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charge. A qualitative explanation of this characteristic
follows: assume that the breakdown voltage is suddenly
applied. The current will not increase until a chance
carrier enters the junction and triggers the microplasma.
In general there will be a lag between the current and
the voltage, which will be a function of such factors as
the operating point on the instantaneous characteristic,
the temperature, and the degree of illumination. Since
the measurement involves the average inductance, the
signi6cant variable will be the average lag of the current
with voltage. As the pulse duration increases, the in-
ductive current will increase; but when the pulse dura-
tion is sufhcient, a voltage increase will not trigger any
new pulses and the lag between voltage and current
will disappear. Thus the inductive current would be
expected to go through a maximum and then go to zero
when the microplasma becomes stable, as is shown in
Fig. 18. The same characteristic would be expected to

go through several maxima for the uniform junction, as
is shown in Fig. 16.

CONCLUSION

Although the detailed mechanism of localized break-
down in silicon is not fully understood, the terminal
characteristics of a single microplasma suSce to give a
qualitative explanation for some of the terminal char-
acteristics of p-n junctions in this region.
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Birefringence Caused by Edge Dislocations in Silicon

R. BULLQUGH
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A calculation is given of the intensity distribution in a beam of plane polarized or circularly polarized
infrared light after transmission through a crystal of silicon containing a single-edge dislocation or a simple
tilt boundary. It is apparent that care must be taken to differentiate between an edge dislocation and the
region around the extremum of an inclusion, since both give similar intensity contours, the only difference
being one of absolute magnitude.

l. INTRODUCTION

OND and Andrus' (referred to as B.A. in the
sequel) have recently successfully utilized photo-

elastic methods to investigate the stress distribution
in the immediate neighborhood of an edge dislocation
in silicon. The purpose of this paper is to calculate the
expected intensity distribution near a single-edge
dislocation and a simple tilt boundary in silicon when

plane-polarized or circularly polarized infrared light is
used. We are then in a position to criticize certain of the
theoretical results and experimental conclusions quoted
by B.A. In Sec. 2, we consider the single-edge dis-
location. The intensity distribution around an edge
dislocation has been given by B.A. where it appears,
however, to have swered an anomalous reRection
about the slip-plane (compare Fig. 2 with Fig. 1 of
their paper). The simple tilt boundary is discussed in
Sec. 3, and, as might be expected, the intensity near
such a boundary falls o8 exponentially with distance
from the boundary; by a suitable choice of the type and
density of the discrete edge dislocations within the tilt
boundary, the results of this last section can, of course,

~ W. L. Bond and J. Andrus, Phys. Rev. 101, 1211 (1956).

be used to estimate the intensity distribution near a
simple twin interface. ' In both the latter sections, the
analysis is carried out using the isotopic elastic ap-
proximation. Finally, in Sec. 4, a brief discussion of the
various numerical magnitudes is given.

2. SINGLE-EDGE DISLOCATION

We erect a system of orthogonal Cartesian coordi-
nates x; (i=1, 2, 3) in the crystal, such that x~ is
parallel to the slip direction, and x~ is normal to the
glide plane. The strains around a positive edge dis-
location, of strength b, situated at the origin are then

Ax2
e)i ——— LxP(3—2v)+xss(1 —2v) j,

Ax2
ess —— fxP (1+2 v) —xs'(1 —2v) g,

2Axg(xP —xss)

' R. BuHough, Proc. Roy. Soc. (London) A241, 568 (1957).
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where r'= xi2+x22, A = b/[4m (1 —v)] and v is Poisson's
ratio. These strains are well defined at all points in the
body, apart from the singular points along the x3 axis
and here a cylinder of material, of small radius ro, must
be removed. The principal strains e~~', e22', and the
angle 8(x,) between the principal axes x and the fixed
axes x; can be found from (1):

A
eii' ———(xi—,(1—2 v) x2j,

r2

A
e22' ————(xi+ (1—2v) x2j,

r2
(2)|x,2 —x,2q

8=p tan '/
& 2xx, )'

To be specific, 8 is defined as the angle between the slip
direction (the xi axis), and the xi principal axis.
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FIG. 1. Intensity plot when the slip direction is parallel
to the polarizer.

