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The formalism of irreversible thermodynamics is applied to
the kinetics of carrier transitions in semiconductors. The thermo-
dynamic forces, the generalized resistances and admittance
functions are introduced. It is shown that the thermodynamic
forces which establish the regression of a perturbed state to
equilibrium are the differences of the quasi-Fermi levels that have
to be assigned to each group of carriers; the generalized resistances
are simply related to the transition rates. It is then possible to
write the kinetic equations for the rate of change of the various
carrier concentrations in a unified form so that the dissipation-
fluctuation theorem of Callen and Greene can be applied. The

spectral density matrix of the spontaneous carrier fluctuations is
immediately found from the admittance matrix. The results
can be expressed in a closed form which is valid for nondegenerate
as well as for degenerate semiconductors. An electrical network
analog is also outlined. The theory is applied explicitly to electronic
noise in extrinsic and near-intrinsic crystals with and without
recombination centers. Finally, the close connection with statis-
tical results obtained before is discussed and the complete agree-
ment between the Einstein relation and the extended "g-r
theorem" for the variances is established.

INTRODUCTION

1

~ARRIER concentration disturbances in semi-~ conductors have been studied in great detail in
recent years. Several contributions appeared on the
decay of injected carriers to the equilibrium state. Often,
a main object is to find the relaxation times of the
regression process, which informs us about the nature
of the energy levels involved. The theories which deal
with these processes usually are based on a simple
kinetic approach. Although the equilibrium behavior
of the carrier densities can be deduced from thermo-
dynamic arguments (e.g., from the minimum of the
electronic free energy) no attempt has been made to
describe generation-recombination processes in a non-
equilibrium state with irreversible thermodynamics,
as far as the author knows. This formalism will be
developed here and it will be shown that it gives a
thorough basis for concepts as quasi-Fermi levels,
recombination resistances, etc. , which were used before
in a heuristic way. Also, the proper lifetimes for
injected carrier densities can be found in a general
fashion. The merit of the method, however, is not the
computation of carrier relaxation times which can be
obtained by direct statistical considerations in a much
simpler way. On the contrary, the method is extremely
useful for the calculation of the spontaneous fluctuations
in the carrier densities, which occur under thermal
equilibrium. It is in view of these fluctuations that we

develop the theory here.
The connection between irreversible thermodynamics

and Quctuation theory dates from the foundation of
this branch of physics by Onsager' who proved the
so-called reciprocity relations for macroscopic transport
phenomena with the aid of the principle of microscopic
reversibility of the fluctuation processes. These Onsager
relations are still basic for many irreversible processes. '

~ L. S. Onsager, Phys. Rev. 37, 405 (1937); also Phys. Rev. 38,
2265 (1937).

2A comprehensive account by S. R. de Groot is found in
Thermodynamics of Irreversible I'rocesses (North-Holland Publish-
ing Company, Amsterdam, 1951).
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The theory of fluctuations, in turn, has greatly bene-
fitted from the development of irreversible thermo-
dynamics. Fundamental results were obtained by
Onsager and Machlup' and by Tisza and Manning. 4

The latter authors showed that the Boltzmann-
Kinstein theorem, which relates the entropy and the
steady-state distribution functions for the extensive
parameters, has an analog for the nonsteady state in
which a general relationship exists between the dissipa-
tion function and the conditional MarkoG probability
dealing with the change of the Quctuations in the
course of the time. This theorem permits a calculation
of the fluctuations in the time domain (correlation
functions) from irreversible-thermodynamical concepts.
We shall not employ this method here since, from an
experimental point of view, the spectrum of the Auctua-
tions is of more importance. Preferring therefore the
frequency domain, we shall avail ourselves of a very
important theorem, established by Callen and Greene'
and others, ' ' known as the fluctuation-dissipation
theorem or generalized Nyquist formula. This theorem
states that the spectral densities of the fluctuating
extensive thermodynamic parameters are simply 4k 7/ro'
times the real part of admittance functions which relate
forces and Auxes in a perturbed system. A well-known
example is thermal noise in electrical networks where
a mere calculation of the total admittance suffices
to And the noise. To stress the importance of this
theorem we will briefly review the customary methods
employed in the analysis of stochastic processes.

1. General Remarks about the Method
to Be Followed

I.et x; be the fluctuating quantities in which we are
interested. In many cases these quantities satisfy

' L. S. Onsager and S. Machlup, Phys. Rev. 91, 1505 and 1512
(1953).

4 L. Tisza and I. Manning, Phys. Rev. 105, 1695 (1957).' H. B. Callen and R. F. Greene, Phys. Rev. 86, 702 (1952);
R. F. Greene and H. B. Callen, Phys. Rev. 88, 1387 (1952).' H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

7 J. Weber, Phys. Rev. 101, 1620 (1956).
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Langevin equations

dx;/dt =P;A;,x,+~;(r) (1.1)

These equations are obtained by adding noise source
terms e;(t) to the appropriate macroscopic kinetic
equations, e.g. , network equations when dealing with
thermal electrical noise, or linearized carrier "reaction
equations" containing all recombination and generation
terms in the case under discussion here (compare van
Vliet and Blok ). Equations (1.1) can be solved for
the spectrum of (x,x,) either by Fourier analysis
(Schottky's method) or by computing the correlations
(x;(t)x;(t')) from (1.1) with Ornstein's method. ' In
both cases one has to know c', priori either the total
variances (x;x,) or the spectrum of the quantities (e,c,).
An example of the latter possibility was given by Petritz"
and by van Vliet and Blok,"in the case of carrier Quctu-
ations in photoconductors, where e;(t) represents the
Quctuations in the incident photon stream, the spectrum
of which is known from Bose-Einstein statistics. Our
main conclusion here is that additional information is
necessary in order to solve for the spectrum of the
fluctuations from (1.1). Such information can in general
be obtained from thermodynamical arguments or—in a
purely statistical approach —from difference equations
for the probability functions (KolmogorofP2), integral
equations (van Smoluchowski") or partial differential
equations (Fokker-Planck" '4)

