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Connection between Local Commutativity and Regularity of Wightman Functions
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ft is proved that a Wightman function (vacuum expectation value of a product of 6eld operators) will

be analytic and one valued at a real set of space-time points if and only if the 6elds possess a property of
weak local commutativity at the same points. This statement assumes the validity of TCP invariance.
A similar but more complicated statement is proved for theories without TCP invariance;

Bargmann, Hall, and Wightman, ' they are boundary
values of functions W(f) and V(t'), regular in the 4e
complex variables t,„, j=1, , n; p=0, 1, 2, 3; so
long as these variables lie in a certain domain R„'. Let
the forward tube R„be defined as the set of (f) for
which

1. STATEMENT OF RESULTS

''OST' has discovered the equivalence between the
TCP' theorem' and a property of field operators

which we shall call WLC (weak local commutativity).
We say that a set of field operators (lgppgt, ,lP ) has

~ ~ ~WLC at a set of real 4 vectors (Pt, ,$ ) if the relation
Imi, '&0, Imi, o&0, j=1, , I,

8's(ys)A(yi) 4' (y ))o
and the backward tube R„as the set for which

holds for all (ys, yt, ,y„) such that the differences

(2)

lie within some real neighborhood of the $,. Here e is
&1, the sign depending on whether the permutation of
fermion fields between the left and right sides of Eq. (1)
is even or odd. The vacuum expectation values may be
written for brevity

~'(n) = IV(~t, n-) =(A(ys) lf -(y-))o, (3)

V(n) = V(nt, ,n-) =Q -(—y-) A( —yo))o (4)

The notation (ti) will always denote a set of I 4-vectors

(rit, .,rf„), and (—ri) will denote (—r)t, . ,
—r)„).

Thus Eq. (1) becomes

W(rl) = V(—rf).

The theorem of Jost states that for TCI' invariance of
the lV function it is necessary and sufhcient that the
fields (ps, ,f„) have WLC at owe set of vectors (g) in
a special domain D. The domain D consists of those
real ($) for which

LIm t',]'&0, Im f,s(0, j=1,

Then R„' is the set of points (Af) with Q) in R and A

a complex Lorentz transformation of determinant +1.
The value of W(At') is independent of A, and this implies
in particular, as Jost' observed,

W(f) =W(—l), f in R„'.

The domain D of Jost's theorem consists precisely of
the real points in R„'. The theorem states that for
TCP invariance it is necessary and suKcient that the
fields (Ps, ,lt „) have WLC at one real Point in R„'.

The purpose of this note is to draw a further deduc-
tion from the foregoing ideas of Jost and Wightman.
We find that there is a close correspondence between
those real points at which WLC holds and those at
which the functions 8' and V are analytic. More pre-
cisely, we have the following theorem.

Theorem

Let S be the set of real points (P) at which the field-
operators (fs,fi, pP„) have WLC. Then one of the
three following alternatives holds.

(a) S is null.

(b) S includes D. In this case the functions W(f)
and V(t') are identical. They are one valued and
analytic in a complex domain R including R„.A real
point (g) can be included in R if and only if it belongs
to S.

(c) S is not null and is disjoint from D. In this case
the functions W(i) and V(f) are two branches of a
function analytic and one valued on a two-sheeted
Riemann surface R covering R ' twice. A real point ($)
belongs to S if and only if it lies within R at a place

when the P; are any set of real non-negative numbers
not all zero.

The theory is assumed invariant under the restricted
real Lorentz group without space or time reQection, and
all states are assumed to have non-negative energy.
Then the functions W(rf) and V(rf) have the properties
of Wightman functions. ' According to a theorem of

' R. Jost, Helv. Phys. Acta 30, 409 (1957).
2 G. Luders, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.

28, No. 5 (i9S4).
~ A. S. Wightman, Phys. Rev. 101, 860 (1956).

' D. Hall and A. Wightman, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 31, No. 5 (1957).
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where the W branch over R„crosses over into the V
branch over 8„.

The physically interesting case of this theorem is
alternative (b), since this is the only case consistent
with TCP invariance.

Corollary 1.—If TCP invariance holds, then the set
of real points ($) at which the field operators (leap, ,lt )
have WLC is identical with the maximal set of real
points in a complex domain R including R„within
which the Wightman function WQ) is regular and one-
valued.

