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The relationship between the single-particle energy and
effective mass and the binding energy of the many-particle
nuclear system is discussed. It is shown that only in the case of
first order perturbation theory is it possible to define a physically
meaningful single-particle energy E(p) so that both relationships,
E(PF) = (Pz/ZM) + V(PF) =Eaverage and NEa.verage: (PZ/ZM)nverage
+3LV ($) Javerage, are satisfied. More generally a correction term
appears, as a result of important many-body contributions to the
single-particle energy which arise from the effects of the exclusion
principle and from the variation of the self-consistent excitation
spectrum with density. The principal effect of the correction is to

alter the relationship between Eaverage and the average value of
the single-particle energy. Analysis of the optical potential which
determines the momentum of a nucleon interacting with the
nucleus shows that the same correction term again appears,
changing the usual definition of the optical potential.

An additional consequence is that it is not possible to fix the
effective mass for particle motion from knowledge of the average
binding energy and kinetic energy alone, the first order theory
underestimating the effective mass by 389, in nuclear matter and
by 77% in liquid He?,

N recent studies!? of the properties of nuclear matter
and liquid He?? a determination has been made of
the energies of single-particle excitations and of the
average energy per particle. In the definition of particle
energies used in those calculations, it has been found
that the energy of a single particle at the Fermi surface
is not equal to the mean binding energy. This result is
similar to an earlier result obtained by the author,* but
does not agree with more recent discussions by Weiss-
kopf® and Moszkowski.® It is the purpose of this note
to discuss this discrepancy and to show the conditions
under which the equality between the energy at the
Fermi surface and the mean energy holds. The physical
interpretation of the single-particle energy will also be
discussed.
In the theory of the many-body system’ used in
references (1), (2), and (3), the energy of an excitation
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(1958).

4 K. A. Brueckner, Phys. Rev. 97, 1353 (1955).

5 V. F. Weisskopf, Nuclear Phys. 3, 423 (1957).

6S. A. Moszkowski (private communication).

7 A comprehensive list of references is given in reference 2.

with momentum p; is
E(p)=(p2/2M)+V (p3), €Y
V(p)=22i(Kij ii— Ky, js). )

The sum over j runs over all filled states and includes
a sum over spin and isotopic spin. The energy as
defined in Egs. (1) and (2) does not refer to an arbi-
trarily chosen zero point of energy. In many applica-
tions, however, it is possible to add a constant to the
single-particle energy. For example, in determining the
effective mass of an excitation or properties of low
excited states such as the nuclear symmetry energy or
the specific heat and magnetic susceptibility of He?,
only the variation of E(p) with momentum enters. An
arbitrary constant in the energy is meaningful, however,
in determining the total energy of the system. Such a
constant also affects the separation energy of a particle,
since this is the difference in total energy between two
systems with V-1 and IV particles.

With the single-particle energies as defined in Eq.
(1), the average energy per particle is

where

En=3(pF*/2M)+V n, 3)
where Vy, the average potential energy per particle, is
Va=(1/2N)2Z: V(po). 4)
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Thus, with these definitions, the usual relationship
between V,, and V (p) holds. This also makes it possible
to use the usual physical interpretation of V() as an
energy density. We shall see in the following that if we
wish to choose the zero point of energy so that the
energy E(pr) of the last particle is equal to the separa-
tion energy, then it is usually necessary to depart from
the definition of Eq. (2) for V (p.).

The reaction matrix K which determines the inter-
action energies is obtained by solving for the motion of
particle pairs in the average field of the remaining
particles. K is defined by the integral equation

Kiju=vijut 2 Vi ma(EstEi— Ep—En) 7 Ky, k1.

Pa:n éZF; (5)

Dn 2PF .
The propagator (Ex+E,—E,—E,)™ describes the
motion of the excited particles through the many-body
medium. The restriction on the sum over p, and p,
that the excited momenta be above the Fermi surface
takes into account the requirements of the exclusion
principle.

The reaction matrix K depends on the density ex-
plicitly through the normalization volume, since the
matrix elements of ¥ contain a factor 1/Q. A further
dependence of K on the density enters through the
variation of pr with the density and also through the
shift with density of the self-consistent particle energy
spectrum. In first approximation, K can be replaced by
V and QV is independent of density.

Before we discuss the features of the excitation
spectrum, it is convenient to summarize the interpre-
tation of the particle excitation. We recall®® that the
true nuclear wave function ¥ (V) is related to the model
or independent-particle wave function ¢(N) by the
correlation function or “model operator” F, the relation

being
Y(N)=Fo(N).. (6)

To an excitation of a single particle in the model state,
there corresponds a change in the state of the actual
system. This change is, of course, much more compli-
cated than the change of the model, since the correlation
function F will change with excitation to take account
of the change in correlation structure. The change in
state of ¥ upon a single-particle excitation in ¢ therefore
must be regarded as the creation of an “exciton,” i.e.,
a correlated change in the state of many particles which
resembles a single-particle excitation only if correlation
effects are neglected. It is often convenient to talk of
these complex excitations by using the language of the
single-particle model; it must be kept in mind, however,

8R. J. Eden and N. C. Francis, Phys. Rev. 97, 1366 (1955) ;
Brueckner, Eden, and Francis, Phys. Rev. 99, 76 (1955) H. A
Bethe, Phys. Rev. 103, 1353 (1956).

