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Heat Capacity of Copper-Germanium Alloys below 4.2'K
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Heat capacity measurements below 4.2'K have been made on a series of alloys in the primary phase of
the copper-germanium system. When corrected for lattice expansion, the resulting change in the electronic
specific heat for low electron/atom ratios is found to be the same as that for the copper-zinc system. In
neither case is the variation consistent with that expected for a parabolic valence band, thereby lending
support to the previously advanced hypothesis that the Fermi surface in copper departs appreciably from
sphericity. Both systems exhibit the same variation of Debye temperature with electron concentration,
when appropriate corrections are made for the differences in the atomic mass and volume of the two alloy
series. This supports the idea that the variation of the elastic constants in these alloys is influenced prin-
cipally by the proximity of the Fermi surface to the boundaries of the first Brillouin zone. The variation of
elastic constants with solute concentration, as deduced from the present work, is compared with that
obtained from ultrasonic pulse measurements at room temperature.

L INTRODUCTION

~CONSIDERABLE interest attaches to the behavior~ of the primary solid solutions of copper when

alloyed with elements directly to its right in the same
row of the periodic table. According to the rigid-band
model of Hume-Rothery and Jones, ' the character of
these alloys is determined principally by the valence-
electron concentration. It is assumed that each solute
atom contributes its valence electrons to the collective
4s band of the alloy, thereby altering the Fermi level of
the system without changing the band shape from that
of pure copper. As Mott' and more recently Friedep
have pointed out, this picture cannot be correct, since
the additional electrons contributed by the solute are
localized near the solute atoms in such a way as to
screen out their additional nuclear charge. Leaving
aside the question of whether or not these screening
charges occupy bound states, it is clear that, in dilute
alloys at least, the majority of copper atoms see the
same potential as in the pure metal, since the screening
radius is of the order of 1 A. This means that the Fermi
level in the alloy must be the same as that in parent
metal, contrary to the situation envisaged in the
rigid-band model.

Using the Thomas-Fermi model of a metal, however,
Friedel4 has been able to show that, in the first-order
approximation, the rigid-band model correctly predicts
the sects of alloying on the density of electronic states,
even though it is incorrect conceptually. It thus follows
that, insofar as the Friedel theory correctly describes
such systems, measurements of the electronic heat
capacity of alloys of copper with zinc, etc., should give
the band shape in copper.

The present work describes experiments to determine
the variation of electronic heat capacity with solute

'N. F. Mott and H. Jones, The Theory of the Properties of
Metuls und Alloys (Clarendon Press, Oxford, 1936),p. 171.

s N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936).' J. Friedel, J. phys. radium 14, 561 (1953).' J. Friedel, Advances irs Physios (Taylor and Francis, Ltd. ,
London, 1954), Vol. 3, p. 465.

concentration in the primary phase of the copper-
germanium system. These measurements were under-
taken to obtain a comparison with the previously
determined electronic properties of the copper-zinc
alloys. The degree of correspondence between the two
systems is, of course, a direct measure of the correctness
of the Friedel theory, and also an indication of how far
the density-of-states curve for the n-brasses may be
taken as representing that in pure copper.

II. EXPERIMENTAL

The calorimeter and techniques used in the present
work have been described in an earlier paper' and do
not need further elaboration. As in the previous experi-
ments, the specimens were in the form of cylinders,
1 in. in diameter and 1—, in. in length, weighing approxi-
mately 180 grams. They were prepared by the induction
melting of appropriate quantities of high-purity copper
and germanium under an argon atmosphere, care being
taken to ensure good mixing of the components. In no
case did subsequent chemical analysis of the ends of
each ingot reveal a macroscopic inhomogeneity exceed-
ing 0.05% germanium. The ingots were hot-worked,
and then maintained at 900'C for about 14 hours to
remove coring and to assist in their homogenization.
After being turned to size, they were finally annealed
for 1 hour at 700'C in an argon atmosphere and furnace-
cooled, except for the last specimen. This sample was
heated to 800'C and water-quenched to ensure that
only the e-phase was present in it.

