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X-Meson Dispersion Relations. I. Theory
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Dispersion relations for E-meson scattering are considered, particularly for the theoretical difFiculties of
contributions from a continuum in the unphysical region. Some general results relating to threshold values
of matrix elements for creation processes in E +N collisions are proved.

1. INTRODUCTION the retarded causal amplitudes

&~ISPERSION relations for E-meson —nucleon
(E E) sc—attering have recently been written

down by Sakurai and by Amati and Vitali. ' Like the
x —N relations, ' these provide important clues for the
interpretation of E-meson data. In this paper we wish

to consider some of the peculiar theoretical difhculties
which arise from the unphysical ranges in these rela-
tions, while in the accompanying paper we make a
first attempt from the existing experimental data
towards fixing the parity of the E-meson and the
E-coupling constants. No rigorous derivation of the re-
lations is attempted in these papers.

M'(k, p,p') =' ' d'*0(—x)(p'I[~'(0), ~'*(')lI p)e-'"*

~)"d'»(xo)(p'I [i'(0),b~'*(x))
I p)& *"*

The second term in (5) appears only if the E-interaction
Lagrangian contains Qrc'(x) or &le'(x) terms explicitly.
In this paper only 3-field interactions are considered
so that this term is consistently disregarded. On account
of the mass relations, e.g. , A')S'+E', the retarded
amplitude M+ equals T+, so long as k p'~&0. This
includes the entire physical region.

Before writing the dispersion relations, some proper-
ties of M+ may be noted:

2. DISPERSION RELATIONS

(a) M+"(k,p,p') =M+( —k, p', p). (6)

This follows from the Bose-character of the K meson.

(b) ImM
= r (2x)' 2-[(p'I j(o)

I
n)(nI j*(o)Ip)~'(1+k —&)

—(p'I j*(0)In)(nI j(0) I
p)s(p' —k —n)3. (7)

ko, ko', po, po')0,

k2 k I2 K2 p2 p12 —+2 (2) S„

Write T~+, T„+,T„,T„for the elastic scattering
amplitudes for E+ p, K+ rc,—E p, an—d E—n-
scattering. The initial meson and nucleon 4-momenta
are k, p, respectively, and final momenta k', p'. On the
energy shell, '

k+p=k'+p'.

Combining (2) and (3), one obtains

k (P P')=P P'—
If one writes

T(k,p,p') =N(p') [L+AM]n(p),

(3) M+ =u(p') [F++kG+]m (p),

*=k (P+P'), y=P P'.

Vpon using (6), the dispersion relations are

F r" ImF+(x', y)
ReF+(x,y) =— dx'

(8)

(9)

then on the energy shell L and M are functions of the
two independent covariants (p+p') k and p p'.

In complete analogy with the m--meson case, we define

1 I"ImF (x',y)+— dx', (10)
n o x+x

F t
"ImG+(x', y)

ReG+(x,y) =—' dx'
7l 0 S X

' J. J. Sakurai, Bull. Am. Phys. Soc. Ser. II, 2, 177 (1957);
D. Amati and B. Vitali (to be published).

2A. Salam, Proceedings of the CERN Synsposigm on High-
Energy Accelerators and Pion Physics, Geneva, 1056 (European
Organization of Nuclear Research, Geneva, 1956), Vol. 2, p. 176;
Low, Chew, Goldberger, and Nambu, Phys. Rev. 186, 1337 (1957).' The notation throughout this paper corresponds closely with
that used for the 7I.-N case in reference 2 by Salam. We use th
metric p q= p0g0 —p q, A,'= iyk, where the y are Hermitian
(y'=1). Thus. AP+Pk=. 2k. p. All masses are written with thei
particle symbol. Thus N and E stand for the nucleon and
masses.

1 t "ImG (x',y)+— dx', (11)
~" o x'+x

e
with similar relations for ReF and ReG .

