—N;A jkniz)], (1)
where (#,) is the mean phonon quantum number for
phonons having a characteristic frequency »;;, and
o(v;;) is the density of phonon states,

1 2
p(vij)= V<—+—3)47FV1':21

18 g

where V is the crystal volume, and v; and v; are the
longitudinal and transverse sound velocities at »;;.

Note that by maintaining the explicit phonon popula-
tion the spin transition probability has the familiar
property 4;;= A4 ;;. The more obscure form of transition
probability, which suppresses the dependence on #,
has the property that w;;=exp (kv/kT)w;; only because
of the restrictive assumption that thermal equilibrium
in the phonon states exists; that is, (n)=_[exp (hv/kTL)
—17T7, and thus (z+1)/{n)y=[exp (hv/kT1)].
Equation (1) now simplifies to

Pij=hVijAijNiP(Vii)[1—<”if>(%”‘1)]- (2

1

Now, the first important observation to be made is
that when N,~N,, that is, with the spin system truly
saturated, the relaxation is independent of the lattice
“temperature” or is independent of the degree of phonon
excitation. This is drastically different from previous
pictures that postulated a conduction process from spin
to lattice. This process assumed that the spin tempera-
ture is nearly equal to the lattice temperature, and
hence has no applicability to the cases of spin saturation
usually encountered. In any case, only as long as the
phonon excitation is small compared with N,/ (N,;—N,),
will the lattice phonon temperature have a negligible
effect on the rate of spin-lattice energy transfer.
Finally, we note that the conventional heat-flow equa-
tion can be obtained from Eq. (2) for the case of
hv<kT, so that the following approximation holds:

kT1, N; hVij
<nij>—'\—i ) ~14 ’
hVij N; kT,

(3)
T,—Ty
Pz’j=hViinjNiP(Vij)['——‘T ]

The rate of change of phonon quantum number can
be written in terms of the power transferred from the
spin to the resonant lattice modes, and of the transfer
rates of this phonon energy to other lattice modes and
to the actual bath. From a physical point of view, it
seems best to express phonon-phonon relaxation in
terms of the actual phonon quantum numbers if an
umklapp process is used.® Such a process arises from
vibrational anharmonicity, and thus it will increase
with the phonon quantum numbers, since they measure
the vibrational energy, and hence the anharmonic
contribution. If the phonon-phonon process is so
improbable that processes induced by wall effects
predominate, then it would seem that this relaxation
effect can be lumped with the direct transfer of phonon
excitation to the true bath.

It might appear dangerous to even consider the
volume umklapp process, since this implies a general
increase in lattice phonon excitation, and a possible
increase in the higher-order Raman scattering process

8 R. Berman, in Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd., London, 1953), Vol. 2, p. 103.
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Y Fic. 1. Energy-level dia-
gram for spin system which
allows for indirect satura-
tion of spin levels through
the use of anomalous pho-
non excitation.

4

in the spin-lattice coupling. This is probably not the
the case here, however, for the phonon modes that are

“speaking terms’ with the spins form such a small
fraction of the total number of modes, i.e., 3v2Ap/vmax’
~1071? and, even at microwave frequencies, they are
at the low-energy end of the distribution. The Raman
process is dependent upon having high excitation at
more than one frequency region in the phonon distri-
bution, which is apparently not the case here. The
other modes could hardly build up sufficient excitation
to enter strongly into a Raman process, and thus they
act more as an energy sink.