III. RESULTS

In all cases it was possible to obtain a good straight-
line fit to the heat-capacity data when plotted as C/T
~s T'. The speci6c heat is thus of the usual form

C=pT+A (T/0)',
these terms representing the electronic and lattice con-
tributions, respectively. A least-squares analysis of the

s J. A. Rayne, Phys. Rev. 108, 22 (1957).
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results yields the values of y and 0' shown in Table I.
In this table, the representative uncertainties represent
both systematic and random errors, the former being
estimated to be about —',

%%u~. The variation of y and 0'

with germanium concentration is shown in Figs. 1 and 2.

TAnLE I. Values of y and O~ in the relation C=yT+A(T/0)'
for copper-germanium alloys.

Composition
(atomic
percent

germanium)

0
0.44
0.84
1.82
2.63
4.38
6.54
8.55

10.93

y (miilijoule
mole ~ deg 2)

0.687~0.012
0.709
0.722
0.722
0.731
0.742
0.746
0.750
0.765

0 (oK)

344.5+3'b
345.0
344.5
343.6
342.0
337.9
329.6
321.2
315.2

a Mean values of y and O. See Corak, Garfunkel, Satterthwaite, and
sexier, Phys. Rev. 98, 1699 (1955), and J. A. Rayne, Australian J. Phys.
9, 189 (1956).

b Random error estimated from least-squares analyses of C/T vs T2 at
99% confidence level. Systematic error assumed to he q J0.

from the formula obtaining for free electrons. In this
case it is readily shown that the density of states at
the Fermi surface $(Ee) is related to the total number
of electrons X by the formula

3m /8m q
&

x(z.) =
i

—
(
x-:v:,

2h &3J

where U is the molar volume. Thus, if a is the cubic-
lattice parameter, we have for a fixed total number of
electrons

IV. DISCUSSION

(a) Electronic Heat Capacity

Reference to Fig. 1 shows that the y value, and hence
the corresponding density of states, for the copper-
germanium system rises quite rapidly at low solute con-
centrations and then tends to Qatten out. This behavior
is roughly similar to that found for the copper-zinc
alloys.

To achieve a more detailed comparison, it is necessary
to make allowances for the diGerences of lattice expan-
sion in the two systems. As in the previous paper, it is
assumed that the effect of a change in the lattice
parameter can be computed with sufficient accuracy

0.65 I I l l
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FIG. 1. Variation with solute concentration of electronic
heat capacity for Cu-Ge alloys.

reduce the density-of-states data to a common lattice
parameter, vis. , a=3.608 kx, corresponding to that
for pure copper. The two sets of reduced data are
shown in Fig. 3 plotted as a function of electron/atom
ratio, it being assumed that each zinc atom contributes
one and each germanium atom three additional valence
electrons to the alloy. It will be seen that, to within
experimental error, the two sets of corrected data are
coincident for low electron concentrations but that there
is an increasing divergence between them for higher
concentrations.

Using the Thomas-Fermi model, Friedel4 has demon-
strated that the density of states in an alloy is related
to that of the pure solvent after the manner shown in
Fig. 4. In the 6rst-order approximation, the band is
shifted back mitholt change of shape by an amount

E1=— VPdr,yJ

350

~ 340
0

c, 330
E

'

i(D

and the Fermi level is altered by an amount AEO. The
additional levels at the bottom of the band may be
subtracted therefrom to form bound states, but this
question need not concern us here.

The perturbing potential due to alloying, Up, satisfies

~ 320

With the known data for the lattice parameters of the
Cu-Zn and Cu-Ge systems, ' Eq. (3) can be used to

2 4 6 8
Atomic Percent GermaniUrn

l0 l2

' W. Burne-Rothery and G. V. Raynor, The Structure of 3IIetals
and Alloys (Institute of Metals, London, 1954), third edition,
p. 170.