For forward scattering, p= p'; y=lP. If co is the
E-meson energy in the laboratory system [o~ = k
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(p+p')/2N], Eqs. (10) and (11) give4

P t" ImM+(o)')
ReM+ ((u) =— dk)'

m "o 1

1 r" ImM+((o')
dhe'. (12)

w~ p . ro'+re

For co&E, the "optical theorem" takes the form

case these so-called bound-state contributions are'

ImM„(k,p,p')

gx= ——2w'u (P') [k—1V+A]u (P)5[(P+k)' —A'],
4m

(E pseudoscalar), (16)

gx= ——2w'u(p') [k—N —A]u(p)8[(p+k)' —A.'],
4n.

ImM (co) = (re' —E') &o r (re), (13) (K scalar), (17)

where az is the .total cross section. ImM~ (k,p,p')

3. UNPHYSICAL RANGE

In order to make practical use of relation (12),
one must have information about ImM(a&) below
the physical threshold re=E. In this region, p=p';
ks ps&0' O'=K' p'=N' However, k p&KN; that is
.to say, the 3-momenta k, p can be complex in such a
way that the scalar products k', p', k. p are still real.
(For the nonforward scattering case p', k' are also
complex with k p', k' p, etc. , all real. ) We now consider
the case of forward scattering.

(1) From Eq. (7), we have

gz= ——2m'u(p') [k—1V+Z]u (p)8[(p+k)' —Z'],
4n-

(E pseudoscalar, A,Z same parity), (18)

gz= ——2 'u(p') [k—N —Z]u(p)8[(p+ k)' —Z ],
kr

(E scalar, A,Z opposite parity). (19)

(3) Unlike the w —N case, ImM~ has contributions
below the physical threshold, from the continuum of

(w,A), (n.,Z), and (2w,A) states —more precisely, when'

n'= (p+k)'~& (A+II)'
u'= (p+k)» (x+11)',
fss = (p+k)'&~ (A.+2II)'.

ImM+((o) =0, 0&&a&&~K.

This is because there is no physical state ~rs) with
strangeness +1 and rest mass rrs= (P+k)'((E+N)'.

(2) Like the s.—1V case, ImM„has bound s

contributions. These arise when

rs'= (p+k)'=A' or ~s ——(1/2N) (A' N' K')— —

As an example, consider the A, II contribution, to
ImM . If q and s are the A and x momenta in the real
physical intermediate state, then for scalar E, one has

(14)

and

n'= (p+k)'=Z' or ~r = (1/2N) (Z' —N' —E'). (15)

For M„,only the Z state contributes. If we assign

(by convention) parity' (+) to A, then ImM„(&os)
and ImM„(rex) depend on the parities of the K meson

and the Z particles. For the general nonfor ward

4%e would like to restress the important role in dispersion
theory of the use of covariant variables like k p and p p'. The
commonly used center-of-mass quantities (c.m. momentum (

y'
~

or
c.m. angle 8') have fairly awkward expressions in terms of k p,
p p'. It has come to be recognized commonly, that momentum
transfer 2~y'~ sin(8'/2) (or better still its square) is the more
significant variable for plotting experimental results. This is a
recognition of the fact that momentum transfer (and not cos8')
is simply related to the covariant variable p p'; Lp p' —Ar'
= (p'('sin'(8'/2)], We wish to point out that, likewise, for
exhibiting the energy-dependence of total cross sections, the
theoretically significant variable in the present context is p. k
(=Neo, where co is the meson laboratory energy) or equivalently
(p+k)'= (E')' (where E' is the c.m. energy), and not the vari-
able p'[. A simple relation between lab momentum

~
p'~ and )p')

may be noted in passing;

L(P &)'-I~'&'j'=&1 p'I =
l p'I &'

~ P. T. Matthews, Nuovo cimento 5, 642 (1957).

1m', (p,p', k) =— u(p') [X+kY]rys[q A]—
4(27r)'"

Xi&s[X*+0V*]u(p)8(q)8(s)8 (q' —A.')8 (s' —IP)

XB(P+k q s)d'qd's, —(2—0)

where its is replaced by 1 if E is pseudoscalar. X and
I' in the first square bracket depend on p' q and p' s;
in the second on p q and p s.