That the high phonon excitation is restricted to one
frequency interval is known to be true from the fact
that saturation quantum-mechanical amplifiers have
been operated with large active-state populations.
These amplifiers have spin populations far from thermal
equilibrium which are in contact with phonons in states
that are not resonant with the saturation field. The
states of inverted spin population provide a potent
source, and the remaining transition, a potent sink, for
phonon excitation. Thus operation of a quantum-
mechanical amplifier would be difficult in the presence
of high phonon excitation away from the saturating
frequency. But, as has been shown, a solid-state quan-
tum-mechanical amplifier has been made to operate
with the microwave input power saturating a pair of
levels whose frequency difference is nearly degenerate
with the frequency difference of the appropriate pump-
ing levels. This physical situation is as indicated on Fig.
1. The device can be made to operate by predominantly
saturating levels 3-4 and amplifying between levels 1-2.
Or alternatively, the device may be operated more con-
ventionally by saturating directly levels 1-3 with the
electromagnetic radiation. In the first mode of operation
the electromagnetic radiation saturates the levels 34,
which, in turn, create an anomalous phonon excitation
in the region of the phonon spectrum of frequency v,.
Levels 1-3 are in contact with these anomalously ex-
cited phonons, since the frequency of 1-3 is nearly equal
to the frequency of 3-4. Levels 1-3 serve as a sink for
this anomalous phonon excitation and are saturated
by it. This anomalous phonon excitation substantiates
our model of a saturated spin system in contact with,
and giving rise to, a selectively-excited lattice phonon
spectrum.? It is apparent that the anomalous phonon

9 Strandberg, Davis, Faughnan, Kyhl, and Wolga, Phys. Rev.
109, 1988 (1958).
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spectral width cannot be great, for if this were so levels
2-3 would also be saturated and the device would have
marginal operation. Only by means of a narrow anoma-
lous phonon excitation could the necessary states be
saturated and the device be made to operate in the
fashion described. This phonon distribution is shown
in Fig. 2.

The anharmonic umklapp process is dependent like-
wise upon the excitation of the interacting modes with
the anomalous phonon distribution that we visualize
here. The modes outside the spin-relaxation frequencies
would interact much less with each other and, within
the limitations imposed on the mean free path by
lattice imperfection, would provide a high conductivity
path to the bath. The possibility of umklapp at micro-
wave frequencies is probably comparatively low in
reasonably good crystals.’® The most probable points
for scattering phonons of long wavelengths (several
thousand angstroms) which correspond to phonons at
microwave frequencies, are lattice imperfections suffi-
ciently large to be “seen” by these long wavelengths.

We may also note that although the phonon modes
away from spin-resonance frequency are fairly well
uncoupled from each other, those in the region of the
spin resonance are strongly coupled to each other
because of their interaction with the paramagnetic spin.
For this reason, we can justifiably treat these phonons
by a simple mean-value parameter.

With these things in mind, we can write the time
dependence of the mean phonon quantum number with
a lumped umklapp and scattering relaxation time
(which will depend upon the phonon excitation) and a
direct bath relaxation time as

(thi5)=

h”wP(”w) 4

. <nu>oj[—+—] @

B

Equation (4) introduces an excitation width, A,
which characterizes the effective width of the phonons
that are on speaking terms with the spins. From the
uncertainty relationship, it is apparent that this width
will depend not only upon the spin-spin relaxation time
79, or the effective width of the spin levels, but also
upon the effective phonon relaxation time. Presumably,
then, A could be written as

iri 1 1
Ayg—[—+-—+—]. (5)

wLT2 TL TB

Because of the shortness of the usual spin-spin
relaxation times, this phonon width will correspond in
many cases quite closely to the width of the spin levels
themselves. We may write the steady-state form of
Eq. (4) as

P

10 C. Kittel, Phys. Rev. 75, 972 (1949).
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Equation (6) may be used to demonstrate forcefully
the need to investigate the phonon-excitation spectrum
under the saturation conditions that are possible with
microwave excitation. We note that P;;/hv;; would
normally be given as (N;—Ny)/71. Typical values for
(NVi—Ny) would depend upon the degree of saturation,
the actual crystal used, and the paramagnetic dilution.
This factor is approximately 10'® to 10% spins/cm®.
The term p(v;;) at v;;= 10" cycles/sec is approximately
105V sec. We estimate Ay to be approximately 108, and
71 to be from 10~ to 10~ sec. The factor for the phonon
relaxation time [7,74751 =77 must be less than
1075 to 107% sec, a number dictated by the usual
crystal dimensions. These numbers yield a possible
range in the deviation of the phonon excitation from
equilibrium, [(#;;)—(n:;)0], of between 1087’ and
10277, This means that the deviation of the phonon
excitation from equilibrium with the bath would be
given as from 10%7.'/2T5° to 10%7;’/2T5°, where T'5°
is the bath temperature. In order for this phonon devia-
tion to be negligible at low bath temperatures, in one
extreme 7" would have to be less than 2X10-675° sec
or the phonon mean free path would be of the order of
millimeters, and at the other extreme 7.’ must be less
than 2X10727'5° sec and the required phonon mean
free path would be the rather ridiculous amount of
approximately 1/100 of a wavelength.