Corollary Z.—For the fields (lt s, ,f„) to have
WLC at every point of a connected real domain D'
including D, it is necessary and sufhcient that TCP-
invariance hold and that the Wightman function W(f)
be analytic at each point of D'.

Note the essential fact that 8' must be one valued
in the domain R of Corollary 1. In general it is not true
that the set of points S at which WLC holds is identical
with the set at which W(f) is analytic. It may well

happen that WQ) is analytic at a real point but that
the values obtained by continuing from R„and from
R„do not agree. ' In this case W(f) is analytic but
double valued, and the point in question- cannot belong
to S. In Corollary 2, however, the condition of one-
valuedness is omitted and simple analyticity suKces.

Corollary 2 provides an answer to the question with
which this investigation started, namely, under what
conditions will W($) be analytic at all real points
(xs,xr, ,x ) for which the vectors (x„—x,) are space-
like? This will be so if WLC holds at the samre points.
The author is indebted to Dr. Jost for raising this
question, and for many helpful discussions.

2. PROOFS

for (() in a real neighborhood of zero, say for

(13)

then F(l ) and G(t ) are a single analytic function regular
in the complex neighborhood~

Q„~l,„~ &sa, j=1, , n, (14)

Z;(u) =Bu+f;(1—u') (16)

as the complex variable I=pe" moves in the circle
~u~ &1. Writing t;=g,+irl, , we have

Im Z;(u) = (1—p') rl,

+p sin8[B —2p($, cos8 —rI; sin8)]. (17)

Equation (15) implies that Z, (u) lies in R„ for 0&8&m.
and in 8„for m(0&2m, provided either p=1 or q,.=0.

Suppose first that all r1, =0. Then F(Z, (n)) and
G(Z, (n)) are functions regular in n in the upper and
lower halves of the circle

~
n~ &1 and have equal limit-

values on the real segment —1&u(1. The two func-
tions therefore define a single function of n regular in
~N~ &1.The value of this function at N=O is

as well as in R„and B„.
Proof of lensrna. For—a fully rigorous proof of the

lemma we refer to the paper of Oehme, Taylor, and
Bremermann. It seemed worthwhile to present here an
alternative proof making no pretensions to rigor but
having the virtue of brevity.

Let (|') be any complex point satisfying

b&a, j =1, , n . (15)

Let B be the constant vector (0,0,0,b). Consider the
surface formed by the points

The main tool in the proofs will be the "edge of the
wedge" theorem of Oehme, Taylor, and Bremermann. '
The form of the theorem which we shall use is as follows.

&(~) =G(~) =H(~),

where H(t) is defined by the Cauchy integral

(18)

F(g) =LimF(|), (t) in R„, (10)

G(P) =LimG(t), (f') in R„,

supposing these limits to exist as distributions. If

F (r) =G(r) (12)
5 The author was fortunate in being able to study some lecture

notes of W. Pauli (unpublished). Pauli has greatly clarified the
situation by enumerating the possibilities which arise in the
simplest case n=1. All types of behavior which occur for any I
can already be seen with m=1.

'Oehme, Taylor, and Hremermann (to be published). The
essential idea of this theorem occurs already in the work of
Bogoliubov, Medvedev, and Polivanov, Uspekhi Mat. Nauk (to
be published).

Lemma (Edge of the Wedge)

Let F(f') be regular in the forward tube R„, and GQ')
in the backward tube R„.For real ($), we define

2m'

H(f) =— F(Z;(e"))d8+ G(Z, (e"))d 8. (19)
2~ &s

We have proved Eq. (18) only for real (f) = ($) satis-
fying Eq. (15).