Specializing to forward scattering, we have

ImMs„(ro)= t Tr((P—N)[X+kF](qaA)
2s(2n.)'N~

X[X*+AF*])5(q' —A')8(s' —IP)8(p+k —
q
—s)

X8(p)8(q)8(s)d'qd's. (21)

The expression in the integrand in curly brackets

'This is a simple illustration of the general result stated by
A. Salam LNuclear Phys. 5, 687 (1958)g, that matrix elements for
a pseudoscalar meson theory can be obtained from those for a
scalar meson theory by changing A~ —A.

7 Here II stands for the m-meson mass.
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equals'

4F(p q, p k, k q) =4(XX*(p.q+NA)
—(XY*+X*Y)(Nq k+Ap k)

+YYeL2(P. k) (q k) —k'(P. q+AN)]}, (22)

where the upper signs are for scalar E mesons and the
lower signs are for pseudoscalar E mesons. Insofar as
ImM(&a) QI(PI jIn)I', one may naively expect that
ImM(ro) &&0 both in the physical and the unphysical
region. If this were so, the sign of the right-hand side
in relation (12) (the relation for ReM+) would be fully
determinate and the repulsive or attractive character
of the E+-S "potential" could be unambiguously
stated. Unfortunately it turns out that although
ImM+ )~0 for the physical region, its continuation
below physical energies can become negative. It is
perhaps instructive to reconstruct the proof for positive
definiteness of ImM& above physical threshold.

Consider (22) as a quadratic form. Since p q&~AN

above threshold, the coefFicient of XX* is positive.
Thus it is sufFicient to prove that

I (NqwAP) k]'& (p qwAN)L2(p k)(q k)
—k'(p q+AN)] (23)

ol

are functions of p. k') the integration in (26) yields

(IP'I I
q'I)'"

ImMs. (p k)=
8{2rr)4E' ~-o 2m+1!

p (p+k)
XG'"I p k) L(p+k)'+A' —II'] I, (27)

2(p+k)' )
where

Gsn gsnG/g (p. q)sn

&y using (27), it is possible to draw general conclusions
regarding the behavior of the matrix elements at
(physical or unphysical) creation thresholds (q'—&0).

(1) In the physical region

ImMs —= (aP K') o—rr+~,~s
= (I p'IE'/N)«+~-+s (2g)

Thus oK~+ ys (Iq'I/Ip'I)G for small p'. This is
the well-known 1/v law for exothermic reactions near
physical threshold.

(2) For q'—+0, only the first term in the summation
in (27) survives, so that statements about ImMs can
be made simply by considering the integrand in (26).
Thus

k'LP'q' —(P q)'] —LP(q k) —q(p. k)]'&0 (24)

In the laboratory frame
I p= {N,O)], Eq. (24) reduces to Also

lcm ImM~ =+0.
Qc~o

(29)

(25)k'q' —(k q)'&~0. ImMs (p.k) =—limG= & oo. (30)
gc

lim
o.~o g (p .k)

For real k and q, (25) is obviously true. No statement,
however, can be made in the unphysical region. In the
next section, by considering a special example, we shall
show that ImMq can indeed be negative in the
unphysical region.

For endothermic reactions, as shown in (25), G is
always positive so that in (30) the limit is + ~. Thus
matrix elements for endothe-rmic processes start from zero

at creation thresholds upwith -a positive igfirtite slope This.
has been noted previously by Wigner and Breit."