FIG. 2. Variation with solute concentration of Debye
temperature for Cu-Ge alloys.



608 JOHN A. RAYNE

032

)
QP

E
O
O

C
~ 0.30
0
0)

(O
LIJ

Cu-Ge
—Cu-Zn

o

0.28
LO 1.2

Electron / Atom Ratio

1

l.3

Fro. 3. Variation with electron/atom ratio of corrected density
of states for Cu-Ge and Cu-Zn alloys.

This is precisely the result computed from the rigid-
band model, assuming that the Fermi level shifts by an
amount corresponding to the change in electron con-
centration.

It would thus be expected that the variation of the
density of states as a function of the electron/atom
ratio should be the same for different alloys systems.
As Fig. 4 shows, this appears to be the case for Cu-Zn
and Cu-Ge at low electron concentrations, and so one
may reasonably expect that this part of the curve
correctly represents the density-of-states curve for
copper just beyond the Fermi level. Now, expanding
(12), we find

the equation

V'Vr =4rriV(Eo)(Vr —DEo),

AN(Ep) cZ 1 t'diV)

1V(Ep) v 1P(Ep) ldE) o

(13)

1/R' =c/r, ', (6)

subject to the boundary condition that it vanishes on
the surface of a sphere of radius R. This is defined, in
terms of the radius of the atomic sphere r„by the
equation

For the case of a solvent having a parabolic valence
band with p electrons per atom, this reduces to

6)V (Ep) cZ

iV(Ep) 3p

where G is the concentration of solute.
The first-order solution of Eq. (5) is found to be

where

The screening parameter q is given by the expression

since y= rsv-sk'JV(Eo). In the present case p=1, so that
for an electron/atom ratio of 1.03 (cZ=0.03) one would
expect from (14) to find a one percent change in y,Z qR coshLq(R —r)j—sinhLq(R —r)j

Such a discrepancy can be explained by assuming
that the Fermi surface in copper departs appreciably

hE p Zq/qR cosh——qR —sinhqR. (g) from a spherical shape. Since the density of states is
given by the relation

q'= 4orX(Ep), (9)

which equation gives a screening distance q
' of the

order of 1 A for copper. For low solute concentrations
(R))r.), it is easily shown that (7) and (8) reduce to

Vi ———(Z/r)e o"; AEp=0. (1o)

GZ4~ GZ

V ~ q' v vÃ(Eo)

Thus the potential due to the solute atoms is screened
out in a distance of about 1 A and the Fermi level of
the alloy is the same as that of the solvent.

By using (7), (8), and (9), it is easily shown that,
providing second-order eGects are small,

dS
A'(Eo) =2 V

lgrad, El
(15)

the integral being taken over the Fermi surface, 1V (Ep)
will increase more rapidly than in the free-electron case
when

~
gradrEl is small. This situation occurs wherever

there is distortion of the Fermi surface resulting from
its approach to any set of faces of the Brillouin zone
relating to the outermost electrons of the metal. In the
case of copper, the sphere containing one electron per
atom approaches quite close to the (111) faces of the
first zone, so that it is probable that the Fermi surface

Z being the valence of the solute relative to the solvent
and v being the atomic volume. Hence, for the density
of states in the alloy, we have

LIJ

Z.'

1
1P(Eo+~Eo) =Pl Eo+~Eo— Vrdr l, —

V~ )
whence, by (11),

( cZ
X'(Eo+&Eo)=El Eo+

v+(Ep) ) (12)

UE l Eo

Fzo. 4. Rigid-band model for an alloy according
to Friedel (reference 4).