9 The nonvanishing of A is due to many-body effects included
in the definition of the K matrix, these arising both from the
effects of the exclusion principle and from the density variation

of the self-consistent excitation spectrum (see, for example, refer-
ence 2).
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that the identification can be made only in the restricted
sense just discussed.

In the nuclear theory, the excitons of the actual
system are to be identified with the independent par-
ticles of the shell model. The energies of these particles
are then E(p) as given by Eq. (1). These energies are
important, not only since they enter into the deter-
mination of the reaction matrix K, but also since they
determine both the effective mass for particle motion
and the properties of the system at low excitation.

We now return to the study of the excitation energies.
We first simplify Egs. (2) and (4) by replacing the sums
by integrals, using the relation

Z— Si | dk;, Q)

(2m)?

where by S; we mean the sum over spin and isotopic
spin. We also write

SSi(Ksj, 15— Kj, 30)= f(i5). (®)

(2m)?

[As remarked above, f(i) is independent of density if
K is evaluated to first order in V.] We then can rewrite
Egs. (2) and (4) as

V(p)=1 f dk; £(ij), )

Ve v o f o ais s,

where to obtain Eq. (9) we have assumed that V (p,) has
no dependence on spin or isotopic spin as is true in an
unpolarized medium.

We first show that Egs. (3) and (10) give correctly
the result that the difference in the energy of N+1 and
N particles in their ground state is equal to the mean
energy per particle. To show this, it is necessary to use
the fact that for the saturated system, the density and
consequently the Fermi momentum pr do not change
as NV is changed. Thus the energy difference is

and

(10)

3 pp?
B —E@) = 2L (v 1) N7
52M

1 (Qu1— Q)
- k;
o [ s g an

At constant density we have Qn1=[(N+41)/N ], so
that
3 pr* Qn
E(N+1)—E(N)=- —+—
52M 2N (2r)

x [[ak, f dk; 1), (12)
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which is just the mean binding energy. This result of
course also follows directly from the proportionality of
the total energy of the system to the number of par-
ticles, i.e.,

Etotal(N) = NXEAv- (13)

We next consider the saturation condition, that E,,
be independent of density. This is equivalent to the
requirement that pr(dEwn/dpr)=0. To carry out this
differentiation, we make use of the relation

pr(0Q/dpr)=— (14)

since @ is proportional to 1/$#°. From Egs. (3) and
(10) we then obtain the result:

6PF 3Q
0_§ﬂ+2{ (27r)3Nf fdk]f(”)

2Q 4drwkp? K,
2 fd (U)m=w} +4, (195)
where
f (@ J)
A= f f dk; p (16)
2 (2m)*N
This result can be simplified by use of the relation
4 7kp®
4Q(~ ) =N, an
3 (2m)3
and also by using Eq. (9) for V(pr). The result is
6 PFZ .
0=gﬁ—§VAv+%V(;DF)+A. (18)

Combining this result with Eq. (1) for V(p;), we find

E(pr)= (pr*/2M)+V (pr)
=3(pr*/2M)+Vn—3% (19)

Thus E(pr) is equal to Ep=2(pr?/2M)+Vy only if A
is equal to zero. This is true only to first order in v, as
remarked above. In the actual studies of nuclear
matter, the average energy per particle is —15.2 Mev
while E(pr) is —27.5 Mev. In liquid He? the correspond-
ing values are —0.96 and —3.61 (kXdegrees Kelvin)
per particle. In both cases the difference is due to the
last term in Eq. (19).

The discrepancy between E(pr) and E, can, of
course, be removed by changing the definition of the
single-particle energies. A suitable choice is

W(p)=V(p:)+14,
in which case Eq. (19) leads immediately to the result
(pr*/2M)+W (pr)=En. (21)

This redefinition leads, however, to a breakdown in the
relationship between Vy, and W (p;), since the relation

(20)
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now is

=1/2N)Z LW (p)—34A] (22)

Consequently we cannot simultaneously maintain a
simple relationship between Vy and V(p,) and also the
equality between V (pr) and Ey,.