If the value of (n,,) given by Eq. (6) is used in Eq.
(2) and a saturation parameter « is introduced by
defining it as

K= (Nj—Ni)/(Njo—Nio), and N=1V¢+Nj, (7)

we find that the saturation power is given as
P hvi;dijp(vi;) N (1—k)

Y 2L 1+A45(N jo— Nio)o(vij) '/ p(vii) Av]
With equilibrium phonons, i.e., Av— =, the spin-lattice
relaxation time ;% for the parameter (1—«) would
be given from Eq. (8) as 71;,%=2/A4;0(v;;). Thus,

saturation alters the spin-lattice relaxation time for a
similarly defined parameter. Hence

2(Njo— N7/
Crui]=7ru"+ . 9)
p(vi))Av

®)

A spin-lattice relaxation time inferred from a saturating
c-w magnetic field may actually measure the lattice-
phonon relaxation rate (which is independent of the
properties and quantum state of the paramagnetic ion)
along with the spin-lattice rate, except for systems with
very large saturation ratios.

Several things should still be mentioned. First, in
the case of near degeneracy of energy-level differences,
either within one ion or between different impurity
ions in a crystal, anomalous relaxation rates can be
observed that arise from energy transfer to states that
have nearly degenerate frequency differences because

<n>

[ !
Vawp v,

YV —

Fic. 2. Anomalous phonon distribution.

they serve as a thermal sink. This effect is really
important only because 7K, so that off-resonant spin
exchange is still reasonably probable compared to
spin-lattice effects.

The treatment of spin-phonon interactions presented
here has been limited to the special case of two-spin
levels, mainly for the purpose of expositional clarity.
The extension of the model presented here to models
of more levels is accomplished by summing over ¢7 in
Eq. (1). Extension of these ideas to particular cases
with many levels will, no doubt, disclose many inter-
esting situations. The purpose here was mainly that of
sketching in a general way the reason for possible
discrepancies in the evaluation of spin-lattice relaxation
times, as determined from cw and from pulse measure-
ments.

Second, we reiterate that direct radiative relaxation
is unimportant in the case we treat, i.e., incoherent
operation with '

1/ (7r7'2)2>>] u;;* Hrf! 252,

Obvious examples in which this is not so are the
proton-free induction situation and the ferrite para-
metric device.

Third, it is apparent that a spin-lattice relaxation
time cannot be defined for the model that is discussed
above. The general equations, Egs. (2) and (7), describe
the spin system with a nonlinear differential equation,
so that a spin-lattice relaxation time can be defined
only in equilibrium fashion, or at best in step-wise
fashion. Measurement of spin relaxation over a wide
range of saturation conditions should allow the sepa-
ration of the effect of phonon excitation from the effect
of direct spin-phonon coupling. This means that the
relaxation of a spin system to thermal equilibrium
should be observed, if it is observed in the time domain,
throughout its observable history. But if the spin-
lattice relaxation time is inferred from frequency-
domain measurements, e.g., by observation of the cw
saturation effect,"* the saturation parameter must be
observed and analyzed for a wide range of saturation
conditions in order to separate phonon relaxation effects
from these direct spin-lattice relaxation effects.

1 G. Feher and H. E. D. Scovil, Phys. Rev. 105, 760 (1957).