HEAT CAPACITY OF Cu —Ge ALLOYS BELOW 4. 2'K 609

is quite distorted in their vicinity. The sharply rising
density-of-states curve would then be due to the
approaching contact between the Fermi surface and the
(111}faces of the zone. It is of interest that Klemens'
and Jones' have made similar proposals about the
energy surface in copper to explain certain of its trans-
port properties, vis. , the abnormal ratio of its ideal
electrical and thermal resistances at low temperatures
and the positive sign of its thermoelectric power.

Although susceptibility measurements on copper
alloys, ' soft x-ray absorption data, " and theoretical
energy band calculations" "have been used to obtain
information concerning the band shape in copper, the
conclusions reached are not mutually consistent. As it
is felt that the electronic heat capacity provides more
direct information about the band structure than the
above, the latter will not be considered further. The
only other firm evidence regarding the shape of the
Fermi surface is that obtained by Pippard, " from
measurements of the anomalous skin eGect in copper
at low temperatures.

It may be shown that the principal surface resistances
of a planar single crystal are related to the principal
curvatures of those parts of the associated Fermi surface
with normals parallel to the plane of the crystal. By
making measurements on copper single crystals of
diGerent orientations, Pippard found that the surface
resistance and hence the curvature of the Fermi surface
were markedly anisotropic, so that the latter must
deviate appreciably from sphericity. With a suitable
choice of an initial form for the surface, Pippard was
able to correct its shape so that its curvature reproduced
the experimentally observed anisotropy in surface re-
sistance. The resulting Fermi surface, although agreeing
in general with that proposed here, diGers from it in
that contact with the (111}faces of the zone has already
occurred. As Pippard admits, however, this feature is
not at all unequivocal, being based on somewhat un-
certain theoretical grounds. It is thus possible that the
Fermi surface is only close to the zone boundary. The
present work favors this viewpoint, since zone contact
would necessarily imply that the density of states de-
creases with increasing energy.

Recently, Jones" has considered the effect of incipient
contact between the Fermi surface and a set of zone
faces on the distribution of lattice modes in a metal at
low temperatures. He concludes that there is a resulting
change, in what normally is the zero-point energy of
the system, which yields a contribution to the heat
capacity that is linear in temperature. This term in-

~ P. G. Klemens, Australian J. Phys. 7, 70 (1954).' H. Jones, Proc. Phys. Soc. (London) 68, 1191 (1955).' W. G. Henry and J.L. Rogers, Phil. Mag. 1, 237 (1956)."Y. Cauchois, Phil. Mag. 44, 173 (1953).
"H. M. Krutter, Phys. Rev. 48, 664 (1935)."D.J.Howarth, Proc. Roy. Soc. (London) A220, 513 (1953).
''A. B. Pippard, Phil. Trans. Roy. Soc. (London) 250, 325

(1957).
"H. Jones, Proc. Roy. Soc. (London) A240, 321 (1957).

creases very rapidly as the surface approaches the zone
boundary, becomes infinite at the onset of contact and
then vanishes. It would thus be expected, that the
apparent p values, for the systems studied here, would
have an anomaly at low solute concentrations. From
the data, it would appear that the anomalies do not
exist and that the theory overestimates the eGect of
the relevant phonon-electron interaction.

In view of the discrepancy between the two curves
of Fig. 3, there is considerable doubt as to the form of
the experimental density-of-states curve for copper at
higher electron concentrations. Comparison with Jones'
theoretical curve" would thus hardly seem justified.
It is believed, however, that contact between the Fermi
surface and the zone boundary certainly takes place
before the electron/atom ratio reaches 1.1, so that the
energy separation between them does not exceed 0.3 ev.
No definite reason for the diGerence in the behavior of
the two alloy series can be advanced, although it is
entirely possible that, at larger solute concentrations,
higher order corrections to the theory outlined above
have to be considered. Friedel has treated this problem,
but the complexity of the solution makes an evaluation
in the present case rather intractable. In addition, it is
quite possible that additional factors, arising from the
rather diGerent natures of the solute atoms, also affect
the density-of-states curve.