For exothermic reactions ImMg can approach zero
at the unphysical creation threshold with + oo or —oo

slope depending on the theory. As an example, consider
a scalar K meson and a 4-field Lagrangian Psiygkr, rP Prc
In the lowest order perturbation calculation,

4. UNPHYSICAL CONTINUUM

Rewrite (21) as

I M -(p k)= ~G(p k, p q)"o(q' A.')—
4(2or)'"

X5L(P+k)'+h.'—ll' —2q (P+k)]

X8 (qo)tt(po+ ho qo) d4q (26)—
To perform the (covariant) integration in (26), it is
convenient to specialize to the c.m. frame. If y' and q'
be the initial and finai c.m. momenta {both

I
p'I and

I
q'I

8 The corresponding 271., h. contribution to ImM(k, p,p') equals

,JN(p') (X+II'+sZ)pqWA)(X'+0 1'*+sZ')N (p)

Xe (e)e (s)e (r)e (g' —A')e (s' —Il')e (r' —Ils)
X~ (p+ k —

q
—s—r)d4qd4sd'r,

with the same convention for the signs. Here q is the A momentum
and r and s are w momenta,

G(p. k, p q)=(positive constant)X(p q
—AN).

.I p Ir pc poc+koc —Ec LAB+ (qc)2))+t IIs+ (qc)2)$

Covariantly,

(p k)~ —XRX2
(u')'=

( +k),

=4( ~q),L(p+k)'+ P'+&)')L(p+k)' —(Ar+&)'),
4(p+k)'

(q s)2 —~2'(e')'=
(p+k),

L(p+&)' —(A+II)'X(p+&)' —(A —11)').
4(p+k)2

' K. P. signer, Phys, Rev. 73, 1002 (1948);C. Breit, Phys. Rev.
107, 1612 (1957).Also see R. J. Eden, Proc. Roy. Soc. (London)
A210, 388 (1952).
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By u'sing (27), it is easy to see that

8 1m' (p.k)

8(p k)

In this case ImMp starts from a positive value at the
scattering threshold, (p+k)'=(E+$)2. As p k de-
creases, it goes through a (spurious) zero and a,pproaches
zero again infinitely fast from negative values when the
beginning of the unphysical continuum is reached.

This behavior of ImMq makes it difficult to make
precise numerical predictions from dispersion relations.
One possible way out of the difficulty presents itself
provided XX*, XF*+X*I',and I'Y* in Eq. (22) are
slowly varying functions of p k, et.c. In this case
0.~+~ +~ at three energies near threshold would deter-
mine these three parameters, giving G in the unphysical
region. Another possible means to extrapolate G into
the unphysical region is provided by measurement of
polarization near threshold, since the polarization
function involves these same functions XX*,etc.

S. CONVERGENCE OF DISPERSION RELATIONS

The integrals on the right in relations (12) and (13)
as they stand do not converge, unless 0.(ar) falls faster
than ~ '. To secure better convergence one can do two
things:

(1) Consider each relation at two energies:

Re/M+(&uq) —M+(~2)] P p ImM+(s&)
dc'

COy COg 7I CO CO] CO Q) 2

1 ( ImM+((o)
d(v. (31)

GO Gay M 602

(2) Alternatively subtract the relations for M+ and M

ReLM+((v) —M ((o)] 2P t.Im(M+ —M—
)
d(u'. (32)

Either of these subtractions would remove the extra
terms from pa' or g~' interactions, referred to after
Eq. (5). That a subtraction of the type (31) or (32)
above is necessary is also shown if we consider the
lowest order perturbation approximation to M+ and
3f . As a theoretical example, consider the case g~/0
with scalar E mesons, while all other coupling constants
vanish. Then to this order,

g~' (2~1 ~—+—A.
ReM„+=—

]
—

f

4~ ( E) co+(og
(33)

(34)

To this order, the only contributions to the right-hand
side of (11) and (12) come from the bound-state terms.
From (16) and (17), using (33) and (34), these are

and

R.eM„++—
i
—

/,

(36)

Thus the relations (11) and (12) do not check in the
lowest order perturbation calculation. "One may take
the attitude that either a perturbation calculation is
not valid, or the failure of (11) and (12) may be
ascribed to the lack of convergence of the integrals
involved on the right-hand side. Notice that relations
(31) and (32) both check in the perturbation calcula-
tion. In the accompanying paper we shall use (32).
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"The same is true of the m-N dispersion relations. See R.
Arnowitt and G. Feldman, Phys. Rev. 108, 144 (1957).