In the present method, where we restrict ourselves
to thermal equilibrium, the spectrum will be found
directly, and the values of the variances (x,x,) have
not to be known in advance but are obtained as a
result by integration of the spectra. Again, we start
from the kinetic equations; the main object now is to
choose the extensive parameters xi and the intensive
parameters in such a way that they are conjugate in a
thermodynamical sense. We then get the kinetic equa-
tions in a unified form. The introduction of noise source
terms e; is not necessary. On the contrary, we impose a
nzacroscopic perturbation V, (t) on the system where V;
has the dimension of the intensive variables. The
response of x, (t) to this perturbation defines the
admittances of the system, from which the spectral
intensities of (x,x,) are found directly. This macroscopic
approach validates the fact that noise spectra always
only contain macroscopically observable quantities"

K. M. van Vliet and J. Blok, Physica 22, 231 (1956).
9 L. S. Ornstein, Verslag. Gewone Vergader. Afdel. Natuurk.

Koninkl. Ned. Akad. Wetenschap. 26, 1005 (1917);Phys. Rev.
36, 823 (1930)."R. L. Petritz, Phys. Rev. 104, 1508 (1956)."K.M. van Vliet and J. Blok, Physica 22, 525 (1956).

"A. N. Kolmogoro8, Math. Ann. 104, 415 (1931).' See M. C. Wang and G. E. Uhlenbeck, Revs. Modern Phys.
17, 323 (1945).

A. D. Fokker, Ann. Physik 43, 810 (1914);Arch. neerl. sci.
4, 379 (1918)~""Observable" means here that the quantities can be measured
in principle. There may be practical limitations, however; e.g. ,
carrier relaxation times smaller than 1 @sec cannot easily be
measured with the normal techniques, whereas times of the

(besides constants like e, k, etc.) which is not always
recognized.

In accordance with the above remarks it is the
author's feeling that many more applications of the
Quctuation-dissipation theorem can be given than are
known today. In the case of thermal noise in a resistor
the application was straightforward, because the
kinetic equation RQ= V is immediately of suitable
form, since Q and V are conjugate quantities. In
other cases, a transformation may be necessary. Finally
we remark that the theorem also applies to cases which
cannot be described with equations like (1.1), as long
as the conjugate quantities can be defined.

ni= e;—S;0. (2 1)

Since the total number of electrons is constant, we
have the constraint

n;=0. (2.2)

Hence, the independent variables can be numbered
as n& n, &. To find the "thermodynamic forces" or
conjugate variables to the n, we can choose between
the "free-energy language" or the "entropy language. "
Though both methods give the same results (see
Appendix A) we prefer the first possibility which
corresponds to the experimental condition that the
crystal temperature is left constant. It is customary
then to define the conjugate variables as the derivatives
of the free energy with respect to —n. In our case,
however, a slight complication arises because of the
constraint (2.2). To examine the situation we consider
the free-energy total differential

dF= TdS PdV+ Q p,d—n, =O—, (2.3)

order of 10 ' sec were found at this laboratory from noise spectra
measurements.

2. Kinetic Equations and the
Admittance Matrix

In what follows, an energy "state" will be defined
either as a localized level in the forbidden gap or as a
continuous band. The reasoning behind this is that the
time for exchange of carriers in difFerent energy levels
within the conduction band or valence band is extremely
short compared to the inverse of the frequencies in
which we are interested. We shall consider the general
case that s energy states B~ h, contribute to the
carrier transitions, the number of electrons in the
various states being e& e,. For consistency we shall
deal with the electron occupancy in these states
rather than the hole occupancy since that would lead
to the introduction of & signs in the results. It will be
convenient to define the extensive variables as devia-
tions from the equilibrium values (to which we assign
the suffix 0)
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with

(2.4)

Here p;=OF&')/Bn; is the chemical potential which in
equilibrium (n;=0) equals the Fermi level. )The
superscript (s) means that F is considered as a function
of all the variables nt n, .7 For a nonequilibrium state
p; corresponds to the quasi-Fermi level for the charge
carriers of group i (see Appendix A). The above
equations can be rewritten as

s—1
dF= TdS —PdV+—P (p;—p,)dn, . (2.5)

In accordance with this expression the thermodynamic
forces are dined here as

s—1

X;= PR,;ri, ,
j=l

s—1

or aj= P (R—') jj,Xj,. (2.7)

If we are close enough to equilibrium, the free energy
may be expanded as

X;= BF'—"/Bn;= jj, jj; —(i=1, 2 s—1), (2.6)

where F & ') denotes F as a function of the independent
variables only. The above definition states that the
thermodynamic reaction forces in a nonequilibrium
state which are responsible for the regression to
equilibrium are the differences of the quasi-Fermi
levels with respect to a reference state b, . One might
wonder why these forces depend on the particular
choice of s. The answer is that another set of forces
X =p„—p; would give a completely equivalent
description. Just as for chemical reactions" there are
several other ways of choosing the X;, e.g., X j p pj
and cyclic, which introduces extraneous variables.
We come back to this in the next section.