1 1—g g
+

Q~s Q~ts Q~ s
(16)

where O~ and O~& are the Debye temperatures of the alloy
and solvent, respectively. For germanium Os =366'K, rs

so that Eq. (16) predicts that the Debye temperature
should increase with increasing concentration of ger-
manium, whereas the opposite actually happens.

Although a general analysis of the lattice dynamics
of a disordered cubic array is not available, it is still
possible to make some predictions about its behavior at
low temperatures. Here we are dealing only with long-
wavelength phonons, which presumably are unaGected
by such 6ne details of structure as short-range order,
etc. It may therefore be expected that the alloy behaves
like an anisotropic cubic metal, with the same values of
density and elastic constants.

1~ H. Jones, Proc. Phys. Soc. (London) 49, 250 (1937)."P.H. Keesom and N. Pearlman, Phys. Rev. 91, 1347 (1953).

(b) Lattice Heat Capacity

Reference to Fig. 2 shows that the Debye temperature
for the copper-germanium alloys remains relatively
constant for low solute concentrations and then de-
creases quite rapidly. As in the case of the copper-zinc
alloys, this behavior is not at all consistent with the
Kopp-Neumann relation. Thus, for an alloy with a
concentration x of solute having a Debye temperature
Os we should expect that
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Flo. 5. Variation with electron/atom ratio of reduced Debye
temperature for Cu-Ge and Cu-Zn alloys.

DeLaunay" has investigated the vibrational spec-
trum of cubic metals in some detail, using a central-
force model with electron participation to take into
account deviations from the Cauchy relation. At low

temperatures, he derives a general expression for the
Debye temperature of a cubic metal in terms of its
elastic constants, vis. ,

0.76
N'E
o 0.74—
03

~ 0.7'2—

0

O 0

& Cu- Zn & Cu- Si
~ Cu-Al & Cu-Ge
o Cu-Ga " Cu-Zn (MsiS)

as functions of electron/atom ratio for a number of
systems. Most of these data are due to Neighbours and
Smith, "with the exception of the data for copper and
the Cu —28% Zn alloy, which are due to Lazarus" and
Masima and Sachs, " respectively. As can be seen,
C and C' vary linearly with electron concentration to
within the experimental error.

The success of fitting the data in this way is some-
what surprising since one would expect that the crystal
energy is markedly dependent on lattice spacing. Thus
the total crystal energy U may be written

rIelectrostatic+ r/exchange+ rIelectronicr

where U,&„&„,&,&,, is the energy of interaction between
the valence electrons and the ions of the lattice,
U, ,h „~, is the repulsive exchange interaction between
the ions themselves, and U,j„&„„,, is the energy of the
valence electrons. Both the 6rst and second terms de-
pend strongly on the lattice parameter, and hence one

9K (h) ' t'c44) & 9

4w V (P) ( t i 18+
(s,t),

c 024—(

~o 022

where f(s,t) is a tabulated function of the variables
s= (cll c44)/(cls+c44) and t= (cls c44)/c44. For a metal
satisfying the Cauchy relation c»——c44, we have
s—(Cll Cps)/2C44& t=0

From (17) it is easily seen that

O'L(Ms/Mes) (Vo/V)]' =nc44l f(s, t), (18)

where Mo and I/'o are the molar mass and volume of
pure copper, respectively, and n is a constant. The
right-hand side of this equation is a function only of
the elastic constants of the system, and one might
suppose that in the present case these would depend on
the relevant lattice spacing of the alloy and the electron
concentration. If, however, the reduced Debye tem-
perature O~„= O'L(M/Mc) (as/a)$s is plotted against
electron concentration for both the Cu-Zn and Cu-Ge
systems, the same functional dependence is obtained,
as may be seen from Fig. 5. This strongly suggests that
the variation of elastic constants for these alloys is
determined principally by the electron concentration,
since the lattice expansion is not the same in both
cases. Further evidence that this situation holds quite
generally for the primary solid solutions of copper
alloys is given in Fig. 6, in which the room-temperature
shear constants C=c44 and C'= (c»—cts)/2 are plotted

