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Dispersion relations for K-meson scattering are considered, particularly for the theoretical difficulties of
contributions from a continuum in the unphysical region. Some general results relating to threshold values
of matrix elements for creation processes in K~+N collisions are proved.

1. INTRODUCTION

ISPERSION relations for K-meson—nucleon
(K—N) scattering have recently been written
down by Sakurai and by Amati and Vitali.! Like the
w—N relations,? these provide important clues for the
interpretation of K-meson data. In this paper we wish
to consider some of the peculiar theoretical difficulties
which arise from the unphysical ranges in these rela-
tions, while in the accompanying paper we make a
first attempt from the existing experimental data
towards fixing the parity of the K-meson and the
K-coupling constants. No rigorous derivation of the re-
lations is attempted in these papers.

2. DISPERSION RELATIONS

Write T,*, T.t, T,~, T for the elastic scattering
amplitudes for K¥—p, Kt—n, K~—p, and K——n
scattering. The initial meson and nucleon 4-momenta
are &, p, respectively, and final momenta #’, $’. On the
energy shell

ko, ko', po, po'>0, 1)
B=k?=K? p'=p?=N? (2)
kt+p=k+p'. 3)

Combining (2) and (3), one obtains

k-(p—p")=p-p'—N* G

If one writes

T (k,p,p") = a(p ) LL+RM Ju(p),

then on the energy shell L and M are functions of the
two independent covariants (p+p’)-%k and p-p’.
In complete analogy with the m-meson case, we define

1]. J. Sakurai, Bull. Am. Phys. Soc. Ser. II, 2, 177 (1957);
D. Amati and B. Vitali (to be published).

2 A. Salam, Proceedings of the CERN Symposium on High-
Energy Accelerators and Pion Physics, Geneva, 1956 (European
Organization of Nuclear Research, Geneva, 1956), Vol. 2, p. 176;
Low, Chew, Goldberger, and Nambu, Phys. Rev. 186, 1337 (1957).

3 The notation throughout this paper corresponds closely with
that used for the =-N case in reference 2 by Salam. We use the
metric p-g=pogo—p-q, k=1ivk, where the  are Hermitian,
(y2=1). Thus kp+pk=2k-p. All masses are written with their
particle symbol. Thus N and K stand for the nucleon and K
masses.

the retarded causal amplitudes

Mk, p,p') =i fwxo(—x) @ |[7(0), 7 (2) ]| p)eivs

_if @08 (x0) (p' | [7%(0),dx** () ]| p)e~t*=. (3)

The second term in (5) appears only if the K-interaction
Lagrangian contains ¢x?(x) or ¢x*(x) terms explicitly.
In this paper only 3-field interactions are considered
so that this term is consistently disregarded. On account
of the mass relations, e.g., A>>N?+4 K2, the retarded
amplitude M=+ equals 7%, so long as k-p'>0. This
includes the entire physical region.

Before writing the dispersion relations, some proper-
ties of M= may be noted:

(@) M**(k,p,p')=MT(—k, p', p). (6)
This follows from the Bose-character of the K meson.
(b) ImM
=3(2m)* 2L 7(0) [n) (1| 5%(0) | p)8* (p+k—n)
= @' 7*(0)[n)(n| j(0) | p)6(p'—k—n)]. (7)
Set
ME=a(p")[F*+kG*Ju(p), ®)
1=k (p+p), y=pp. (9)

Upon using (6), the dispersion relations are

P e ImFH(x',y)
ReF+(x,y)=— f —dx’
T x—x

1 > ImF-(2',y)
- f T, (10)
T ' +x
P = ImG*(«',y)
ReGH(x,y)=— f dx’'
T ¥ —x

/
dx’,

1 e ImG— (%'
+f mG=(«",y) (1)

x4
with similar relations for ReF~ and ReG—.