The generalized resistances are introduced as the
proportionality constants which relate the forces and
the cruxes or, in our case, relate the quasi-Fermi levels
and the transition rates"

The admittances are easily introduced in a statistical
treatment' but its definition, in a thermodynamic
approach requires more care. Callen and Greene' hereto
introduce an external driving system with which the
system is in equilibrium if the two systems have equal
values of their thermodynamic forces. To describe the
nonequilibrium behavior, it is assumed that the
driving system has an instantaneous response when its
parameters are sinusoidally varied with an arbitrary
frequency co, i.e., that the system is at any time in
quasi-static equilibrium and its forces are well defined.
The forces of this driving system are called the driving
forces. For low frequencies these driving forces which
act on the original system balance the thermodynamic
forces in the system. On a small time scale there will
be a time lag of the reaction. This behavior can be
described in terms of an admittance matrix Y;j,
introduced as follows. Let the driving forces be V;(t)
and let

also

V;(t) =)~ E;(o&)ej"'do& (2.10a)

e;(t) = P;(o&)e j"'do& (2.10b)

then

s—1

(2.11)

The procedure sketched above can easily be visualized
in the case of fluctuations of the external parameters
of a gas, enclosed by a diathermal piston and which is
in equilibrium with a reservoir; then the pressure on
the piston is the driving force. In our case it is not
easy to assign a physical picture to the driving system.
Nevertheless, the above idea leads to the conclusion
that the generalized driving forces on which the
definition of I";j is based are external force terms V;,
having the dimensions of quasi-Fermi levels, and which
have to be added in the right-hand side of Eq. (2.9);
i.e., the relation between, n, (t) and V, (t) is

(2.8) (2.12)

where

f,,= {82Ft' ')/cjoy, snj}—,=,e
or with (2.10) we get the "response equations"

Also, the X; can be written as Lcompare (2.6)7 X,
= —P jf,,n j, so that (2.7) results in the kinetic
equations

s—1

The theorem of Callen and Greene now gives a
(2.9) general relation between the conductance o;,=Re(Y;j)

and the mean square fluctuations in the following form:
"S.R. de Groot, reference 2, Chap. 9.
"The (R ');; quantities are sometimes called conductances.

This will not be done here since below we will introduce frequency-
dependent conductances o;j(ca). 40

o;, (o&)df/o&2, (2.14)
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s

~'= Z'v, .
i-i 1+exp[(h;—p,)/kT j

X
1+exp[(—8;+p;)/k Tj

s
Pl ~

1+exp[(8,—p;)/kTg

X (3.3)
1+exp[(—h+~ )lkTl

Eo (no)

FIG. 1. Energy level diagram of arbitrary semiconductor.

We then expand the right-hand side for small p, ;—p, o

in a Taylor series. The lengthy expression, so obtained
can be considerably simplified by noting that the
principle of detailed balance tells us that the equilibrium
rates p,p and p;,' are equal, i.e.,

where G is the spectral density matrix (df=doo/2n)
The problem of finding G;; is thus reduced to finding
the admittance I';;. For this in turn we need the
knowledge of R;; and f;;. The latter quantities are
found in a straightforward way (see Appendix A).
The R;; will be derived in the next section.

3. The Generalized Resistances
and the Lifetimes

p~f=7'i'
1+exp[(a' —wo)/kT 3

X
1+exp[(—8;+go)/kT J

=7ji
1yexp[(8;—po)/k T]

X =p;;o. (3.4)
1+exp[(—h, +&o)/kT)In what follows, we shall assume that the semicon-

ductor is nondegenerate. The extension to degenerate
cases is treated in Appendix B.

The E;; follow easily from their definition (2.7) and
the expression for the forces (2.6). Suppose we change
the Fermi levels by some means from pp to p;. Let us
furthermore denote the transitions per second of
electrons from h; to b; by p,; (see Fig. 1), such that

We then find that

(3.5)~'= 2' p" (p~ I")/kT. —
j=1

If one or both of the states h; and 8; would represent
a band instead of a localized level, then (3.3) has to
be changed since we must use the expressions (A.11)
and (A.12) of Appendix A instead of (A.8). One easily
shows, however, that this also results in (3.5) which
therefore holds generally. From (2.6) and (2.7) we
also have

p"=v"~'(&~ ~~), (3.1)

s—1

(3.6)~'= 2 (& ')'~(~.—~~)

To compare the coeflicients we write (3.5) and (3.6) as
follows:

s—1 s

kT~'= 2' p"I (2' p")I"+p"I—.,
(3.2)

(3.5a)s

Q 4 ~ ~ ~

j=l

where p;; is a proportionality constant, "depending on
the cross section for this particular transition and
where e; is the number of electrons available in the
state b; and E;—e; is the number of holes present in

h, . Since the generation of carriers to 8, equals Q';=i'p;,
and the recombination equals P'; i'p, , (where the
prime denotes that i=j has to be excluded), the net
rate of change of e; is

Using (3.1) and the expression (A.8) of Appendix A,

"If 8; and 8; are both localized impurity levels which do not
occur in great abundance, y;; and y;; are approximately zero.
Since this does not simplify the general expressions we shall
take all p;; along.

s—1

+[2 (& ')'Jlp' (36a)
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Comparison of the erst two terms on the right-hand Equations (3.2) then give
side gives

(R- ),;=—P, P/kT (iW j; i, j=1, . "s—1), a;= P P' (Bp;;/8« Bp—,;/8«) po.(,
l=l g=1

(3.10)

(R—')"= p' p;,'/kT (i=1, 2. .s—1),
j=l

whereas comparison of the coefficients of p, leads to

p (R '),,=p, ,p/kT
j=l

and comparison with (3.8) yields

S

a'i= —(R 'I)'i= 2' (~p~'/~« ~p'~/~«) p (3 11)
j=l

Equations (3.10) and (3.11) were the basis of the
statistical procedure followed before' (see also Sec. 8).

which is consistent with (3.7). In this way the reciprocal
generalized resistances have been expressed in the
transition probabilities.