It is interesting to see if a criterion exists to show
which of the definitions given in Eq. (2) and Eq. (20) -
is physically more correct. The definition of W(3p,) in
Eq. (20) is, of course, more meaningful in that it
adjusts the energy of the last particle to be equal to
the separation energy. This allows a simpler meaning
to be attached to the single-particle energy than if the
definition of Eq. (2) is used. It is interesting, however,
to see under what other circumstances W(p;) can be
identified with the particle interaction energy. Con-
sider, for example, a nucleon of energy E; entering a
nucleus of NV particles. There are two approximations
to be distinguished. First, suppose that the nuclear
volume does not change as the extra nucleon “1”
enters. There are then two effects: the direct interaction
of particle 1 with the particles N gives rise to new
interaction terms, and the presence of a new particle
above the surface of the Fermi gas inhibits the excited
transitions of the interacting nucleons of the initial
system and so changes their energy. The energy of the
(N+1)-particle system thus is

P 2
- ' k; | dk; N
El+1)= Ns 2M 2M 2(27r)3f ¢ f s 161)

1
+ f dk; (i) pimps

2(,,)af f kL fGf)wi—fGg)n],  (23)

where f(7f)x and f(if)v41 are evaluated at the original
and final values of the Fermi momentum. The rise in
the Fermi momentum through the addition of a particle
near the Fermi surface is

(pr)nr1i— (pr)N=(pr)w/3N. (24)
Thus we can write
1 af(i7)
FE)Dw—f (i]')Nggv[PF f;: ]N, (25)
and
E(N+1)=E(N)+ (p22/2M)+V (p1)+34, (26)

where A is defined in Eq. (16), Since V (p:)+3A is also
defined to be W (1), we simply have

Ey= (p2*/2M)+W (p1).

Thus in this situation, we determine the momentum of
a nucleon entering the nucleus from W(p;) and not
from V(p1). This difference is in practice quite impor-
tant, since 3A is about equal to 209, of V (p1).
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We consider next another possible description of the
entrance of a nucleon into the nucleus. Suppose that
we assume that as the extra particle is added, the
nuclear volume increases so that the density remains
constant. In this case, as long as the added neutron
momentum is close to the Fermi surface, the reaction
matrices are very weakly affected by the change in the
mean Fermi momentum. The kinetic energy of the N
nuclear particles drops, however, the change being

K 3 pr* Qv \? 3 pp? 2
——N—+~——N( ) =~—N(1—— . (28)
52M 52M \Quu/ 52M 3N

The interaction energy of the N-particle system also
changes, the drop in density being equivalent to the
loss of a particle at the Fermi surface. This is partially
compensated by the increase in volume, the two effects
being

Qn
(2m)?

1
— [k [ akifi — =V (DY @)
Combining these results and now including'the energy
of the added particle with momentum p;, we have

E(N+1)=E(N)+(p:*/2M)— §(pr*/2M)
+V () =V (pr)+Va. (30)

Using Eq. (19) for the relationship between V (pr) and
Vu, we find

E(N+1)—E(N)=E;= (p:*/2M)+V (p1)+3A
=(p/2M)+W (p1). (31)

Thus again we see that W(p;) determines the wave
number of the added particle.

To summarize these results: We have shown that
W (p1) as defined in Eq. (20) gives correctly the nuclear
separation energy for p;=pr, and also is the correct
single-particle or optical potential to determine the
wave number of a nucleon entering a nucleus. The
latter result holds in either of the two approximations
of constant nuclear density or constant volume.

An additional point of interest related to the con-
nection between E(pr) and Ej, occurs in the definition
of the effective nucleon mass.2*% In the studies of the
nuclear matter problem it has usually been possible, at
least for momenta in the Fermi gas, to approximate
V(p) or W(p) by the quadratic expansion

V(p)=V(0)+bp% (32)
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In this case, the single-particle energy is

E(p)= (*/2M*)+V (0),
(1/M%)=(1/M)+2. (34)

In this approximation the average energy per particle is
Ep=3(ps*/2M)+3[V (0)+2bps*]. (35)

By using Egs. (33) and (34) for V(0) and & and also
Eq. (19) for E(pr), this can be written

2 M 1
1-- =)=
3 M*) 3

(33)
where

3 pr?
Ey=-— (36)
S2M
In the nuclear problem, E,=15.5 Mev and the mean
kinetic energy 2(pr/2M) is 25.5 Mev. If A is set equal
to zero, we then find M*/M =0.42.% This value is con-
siderably smaller than the computed value of 0.68
obtained in the studies of nuclear matter and also too
small to reconcile with the nuclear symmetry energy.?
The discrepancy is much more striking in the case of
liquid He?? where again En=—32[£(pr?/2M)] but
M*/M=1.82.

In conclusion, we wish to point out the relevance of
these results to the case of the nuclear shell model. We
have seen that the nature of the two-body interactions
is such as to lead to large many-body corrections to the
perturbation prediction of the properties of the single-
particle potentials. These in particular appear in the
value of approximately —12 Mev computed for the
correction term — A in Eq. (19). Thus, if we wish to
use a single-particle model for determining the energy
levels of the shell model, we must either (a) drop the
assumption that the single-particle energy is to be
equated to the separation energy of a nucleon or (b)
drop the usual relation of Eq. (4) between binding
energy and single-particle energy and replace it by a
relation of the form given in Eq. (21). The latter pro-
cedure will often be the most desirable since the physical
interpretation of the state of the last particle will then
be the simplest. In either case the nucleon effective
mass cannot be determined solely from knowledge of
the average kinetic energy and average binding energy,
but also requires knowledge of the nuclear “rearrange-
ment energy” 3A.
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