Plane-Polarized Light

If the crystal plate is set up between a polarizer and
analyzer which are crossed, so that in the absence of the
doubly-refracting plate no light is transmitted by the
system, then the intensity of light transmitted T may
easily be shown to be

T= a' sin'(2y) sin'(8/2). (3)

In the above expression, 8 is the phase difference in the
two principal directions at any point of the crystal
plate, u is the amplitude of the incident plane-polarized
light, and y is the angle between the incident plane-
polarized light vector (polarizer) and a principal
direction. We define p as the angle between the polarizer
and the slip direction; then

2y =28+2P.

The phase angle 8 is proportional to the thickness of
the plate t, the birefringence de, and inversely pro-

r .Ic cos 2ilrcos (v-l5)
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FIG. 2. Intensity plot when the slip direction makes an angle
of 15' with the polarizer. IC = 1.

It is convenient to introduce polar coordinates (r,f),
defined by cos(f —P) =x,/r, sin(f —P) = x2//r, and thus,
from (2),

28 =. 2P —2P——,'m. (9)

With this choice of coordinates, It =0 is the polarizer
direction and

T(r P) = (B'/r') cos'(2P) cos'(P —P), (10)

where B= 2aAmtC/X. .

The contours of constant intensities are given,
therefore, by the polar equation:

r'= K' cos'(2f) cos'(f —P) (11)

where K'=B'/T. The results are plotted for K=1in'
Fig. 1 (P=O), Fig. 2 (P=15'), Fig. 3 (P=45'), and
Fig. 4 (P=90'). A plot for P=15' has been given by

3 Since the strains (2) have been deduced using the isotropic
(elastic) approximation, it would clearly be inconsistent not to
use a mean isotropic value for C. Strictly, for a cubic crystal, C
will be a function of 8.

portional to the wavelength of the incident light X. We
have, therefore,

8= (2m'/X)Ae,

where the birefringence produced by the principal
strains (2) is

&e=Cf eii' —e2s') =2CAxi/r', (6)

and C is the meae strain-optic coefficient. Since the
birefringence is always small (except at the core of the
dislocation and here the elastic approximation breaks
down anyway), we make the approximation:

sin (8/2) =8/2.

Then from (3), using (4), (5), (6), and (7), we obtain

4g2A2~2PC2 g 2—sln2 (28+2P).
X2 r'
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This is plotted in Fig. 5 for E= 1, and in this case the
intensity (birefringence) is zero normal to the glide
plane. Equation (14) is, in fact, for each value of E,
the polar equation of a pair of circles touching at the
origin with their centers on the x1 axis. Since with
circularly-polarized light the intensity is always a
minimum in the slip direction (Fig. 5), the method
could well be used to identify the slip direction as-
sociated with a particular edge dislocation, when, say,
the presence of such a dislocation had previously been
established by other means.

3. SIMPLE TILT BOUNDARY
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/

FlG. 3. Intensity plot when the slip direction makes an angle
of 45' with the polarizer. E=1.

This we de6ne as a vertical array of parallel-like
positive edge dislocations, equally spaced a distance h

apart along the x2 axis. The required difference of the
principal strains and the angle 0 are given by

T= a' sin'(8/2) =
a22 a2X2t2

-[Ars]s.
g2

(12)

B.A. but they appear to have used 2y=20 —2P which,
with our definition of 8 and P, is certainly incorrect and,
in fact, represents an anomalous reflection about the
glide plane (or a rotation of 180' about the slip di-
rection). One of the interesting points concerning these
contours is that the intensity apparently vanishes at
45 to the polarizer, no matter what angle the latter
makes with the slip direction.

Circularly-Polarized Light

In this case, the intensity distribution of transmitted
light is simply

~11 e22 ~1].

tan20= eis/(eii —ess),

I'2 = K2cos2
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Slip
direction

The intensity is therefore proportional to the square of
the actual birefringence, and, from (6), we have

T(r,f) =B' cs'oP/r'. (13)

The curves of constant intensity are given, therefore,
by the polar equation:

r'= E' cosg.