In Eqs. (3.7) the effect of the asymmetry with
respect to the level 8, manifests itself only in the
diagonal elements, which would have been zero in a
symmetrical treatment. A completely similar situation
exists in electrical e-terminal networks where one of the
junctions is used as a reference junction such that the
independent potentials are the voltage differences with
respect to the potential of this junction. Actually,
Shockley and Read" already pointed out for the
particular recombination process considered by them
that the p's can be looked upon as voltages and the
cj's as currents. In Sec. 6 we extend this idea and
present an equivalent electrical network.

From (3.7) we see that R,,=R,;, since P,sP=P, ,P.

This means that the Onsager relations in our case are
a direct consequence of the principle of detailed
balance. In photoconductors the latter principle does
not hold and cyclic transitions can occur under illumina-
tion. This is the reason that the results in photo-
conductors, where the above theory does not apply,
are so much more complicated.

Next we shall find the relaxation times characteristic
for the return to equilibrium. We write (2.9) in the form

4. Application to Simple Intrinsic and
Extrinsic Semiconductors

Before proceeding to complicated systems, we shall
first illustrate the theory in the simple case in which
there is only one independent variable, i.e., the transi-
tions of interest will occur between two energy states
only. These two states may be the conduction band and
the valence band (intrinsic or nearly intrinsic semi-
conductors), the conduction band and donor levels
(n-type semiconductors), minority-carrier traps and
valence band, etc. The one variable equations for the
response (2.13), for the admittance (2.11), for R (3.7)
and for r (3.9) are, respectively:

l3(~) (Ri ~+f)=&(~)

j(up(o)) = I'((o)E((o),

R= kT/gp ——kT/rp,

r =R/f.

(4.1)

(4.2)

(4.3)

(4.4)

JQ7 Gg EY=; 0-=
f+j (vR f'+(o' R'

(4.5)

Here gp=—p.p is the equilibrium generation rate and
rp: pyp is the equilib—rium recombination rate. Equa-
tions (4.1) and (4.2) yield

~,= —P (R ')p, fw«. (3 8) Hence the spectrum is

G (f) =4kTR/(f'+po'R') (4.6)
A particular solution of (3.8) is A exp( —t/ry). Sub-
stituting this we find that there are s—1 relaxation
times which are the inverse eigenvalues of R f, i.e.,

i
R—'f—(1/rj, ) I

i
=0, (3.9)

p' = 2 (~p'/~~~)~~+p"

' W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).

where I is the unit matrix. In this way the r's are
expressed in the R;, and f;; We note, h.owever, that
the matrix a=——R 'f can also be found directly from
the transition rates p, , To show this we develop p,;
according to

Using (4.3) and (4.4), we can bring this from the
"Nyquist form" (4.6) into the more familiar form

G.(f)= 4gpr'/(1+ po'r') (4 7)

This formula is identical with a result found before
Lreference 8, Eq. (17c)j. Apparently the result (4.7)
is more general than other expressions obtained before. '
We will see in Appendix 3 that it is even valid for
degenerate semiconductors Equation (4.7. ) does not refer
anymore to the thermodynamical basis on which it
was derived. Results for particular applications can be
found by calculating r from the thermodynamical
expression (4.4) or from the derivatives of the various
transition rates Lcompare end of the preceding section;
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«pp
G (nearly intr. )=4

ris+ps E1+ePr'
(4.9)

To find the current noise we note that i(t) =ep„e(t)E/L
+ep„p(t)E/L, or (Ai(t)') =e'p, „'(1+9)'(n')E'/L' where
L is the length of the crystal and b=p„/p„Using.
(4.9), we obtain for the spectral intensity G;(f) of (hi')

G, (nearly intr. )

for one variable, see reference 8, Eq. (15)7. Although
the latter procedure is much faster, we shall apply the
thermodynamical expression (4.4) in the two examples
given below in order to corroborate the method.

As a first example consider a nearly intrinsic e-type
semiconductor (all donors are assumed to be ionized).
For the free-energy second derivative, we have in
this case Lsee Appendix (A.13)j f=kT(1/ms+1/ps).
Hence, from (4.4) and (4.3):

1/ =go(1/«+ 1/Po), (4.8)

which is van Roosbroeck's result for direct recombina-
tion of electrons with holes in the valence band. "
Consequently, (4.7) can also be written as

with both intrinsic and extrinsic transitions. We then
need the general results of the next section.