For forward scattering, p=p"; y=N2 If w is the
K-meson energy in the laboratory system [w=Fk
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-(p+9')/2N], Egs. (10) and (11) give*

P > ImM*(o)
ReM=*(w)=— f —
™Yy wW—w

1 2 ImMT (o)
-[ ——aw.
™y o'Htw
For w> K, the “optical theorem” takes the form
ImM (w) = («®— K?)}or(w), (13)

where o7 is the total cross section.

3. UNPHYSICAL RANGE

In order to make practical use of relation (12),
one must have information about ImM (w) below
the physical threshold w=K. In this region, p=7’;
ko, po>0; k*=K?; p*= N2 However, k- p<KN; that is
to say, the 3-momenta k, p can be complex in such a
way that the scalar products k2, p? k-p are still real.
(For the nonforward scattering case p’, k' are also
complex with k- p’, k’- p, etc., all real.) We now consider
the case of forward scattering.

(1) From Eq. (7), we have

ImM*(w)=0, 0<w<K.

This is because there is no physical state |#) with
strangeness +1 and rest mass #*= (p+£)*<(K+N)%

(2) Like the #—N case, ImM,~ has bound state
contributions. These arise when

nt=(p+k)?=A2 or wr=(1/2N)(A2—N?—K?), (14)
and
= (p+k)?=2* or wz=(1/2N)(E*—N?—K?. (15)

For M,~, only the X state contributes. If we assign
(by convention) parity® (+4) to A, then ImM ,~(ws)
and ImM ,~(wz) depend on the parities of the K meson
and the 2 particles. For the general nonforward

¢ We would like to restress the important role in dispersion
theory of the use of covariant variables like k-p and p-p'. The
commonly used center-of-mass quantities (c.m. momentum |p¢| or
c.m. angle 6°) have fairly awkward expressions in terms of k-,
p-9’. It has come to be recognized commonly, that momentum
transfer 2|pc| sin(6°/2) (or better still its square) is the more
significant variable for plotting experimental results. This is a
recognition of the fact that momentum transfer (and not cosé®)
is simply related to the covariant variable p-p’; [p-p'—N?
=|pc|%sin?(</2)]. We wish to point out that, likewise, for
exhibiting the energy-dependence of total cross sections, the
theoretically significant variable in the present context is p-%
(=Nw, where w is the meson laboratory energy) or equivalently
(p+k)?= (E°)? (where E° is the c.m. energy), and not the vari-
able |p°|. A simple relation between lab momentum |p’| and |p|
may be noted in passing;

[(p-k)~K2N*J=N|p!| = |p°| Ee.
5 P. T. Matthews, Nuovo cimento 5, 642 (1957).
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case these so-called bound-state contributions are®

ImM = (k,p,p")

=—i—“—wa@')[k—N+A]u<p>a[<p+k>2—m,

(K pseudoscalar), (16)
g’
= —“;27312(?')[1@—1\’ —AJu(p)s[ (p+k)*—A%],
(K scalar), (17)
and
ImM ;= (k,p,p")
= —i—ZEZW?ﬂ(P')[k~N +2Ju(p)s[(p+k)—Z*],
(K pseudoscalar, A,Z same parity), _ (18)
= —%22#2%(17’)[1@— N—2Ju(p)s[(p+k)}—2],
(K scalar, A,Z opposite parity). (19)

(3) Unlike the #— N case, ImM ,~ has contributions
below the physical threshold, from the continuum of
(m,A), (7,2), and (2m,A) states—more precisely, when’

= (p+k)*2 (A+II),
w= (p AN S (BTN,
= (p+k)*2 (A+2I1)".
As an example, consider the A, II contribution, to

ImM~—. If ¢ and s are the A and = momenta in the real
physical intermediate state, then for scalar K, one has

1
I MA,,_ y ”k = —
m (p,0"k) prEaY
XiWEX*—I—kY*:]%(P)o(q)f)('s)a(gz—A2)5(s2—HZ)
X&(p+k—g—s)dqdss,

where iv; is replaced by 1 if K is pseudoscalar. X and
Y in the first square bracket depend on p’-¢ and p’-s;
in the second on p-¢ and p-s.