Next take (f) complex. The path of integration in
H(f) still lies entirely in R„and R„except for the end-
points 8=0, m. The integral defines HQ') as a function
of the complex variables l,„regular in the domain (15)
[it is at this point that the proof lacks rigor, however
there is no difficulty if one assumes F(f) and GQ) to
be bounded in the neighborhood of the end points
(f') =Z, (&1)=+B].Now if (f') and n are complex and
lie in a certain neighborhood of zero, the point Z;(I)
satisfies Eq. (15) and so H(Z, (u)) is regular in the
(4n+1) variables f;„a din. When all the variables are

7 The constant —,
' is not best possible. For the best possible result

in the case n=1, see R. Jost and H. Lehmann, Nuovo cimento 5,
1598 (1957).
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real, Eq. (18) gives

F(Z, (u) )=H(Z, (I)). (20)

W($)=LimW(l), l in R . (22)

Since 8„is included in R„,g is regular also in 8„,and
we may define for real ($)

By Eq. (9)

W(g) =LimWQ), f in Ej,'„. (23)

(24)

Let (P) be a point of the set S defined in the theorem.
Then Eq. (5) holds for real (i1) in a neighborhood of (g).
Combined with Eq. (24), this gives

(25)

in a real neighborhood of ($). The conditions of the
lemma are satisfied, and therefore W(l), VQ') are the
same analytic function, regular in a simply-connected
region consisting of R„,8 and a complex neighborhood
of ($). Conversely, if W(f) in R„and V(f) in R„are
connected by analytic continuation through a real
point ((), then Eq. (25) holds in the neighborhood and
so (() belongs to S.

To complete the proof of the theorem it is only neces-
sary to enumerate the possible relations between 8'
and V. Either W(f) and VO) are identical functions in
R„' or they are distinct. If they are identical, then Eq.
(25) holds at real points interior to R„', that is to say
at all points of D. Then S includes D, and we are in
case (b) of the theorem. We define the domain R to

By analytic continuation in I, Eq. (20) must also hold
for real (f) and complex u in the upper semicircle. But
for complex e the point Z;(m) is interior to R„, where
both sides of Eq. (20) are analytic in (P). Hence we may
extend Eq. (20) by analytic continuation from real to
complex (f). The final result is

(21)

for all complex (f') in R„and satisfying Eq. (15).
Similarly, G(t) =H(t) in R„. Thus F, G, H are the
same analytic function, regular in R, B„and the
domain (15).

Proof of theorem. We no—w return to the Wightman
functions defined by Eqs. (3) and (4). For any real ($)
we have according to Wightman'

W(g) =W(g),

V(n) = V(n),

(27)

(2g)

hold in a real neighborhood. Since the functions W, V
are distinct, the pairs ST, SU, S'T, and S'U are disjoint,
but the pairs SS' and TU may overlap. The Riemann
surface R is defined to be the domain R„' covered by
two sheets and with certain connecting linkages added.
At all points of S a complex neighborhood is added,
connecting the upper sheet over R to the lower sheet
over 8„.At all points of S' the upper sheet over R„ is
connected to the lower over R„.At points of T the two
upper sheets are connected, arid at points of U the two
lower sheets. In particular, all points of D belong to
both T and U. The Riemann surface R has the proper-
ties required by the theorem. For the same reasons as
in case (b), it is impossible to extend R so as to include
any real points not in one of the sets S, S', T, U, so
long as the function (W, V) is restricted to be at most
two valued. In particular, the set of points S is uniquely
determined by the cross points of the two sheets of R.
This ends the proof of the theorem.

Corollary 1 is a restatement of part of the theorem,
and needs no further discussion. Corollary 2 requires
only the observation that W(f) is automatically one-
valued in (R„'+D') if it is analytic in D' and if (D+D')
is a connected set.

consist of R„' together with complex neighborhoods of
all points of S. The function 8' is analytic and one-
valued in R. But R cannot be extended to include any
real point (P) not in S. For every real point not in D is
already on the boundary of R ', being approachable
both from R„and from 8„.If the boundary values of
5' from the two sides agree, then the point in question
is in S and is interior to R. But if the boundary values
disagree we cannot bring the point into any extension
of R in which 8' remains one valued.

If W(f') and V(f') are distinct functions, then Eq.
(25) cannot hold over any neighborhood in D and thus
S is disjoint from D. We are either in case (a) or in
case (c) of the theorem. In case (u), there is no analytic
connection between the functions S" and V, and there
is nothing to prove. Suppose that we are in case (c).
Equation (25) holds in the neighborhood of a non-null
set of real points S. We define similarly S' to be the set
of points in the neighborhood of which

V(n) =W(n) (26)

holds. Likewise T, U are the sets where