E'(~) = Z 7'~(I' ')' Pr(~). (5.1)

Comparison with (2.13) yields

Y '=R+f/je~, (5.2)

and consequently the spectral densities can be expressed
by the matrix equation

G=4kT Ref(R+f/je~) '}a) '.
Unfortunately this solution does not give us any
insight into the nature of the solution. We therefore
shall obtain sorn. e other expressions. By inverting
(2.13), we have

j~p, =Pk~i;kpk+ (R ') ~kEk, (5.3)

S. General Solution

The reciprocal admittance matrix is easily found.
Equation (2.11) gives

For an intrinsic semiconductor this results in

(9+1)'ceps ] r q where, as before, a= —R 'f. We now make the trans-
=4&') (4.10) formation P/=pic;&Pi, where c makes a'=cac ' a

(&+o+po)'(ms+pe) (1+~'r'I diagonal matrix. Equation (5.3) then transforms, if
we also write E =Q~c, iEi and (R ')'= c(R ')c ', into

G;(intrinsic) =2i'r/es(1+k~'r'). (4.11)

1 ~2 1
-=col —+(«N —e i' (4.12)

similar to (4.8). Accordingly, (4.7) can be written

Secondly, consider an extrinsic semiconductor (e.g. ,
e-type) in which the donors ND are only partially
ionized. For r we find from (4.4), applying (A.14) of
Appendix A,

1
j~pk'= Pk'+—P—i(R ')ki'Ei',

&Ic

(5.4)

ol

F'k&'= (R )k&j'eirk/(1+j eirk),

wkl (R )kt GPrk /(1+co rk ).
(5.5)

where the lifetimes were introduced from (3.9). Since
also jcopk' p&——Yk&'E&', where Y' is the transformed
admittance matrix, we have

4isp(Nr) Np)r—
G-(f) =

(2Ni) —es) (1+e~'r')

Since i=ep, „ is/ELwe find

(4.13)

Writing now (R ')'=c(R ')c 'ande=c 'e'c, we obtain

S—1

G „=4kT(r„„/eis=4kT Q (c ')„kck, (R ');„rks
i,k=1

X (1+ePrk ) (5.6).
4P E —e 7.

G;(extrinsic) = . (4.14)
This is the Nyquist form. Using (3.7) we can express

(2N I ) (1+eisr2) G „in terms of the transition rates directly:

Another case, encountered experimentally, " is one in
which trapping occurs. If the trapping center interacts
only with either the conduction band or the valence
band, then (4.7) can be applied. If the trap, however,
acts as a recombination center, there are two variables
and we get much more complicated results. This case
is treated in Sec. 7. The same is true for semiconductors

S—1 S

G =4+ p (c ') kp; '(ck ck;)rk'/(1+eP—rk'), (5.7)
k=1 i&n

where we define cI„=—0 for all k.
We finally will derive the result for (a„n ) from the

spectra. We thereto note that, according to the defini-
tion of c,

"W. van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558
(in54).

s' H. A. Gebbie, Phys. Rev. 98, 1567 (1955).

QiCkiCil = —(1/rk) Ckl,

2', ~&k'(R ')'~f~i= (1/&k)&»

(5.8)
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Q;c;(R '),„=Q (1/ „')c„(f-'),„.
Substitution of this in (5.6) yields the result

(5.9)

This is in complete agreement with the results of
statistical thermodynamics (see Appendix A).

Moreover, the expressions (5.6) and (5.7) show
clearly that the spectra will be always rather smooth
and never exhibit "resonances" (maxima or minima).
The general aspect of the solution is pictured in Fig. 2.
The cross-correlation spectra (moors) may show sharp
cutouts (compare Sec. 7).

I" (2q
(~-~-)=

i I

—IkT 2 (c-').."i(f-')i:-.
0, /=1

. )(, (1+re 7'a ) d&e

=kT p (c ') acl.((f—')(„——kT(f—')„„. (5.10)

( r

Pa) Rslf&+fs'r (6 2)

Fermi levels p, ; and the currents i, to a, . Each junction
in Fig. 2 corresponds to a particular energy state.

When we next consider the regression of the current
to zero when the system is left to itself (the voltages
are taken away at t=0), then we have to introduce
capacitors which account for the slow way the charges
(concentrations n, ) leak away. Since the carrier rate
ci; is effected by a change in the Fermi level p, , we must
introduce both self capacitances C;; and mutual
capacitances C;, ; we will find it convenient to also
introduce the reciprocal capacitances or elastances
d, ,=(C ');,. Taking d, ,=f,,—the transient behavior
of the semiconductor is equal to that of the network
of Fig. 4. To prove this we note that V~=g~fI, ~fi~dh
where i~ as before is the sum of the currents through
the conductances at junction /. Hence, from (6.1),

6. Electrical Analogs in accordance with (2.9).
Consider an s terminal network, connected by

conductances g;,=P,se/kT (Fig. 3). Suppose that at a
certain instant voltages V~ V, are applied to the
terminals; the junction s will be taken as the datum
junction. The total current through all the resistance
branches that have junction j in common, and directed
toward this junction will be i,. The nodal network
equations are then

s—I

V)

kT

l2

1 P VA

kT

( pzs
kT

'S-I

VS-i

—i = 2 (R ') ~'(V~ —V.), (6.1)

Vs=0

where the "comitances" (R '),& satisfy (3.7) according
to a well-known circuitry result. " Equation (6.1) is
identical with (3.6) if the V; correspond to the quasi-

lO

I
3

IO

2
IO

I-

io

FIG. 3. Dc equivalent electrical network.

Finally the response to the driving forces E; can
also be found from the network, if we include voltage
generators E;—E; between each pair of junctions
i and j.

A similar network analog has been proposed by
North. "This is simpler than the one given here since
it contains no mutual capacitances whereas there is
complete symmetry between all the levels b& 8,.
It is expected that such a network can be obtained from
the above one by a proper network transformation.
Although North's network is more suitable for practical
calculation, the above network is a direct picture of
the theory presented before. The resolution into the
natural modes is also analogous to the general solution
of the previous section.

lO l8 18 to '7. Ayplication to the Shockley-Read Model

FIG. 2. General aspect of the many-level problem.