FIG. 5. Intensity plot round a positive edge dislocation when
circularly polarized light is used. This is the actual variation of
Ae (the birefringence). If= 1.

r&= K2cos (Ir-90)cos2 2Q = sin2 1Ircos22 str
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(14) where eii, ess, eis are the strains associated with the tilt
boundary.

It follows from (1) that
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and these sums can be obtained by standard methods
of contour integration; we obtain

/
/

/

/

/
/'

r=o I s

-90 -80 -70 -60 -50 " P -40

'-30

FIG. 4. Intensity plot when the slip direction is
perpendicular to the polarizer.

4Am'x» sinhX1 sinX2
(eii en) =

h [cosllXi —cosXsg

4Asr xi [1—cosllX1 cosXsf
812=—

h [cos11Xi—cosXP

(16)
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/ I

12 fcoshXr —cosXs]
(17)

tan20=
coshXy cosX2

sinhX~ sinX2
(18)

Plane-Polarized Light

With the polarizer inclined at an angle P to the glide
planes of the dislocations in the boundary, the trans-
mitted intensity is

where Xr=2vrxr/7s and Xs=2~xs/h. Thus, from (15)
and (16),

4Am'xg

( 4X10 ' cm), b is the magnitude of the Burgers
vector of the dislocation (equal to the width of the
"extra half-plane" above the positive edge dislocation),
v. is Poisson's ratio, A=wavelength of incident light
(= 10 ' cm), C= mean strain-optic coefficient, and
a=amplitude of plane-polarized light. With the above
values, we obtain

T =2.6)&10 sC'as/r'. (24)

B.A. state that the intensity 50 microns from the
dislocation is about a thousandth of what it would be
in the absence of Nicol prisms. According to (24), the
maximum intensity at a distance r=s&10 ' cm from
the dislocation is

T =10—4C'c', (25)

Circularly-Polarized Light

In this case, the transmitted intensity T is, from (17)
and (12),

~2+2 X 2

k PcoshXr —cosXs]
(21)

and therefore the contours of constant intensity are

LcoshXr —cosXs]'= (s'E'/h')Xts. (22)

When h —+ ~, the above expression tends to the single
dislocation expression LEq. (14)].

4. DISCUSSION

The magnitude of the maximum intensity T near
a single positive edge dislocatiori when plane-polarized
infrared light is used can be calculated from (8). Thus,
at a distance r from the dislocation,

—u24+2~2]2C2/) F2 (23)

where t= thickness( 2 mm), 2 = 0/L4m (1—v)]

sin'(28+2/), (19)
7s fcoshXt —cosXs]

where 8 and 8 are given by (18) and (10), respectively.
Therefore the equation for contours of constant T is
given by

LcoshXr —cosXs]'= (m'E'/h')Xrs sins(20+2P). (20)

Note: if Is-+ oo, then t) in the above equations Lgiven
by (18)]becomes 0 for the single dislocation )given by
(2)], and the intensity (19) becomes identical to (8)
for the single-edge dislocation. This, of course, provides
a check on the veracity of the above expressions.

and therefore the ratio of this itensity to the intensity
of the incident light T;=2u' is

T /T, =5X10 'C'. (26)
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Similar observations have recently been reported on Rochelle
salt [V. L. Indenbom and N. A; Chernycheva, Doklady Akad.
Nauk. S.S.S.R. 111, 596 (1956)g but, in this case, the "extra
half-plane" is about 100 A wide, and is perhaps more aptly
described as the extremum of an inclusion and not as a macro-
dislocation.

The ratio given by B.A. is thus 20/C' times greater
than our estimate. This discrepancy factor varies from
20(C=1) 4 to 4(C=2.3).' The latter 6gure almost
removes any discrepancy in magnitude with B.A. and
confirms that their Fig. 2 does, in fact, represent the
intensity distribution around an ordinary dislocation.
However, the large diGerence in measured C and the
consequent larger effect on the value of 20/C' empha-
sizes the care that must be taken in identifying a
photograph, such as Fig. 2 of B.A. , as being associated
with an ordinary dislocation. For, if we assume C=1,
then the discrepancy disappears if the photograph is
not the intensity around an edge dislocation with a
single extra half-plane, but is, in fact, the intensity
distribution around a macrodislocation with an "extra
half-plane" about 4 A wide '