Specializing to forward scattering, we have

a(p)[X+kRY Jivs[g—A]

(20)

ImM s~ (w) =mf Tr{(p—N)[X+kY ](g=A)

XLX*RY*1}3(¢— A3 (88— T (p-+h—g—s)

X0(p)0(q)8(s)d*qd’s. (21)

The expression in the integrand in curly brackets

6 This is a simple illustration of the general result stated by
A. Salam [Nuclear Phys. 5, 687 (1958)7], that matrix elements for
a pseudoscalar meson theory can be obtained from those for a
scalar meson theory by changing A——A.

7 Here II stands for the r-meson mass.
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equals®

4F (p-q, p-k, k- q)=4{XX*(p-¢gFNA)
— (XY*+X*Y)(Nq-kFAp-k)
+YY*[2(p-k)(q-k)—F*(p-q=AN) ]},

where the upper signs are for scalar K mesons and the
lower signs are for pseudoscalar K mesons. Insofar as
ImM (w)~>"| (p| 7|%)|?, one may naively expect that
ImM (w) 20 both in the physical and the unphysical
region. If this were so, the sign of the right-hand side
in relation (12) (the relation for ReM*) would be fully
determinate and the repulsive or attractive character
of the K+-N “potential” could be unambiguously
stated. Unfortunately it turns out that although
ImM,~20 for the physical region, its continuation
below physical energies can become negative. It is
perhaps instructive to reconstruct the proof for positive
definiteness of ImM 4.~ above physical threshold.

Consider (22) as a quadratic form. Since p-¢gZ2AN
above threshold, the coefficient of XX* is positive.
Thus it is sufficient to prove that

L(NgFAp)- k< (p-gFAN)[2(p-k)(g- %)
—F(p-q=AN)],

(22)

(23)
or

ELp*¢— (p-9*1—[p(g-k)—q(p-k) F20.

In the laboratory frame [ p= (IV,0) ], Eq. (24) reduces to

k2q*— (k- q)*20. (25)

(24)

For real k and q, (25) is obviously true. No statement,
however, can be made in the unphysical region. In the
next section, by considering a special example, we shall
show that ImM,,~ can indeed be negative in the
unphysical region.

4. UNPHYSICAL CONTINUUM
Rewrite (21) as

ImMA,'(P k) =

" )gfcu) b, (=A%)

XL (p+k)+A*—1—2q- (p+Fk) ]

X6 (QO)a (P0+ ko— qO)d4q. (26)

To perform the (covariant) integration in (26), it is
convenient to specialize to the c.m. frame. If p° and q¢
be the initial and final c.m. momenta (both | p°| and |q°|

8 The corresponding 27, A contribution to ImM (k,p,p’) equals

g2y B IXARY +sZqFATX+—Y*+2Tu(p)

X0()0(s)8 ()5 (2— A28 (s2 112)6 (12 —112)
X3 (p+k—q—s—r)d*qdisd’,
with the same convention for the signs. Here ¢ is the A momentum
and r and s are 7 momenta.
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are functions of p-%°) the integration in (26) yields

ImM,,~(p-k)= ] (Il 1g°D)"
8(2w)tE° n=0 2n--1!
xe (1’ [(1:+k)2+Az m]) 27
where

G2n —_ 82nG/a (p . q)Zn.

By using (27), it is possible to draw general conclusions

regarding the behavior of the matrix elements at

(physical or unphysical) creation thresholds (¢g°—0).
(1) In the physical region

ImM Ar =

(w2—K2) ig K+Nor+A
=(|p°| E*/N)oxiNorta. (28)

Thus oxin-rra~(]q°]/|p°|)G for small pe. This is
the well-known 1/v law for exothermic reactions near
physical threshold.

(2) For ¢°—0, only the first term in the summation
in (27) survives, so that statements about ImM,,~ can
be made simply by considering the integrand in (26).
Thus

lim ImM ,,~—0. (29)
qc—0
Also
1
lim ImMy,~(p-k)=—limG==. (30)
@09 (p-k) ge

For endothermic reactions, as shown in (25), G is
always positive so that in (30) the limit is + . Thus
malrix-elements for endothermic processes start from zero
at creation-thresholds with a positive infinite slope. This
has been noted previously by Wigner and Breit.?