~ See, e.g. , H. , W. Bode, Eetmork Analysis and Feedback Ampli-
fier Dessgrs (D. Van Nostrand Company, Xnc. , Princeton, 1945),
Chap. 1.

Ke consider a semiconductor in which all donors are
ionized (or all acceptors filled) and which contains one

2'D. O. North (private communication); see also Bull. Am.
Phys. Soc. Ser. II, 2, 319 (1957).
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kind of recombination center. This is the picture that
Shockley and Read" proposed for Ge and Si at suK-
ciently high temperatures. We consider the Quctuations
in the rates Pis, Psi, Pop, Pss between the conduction
band, valence band, and the centers, whose energy
states, respectively, will be labelled 8~, 82, 83. The
direct transitions p» and p» are very rare in these
materials and will consequently be neglected. As
independent variables we consider e and —p. Denoting
the number of recombination centers by E, the number
of electrons in these states by i, and the number of
ionized donors by Nil, the consraint is (assuming all
centers N to be filled at T=0) rr+i p= N+—ND. The
transition probabilities are

2 'W'v ———

~llgis ==f

and we have

FIG. 4. Ac equivalent electrical network.

rl (Gll+G22)/6 (7.6)Psi=yi =y(N+Nn+P tp), —
pip= bn(N i) =be—( ND—+n p)—,
pop= e(N i) = 0—( Ng)+—I p), —
pss= lrip = sp(N+ND+p n), —

r = (r.o(po+ pr)+r, o(rip+111)&/(No+ po), (7 7)
where y, 8, ~ and ~ are transition constants. The
generalized resistances are which is the Shockley-Read expression. Since now

hi=0 and Ap=hts, this case has been reduced to a
one-variable problem. Carrying through the approxima-
tions )using Eq. ('7.9) given below), one arrives at the
simple result (4.10) with the only difference that now
r is given by (7.7) instead of (4.8).

In the more general case large deviations can occur.
We calculate the noise'from (5.7), the c matrix being

(R ')11= (r„pN) 'np(N ip)/kT, —
(R 1)so= (r„pN) ippip/kT,

(R ')is= (R ')st=0,
(7.2)

where we introduced the Shockley-Read symbols
r o= (bN) ' and r~p= (lrN) '. The transition rates are
then given by two simultaneous differential equations
of the form (3.10).'4 The matrix a is found to be, from
(3.11) and (7.1),

1121 l1» 1/r1

Gsl Gll 1/rs
(7 g)

(7.1)
If one writes" ip=N(1+It/ep) ', N i0=—N(1+co/
e,) ', it is easily found that &=(rior„oN) '(110+ps)
Then (7.6) results in

(Nr p)
'

X (ei+iso+N —io)

(Nr, o) '(po+ pi)

Here we introduced

(Nr p) '(rip+et)

(Nr„p) '

X (Po+P 1+is) 4r1 l(r811 2+r1)BO(N $0)
(7.9)

(ri —rs) r„pNi,s 1+id rt

Substituting this into (5.7), we obtain (denoting by
G „, G», and G„„ the spectral densities of (Al'),
(Dp') and (Aehp), respectively),

1st= NO(N —ip)/i p= C exp(ho —hi)/kT,

P 1——ioP p/(N io) =C' exP (—8,—80)/kT,
(7.4)

4rl r2(8»rl+1)Polio
G.n= 2

i,s 1+re'ri' (rs ri) r„pN—
(7.10)

where C and C' are constants. The two relaxation times
ri and rs are the reciprocal eigenvalues of (7.3). For the
case in which the number of recombination centers is
much less than the number of majority carriers, one
can easily show that 7~=7-sg, , ~2((7-~, where 78~ is the
Shockley-Read lifetime. From (3.9), we have

1/ri, s= —s(rr»+11»)(1~L1—4~/(ri»+&»)'j') (7 5)

where ~= ~»~22 ~12~21.
For N((e, and i&p, the square root can be expanded

"D. J. Sandiford, Phys. Rev. 105, 524 (1957). In this paper
it is also pointed out that the Shockley-Read theory does not
give the transient lifetimes for added current carriers with which
we are concerned here, but instead deals with the steady state
lifetimes for added current carriers.

4r1 rlrsl121NO(N io)
G.n= Z

i,s 1+~'rto (rs ri) r.oN— (7.11)

where gr, s means that a similar term, in which ri
and v2 are interchanged, has to be added. These
expressions, together with (7.3) and (7.5) give the
complete solution. From Eqs. (7.11) we see that the
two terms of the right-hand side for rors))1 (supposing
rs to be the smallest relaxation time) are equal in
magnitude but opposite in sign. This means that
G„„=O for coo-2))1. Hence, for suKciently high fre-
quencies the interaction of the holes and of the electrons

"F.W. G. Rose and D. J. Sandiford, Proc. Phys. Soc. (London}
B68, 894 (1955).
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with the recombination centers can be considered to be
independent.