'7 J. DeLaunay, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc. , New York, 1956), Vol. 2,
p. 285.
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FIG. 6. Variation with electron concentration of room temperature
elastic constants for various copper alloys.

would expect a similar situation for the shear constants

1 O'U
C= Ct

2V cin' 2V clP'
(19)

"J.R. Neighbours and C. S. Smith, Acta Met. 2, 591 (1954)."D.Lazarus, Phys. Rev. 76, 545 (1949).
ss N. Masima and G. Sachs, Z. Physik 50, 161 (1928).

the differentiations being with respect to the appropriate
shears. A possible explanation for the observed behavior
is to suppose that the variations in these terms on
alloying cancel one another, although no plausible
reason can be advanced for this being the case. Since
shearing aGects the way in which the Fermi surface
distorts in the vicinity of the (111) faces of the
Brillouin zone, U,~„~„„,, contributes to C and C' in the
case where zone contact is imminent. It is then supposed
that this term, which presumably depends only on the
electron/atom ratio, is responsible for the observed
variation of the shear constants.

In proceeding further with the analysis of the lattice
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heat capacities of the Cu-Zn and Cu-Ge systems, it is
necessary to assume a central-force model for the
alloys. This model correctly describes the shear con-
stants of the alloys, and enables their variation as a
function of electron concentration to be determined.
Thus, referring to Eq. (18), we have in the case f,=0

-.02

0,'=ncaa f(c'/C) (2o)
~ -.04

a
Differentiation of this relation then gives us the equa-
tion

-.06

C'

whence, dividing by (20), we find

)C'q (C'q l
Ac' C'Ac

3e,s~O„=-;~C&P —I~C+.C-:f'( —
[&c) &c)l c

-.08

I.O I.I l.2

Electron /Atom Ratio

AO, hc (1 C' f') Ac'C'f'—I+O„C &2 3C f) C' 3Cf
(21)

"W. C. Overton, Jr. , and J. Gaffney, Phys. Rev. 98, 969 (1955).

In the present case the coeScients in the right-hand
side of (21) can be obtained from the work of Overton
and Gaffney" on the elastic constants of copper at O'K
and from a graphical difFerentiation of f(s,0) at the
corresponding value of s=0.314. Equation (21) then
gives

AO /0'„= (0.3246C+0.914AC') &&10 " (22)

Figure 7 shows the observed variation of 60',/O„and
that calculated from (22), using the rooftop-temperature
variation of C and C' with solute concentration. It is
clear that, although there is a general agreement about
the magnitude of the change, the two curves diQ'er

significantly in their markedly different curvatures.
This difference is not due to any effects arising from
the approximations used in calculating the coefficients
in (21), since the second derivative of f(s,0) is rela, tively
small. Presumably, then, the functional dependence of
the shear constants on electron concentration must alter
appreciably as the temperature is lowered. It is believed
that this alteration results from the eGects of electron
excitation on the shear constants. When the Fermi

FIG. 7. Comparison of experimental and calculated AO„/0„.

surface is at or near a zone boundary, these e6ects can
be quite marked. Low-temperature ultrasonic pulse
measurements of the elastic constants for these alloy
systems are planned in order to check these conclusions.

V. CONCLUSION

From experiments on the low-temperature heat
capacity of the primary phases of the copper-zinc and
copper-germanium systems, it is concluded that the
Fermi surface in copper departs appreciably from
sphericity and in fact almost touches the hexagonal
faces of the first Brillouin zone. The dependence of the
reduced Debye tempera, ture on electron/atom ratio is
the same for both systems, which suggests that it is
the principal factor influencing the variation of shear
constants with solute concentration. It is also concluded
that the functional dependence of the shear constants
on electron concentration varies with temperature as a
result of electron excitation eGects.
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