For exothermic reactions ImM,~ can approach zero
at the unphysical creation threshold with 4o or —
slope depending on the theory. As an example, consider
a scalar K meson and a 4-field Lagrangian $aivs¥nd-bx.
In the lowest order perturbation calculation,

G(p-k, p-q)= (positive constant) X (p-g—AN).

*p=—k=p% pothke=E-=[A+(q)F+[+(q) ]

Covariantly,
(p‘)’=%+_]§:”\12
=1*(17-11-k_)2[ (p+B)2+ (N+ KT (p+E)— (N+K)?],
4(z>+k)2[<1’+k)’ A+ (p+E)2— (A—TD)2].

0 E. P. Wigner, Phys. Rev. 73, 1002 (1948) ; C. Breit, Phys. Rev-
107, 1612 (1957). Also see R. J. Eden, Proc. Roy. Soc. (London)
A210 388 (1952).
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By using (27), it is easy to see that
O ImM,~(p-k)
a(p-k)

In this case ImM 5, starts from a positive value at the
scattering threshold, (p+£k)?=(K+N)2. As p-k de-
creases, it goes through a (spurious) zero and approaches
zero again infinitely fast from negative values when the
beginning of the unphysical continuum is reached.
This behavior of ImM x,~ makes it difficult to make
precise numerical predictions from dispersion relations.
One possible way out of the difficulty presents itself
provided XX* XV*+X*Y, and YV* in Eq. (22) are
slowly varying functions of p-%, etc. In this case
onik-ria at three energies near threshold would deter-
mine these three parameters, giving G in the unphysical
region. Another possible means to extrapolate G into
the unphysical region is provided by measurement of
polarization near threshold, since the polarization
function involves these same functions X X*, etc.

— o0,

5. CONVERGENCE OF DISPERSION RELATIONS

The integrals on the right in relations (12) and (13)
as they stand do not converge, unless o(w) falls faster
than w™*. To secure better convergence one can do two
things:

(1) Consider each relation at two energies:

Re[Mi(wl)——Mi(wz)]_ P ImM*(w)

7V (w—w1)(w—ws)
1 ImM™ (w)
— [t
7w/ (wtw) (wtws)
(2) Alternatively subtract the relations for M+ and M—:

Re[M+(w)—M~(w)] 2P Im(M+-M~)aZ ,

W1 w2

(31)

- (32)

w K W —w
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Either of these subtractions would remove the extra
terms from ¢x? or ¢x* interactions, referred to after
Eq. (5). That a subtraction of the type (31) or (32)
above is necessary is also shown if we consider the
lowest order perturbation approximation to M+ and
M—. As a theoretical example, consider the case ga=0
with scalar K mesons, while all other coupling constants
vanish. Then to this order,

ol /2m\wo—N—A
ReMp"’”:——(—)i, (33)

dr\ N/ w+ws

28?2 /2 \ w+N+A
ReMp"=—(—~)~———-—. (34)

4r\ N/ w—wxs

To this order, the only contributions to the right-hand
side of (11) and (12) come from the bound-state terms.
From (16) and (17), using (33) and (34), these are

gA2 27!'
ReM,,’*'—f-——(-—), (35)
dr\ N
and
gAZ 27r
ReM ,~+—{ — ). (36)
4T\ N

Thus the relations (11) and (12) do not check in the
lowest order perturbation calculation.* One may take
the attitude that either a perturbation calculation is
not valid, or the failure of (11) and (12) may be
ascribed to the lack of convergence of the integrals
involved on the right-hand side. Notice that relations
(31) and (32) both check in the perturbation calcula-
tion. In the accompanying paper we shall use (32).
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11 The same is true of the x-NV dispersion relations. See R.
Arnowitt and G. Feldman, Phys. Rev. 108, 144 (1957).