To demonstrate the eGect of the number of re-
combination centers upon the noise, we calculated the
noise for the following two cases:

(a,) eo=10X10"cm ', po=0.8X10"cm ',

ED=9X10"cm ', X=0.3&(10"cm—',

7'„0=v~0= 10 sec, p„=p&.5

(b) no, po, 1Vn, r~o, 7'„0 as above,

Ã= 30)&10"

From (7.4), Ni and pi follow, and from (7.3) the u's.
For case (a) the current noise was calculated from
(4.10). In case (b) we must use the more general
relation between the spectral density G, of (Ai')
and the spectral densities of the carrier variances

2

G,= jb'G„„+2bG „+G„„}. (7.12)
(beo+ pa)'

The results are shown in Fig. 5; curve I represents
case (a), curve II case (b). It is seen that in case (b)
the time constants are quite different from (7.7).
At high frequencies a second bump appears. It might

be possible that in other cases this bump will be more
pronounced than in our numerical example. Experi-
mentally two-bump spectra are only seldom encountered
in germanium although an indication was found by
Hyde. " Obviously, one reason is that in most cases
thermal noise predominates at high frequencies. Often,
a slope less than two for cur)&1 is observed. It is not
likely that this is caused by an overlap of the two
bumps involved here, since our r& and r2 will always
be rather far apart. It is believed, however, that such a
spectrum is caused by a slight spreading in energy
depth of the recombination levels.

(nn) = hT f—', (8 1)

where (un) means the matrix with elements (n„n, ).
In a statistical procedure these variances are not so
easily found. For one variable Burgess found a general
expression for (n') expressed in terms of the generation
and recombination rates (so-called g-r theorem").
Uan Uliet and Blok' obtained an extension of this
theorem for more variables in a matrix form by solving
the Fokker-Planck equation. The generalized g-r
theorem reads:

8. Comparison with Statistical Results

(a) The variaeces. —In Sec. 5 and in Appendix A we
derived a thermodynamic expression for the variances:

IO a eo. ee a~=— (8.2)

Here a is the "g-r matrix" given by (3.11), ar is the
transposed matrix, whereas B is composed of the
second-order moments of the Fokker-Planck equation,
given in reference 8, Eq. (27):

lhI-

lo

S

8,;=2 p' p;i', 8;~= —p;i' —pi . (zan). (8.3)
k=1

]p

The solution (8.1) is so completely different in form
from (8.2) that at first it could hardly be believed that
the results should be identical. Later on, for the
particular case of a one impurity level semiconductor
the equivalence was proven by means of lengthy
algebraic manipulations. " Now, however, we are in
a position to prove the equivalence directly. The link
between the two procedures is expressed by the
relations

IO

a= —R—'f

$=2kTR '
(8.4a)

(8.4b)

to'
IO

i

ll~
Id

where the erst relation was stated in Sec. 3 whereas
the latter one follows from a comparison of (3.7)
and (8.3). Multipling (8.1) with R 'f from the left,
we find, using (8.4a), that a(nn)= kTR ', or with—

f (cps)

Fxo. 5. Effect of the density of recombination centers on the
noise of near-intrinsic material (calculated according to Sec. 7).
1. Contribution of G to II. 2. Contribution of G~„ to II. 3.
Contribution of G ~ to II. Note the steep cutoff,

26 F. J. Hyde, Report of the Conference of the Physical Society
on Semiconductors, Rugby, England, 1956, pages 57—64.

R. E. Burgess, Physica 20, 1007 (1954); Proc. Phys. Soc.
(London) B69, 1020 (1956),

~ K. M. van Vliet, Physica 23, 248 (1957).
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(8.4b) a(nn) = —B/2. Likewise, multiplying (8.1)
through with fR ' we find (noting that ar =—P (Rr) '
= —fR ') the result (ne)ar = —B/2. Hence, Eq. (8.2)
is vindicated. %e also see that —because of detailed
balance —the two terms on the left-hand side of
Eq. (8.2) are equal. In photoconductors we do not
expect such a simplification.

(b) The spectra. Usin—g the Langevin equations [see
(1.1)j and the variances from (8.2), we have also
computed the spectra with Ornstein's method. The
expressions so obtained contain the elements + 'j.
The equivalence with (5.6) can again easily be estab-
lished, by employing (8.4a) and (8.4b).

CONCLUSIONS

The formalism of irreversible thermodynamics applied
to semiconductor carrier transitions constitutes a
very general way to compute carrier density Auctua-
tions. It puts the kinetic equations, relating the forces
and the Quxes in a unified form, so that the generalized
Nyquist theorem becomes applicable. This is illustrated
for single and more variable cases. An attractive
feature is that the variances have not to be known
in advance but are obtained as a consequence of the
spectral intensities. The method is essentially a macro-
scopic one since no noise sources enter into the calcula-
tions: on the contrary the main object is to find the
admittances for the perturbed state. Moreover, the
procedure gives a complete link between thermo-
dynamical and statistical theories, published before.
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entropy, we have, if s,;=——(O'S/Bn, Bn,)o,

1
W(ni a, i)=C'exp~ ——P s,,n;n, ~. (A.2)

2k', i
This is a multivariate normal distribution for which
the general result hoMs":

(n,n, )= k (s
—') ... (A.3)

0;=N, !/ri, !(N, —I,) !. (A.5)

For the free energy F, associated with the carriers n;,
we find F;=m, 8;—k T lnQ;, or, using Stirling's
approximation,

F;=I;B; kT(N, lnN—;—e; Inn„
—(N;—e,) ln(N, —e,)}. (A.6)

For a nonequilibrium state dF,/dn, =lJ„Ap,;, etc.
Equation (A.6) yields

p;= B,+kT inc, —kT ln(N, —ri;),

from which

(A.7)

m, =N;/(1+exp(B, IJ, ,)/kT}, — (A.8)

which implies the normal definition of the quasi-Fermi
level p;. In the above treatment the contribution of the
spins has been neglected.

If m, represents the number of electrons in a con-
tinuous parabolic band, it is well known that integration
over all energy levels leads, if Nc 2(2m', kT/k )——2

and V is the crystal volume to

where s ' is the reciprocal matrix of s. Since the free
energy F=Q, B,ri,—TS, we find that f,,= (O'F/—Bn,Bn,) o

= Ts,j; hence we can write alternatively:

(A.4)

in accordance with Sec. 5.
To actually calculate F and its derivatives, we start

with the thermodynamic probability for a macrostate
0; in which e; electrons are distributed over E; levels
of energy 8;:

APPENDIX A. SOME RESULTS OF STATISTICAL
THERMODYNAMICS

F,= r4Bc r4kT ln(VN—c/e, ), (A.9)

S(ni. a, i) =k lnW(ni. . n, i)+C, (A.1)

where C is a normalization constant. Expanding the

"H. B. G. Casimir, Revs. Modern Phys. 17, 343 (1945)."R.E. Burgess, Proc. Phys. Soc. (London) B68, 661 (1955).' N. F. Mott and R. W. Gurney, Electronic I'rocesses in Ionic
Crystals (Oxford University Press, New York, 1948). Chap. 5.

"A. Einstein, Ann. Physik 33, 1275 (1910).

In this Appendix we shall include some results, ""
well-known in statistical thermodynamics, for the sake
of completeness of the text.

Let the entropy function be S(ni n, i) and let
the distribution function for the n; be W(ni n. i);.
then, according to the Boltzmann-Einstein theorem,

and similarly for holes

Fi,= pi, By pikT ln(VN—y/pi). — (A.10)

Differentiating once, we find, ifp, =cjF/Br4, iii, ———BF/8 pi„

e,= VNc exp[(y, —Bc)/kT], (A.11)

pi, ——VNy exp[(By —yi)/kT], (A.12)

corresponding to Shockley's definition of quasi-Fermi
levels for holes and electrons. "

The total free energy in a nearly intrinsic semi-
conductor is found by adding (A.9) and (A.10).
Putting e, =mo+n, pi„=po+n, and differentiating twice

~3 W. Shockley, Electrons and Holes in Semiconductors (D. van
Nostrand Company, Inc. , Princeton, 1950), p. 308.
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with respect to n yields

f(nearly intr. ) =kT(ep '+po '). (A.13)

where 8|.- is the bottom of the conduction band and

In the same way for an extrinsic semiconductor,
we must add (A.6) and (A.9); putting rs, =@0++,
e,=E;—e(}—n, and diGerentiating twice, we find

f 2 1
f(extrinsic) =kT

~

—+
&eo N; np)—

(A. 14)

APPENDIX B. EXTENSION TO DEGENERATE
SEMICONDUCTORS

The purpose of this Appendix is to show that the
relations which express the spectra in terms of the
transition rates [compare (4.7) and (5.7)] retain their
validity. The r's, however, are different and con-
sequently the expressions for the noise in the applied
cases like (4.9), (4.13), and (7.9)—(7.11) are different
too, if the electron gas in one or both of the bands is
degenerate.

To prove the first statement we must rederive
Eq. (3.7). Let us first consider the transitions between
a degenerate electron gas in the conduction band and
localized levels 8;. In a nonequilibrium state the Fermi
levels are denoted again by p, and p, . The method to
find the change in the transition rates is the same as
that used in Sec. 3; however, we must use a more
careful averaging process for the electron gas in the
degenerate band, since the transition probabilities for
generation and recombination depend on the energy
state which the electron occupies in the conduction
band. In general, mainly electrons within a distance
2kT from the Fermi level will participate in transitions.
Under such conditions the net transition rate ci.„of
electrons to the states h, has been given by I,andsberg
and Moss'4:

n„=y„N, (1——P,)n{1—exp(p, —p,)/kT}; (8.1)

The results (A.13) and (A.14) were used in Sec. 4 to
demonstrate that the thermodynamic relaxation time
r=R/f is in complete agreement with the ordinary
statistical expressions.

Fa(g) =
) x"dx/[1+exp(x —q)).

0

(8.4)

—n„=y,,N;(1 —P;o)eo(p.—p;)/kT
=p.i'(~. I ~)/k—T (8 5)

For the total rate of change n; of the carriers in b, ,
we have to add the transition rates with other levels.
Equation (8.5) is completely similar to (3.5), and
hence the generalized resistances are again given by
(3.7).

Secondly we consider the transitions between a
degenerate electron distribution in the conduction
band and a degenerate hole distribution in the valence
band. Since this case is believed to be applicable to
indium antimonide, we shall go into slightly more
detail. The net generation rate of carriers between the
two bands can be expressed as

~oO ~ gU

A'=
~co &

N, (h,)Na(ha)

X[P (h )(1—Pa(ha))v a(h ha)

—Pa(ha)(1 —P,(h,))&a,(h„ha)fdh+ha. (8.6)

Here the integrand refers to the transitions between
the levels N, (h,) in the conduction band and the
levels Na(ha) in the valence band; P, (h,) and Pa(Ba)
are the Fermi-Dirac function for the nonsteady state,
y,a(h„ha) and ya, (h„ha) are the probabilities per unit
time for generation and recombination of hole-electron
pairs in 8, and By,. Because of the detailed balance
between each pair of levels 8, and 81, in the equilibrium
state [compare (3.4)], the integrand can be transformed
to obtain

N(h. )p(ha) v,a(h. , ha)

I.et us now assume that p, , and p, only slightly depart
from the equilibrium value p, o. Carrying out the
variation in (8.1), we see that only the variation of
the I } factor gives a contribution:

here y„ is the transition coeKcient, averaged over the
states in the conduction band, E; is as before the
number of impurity centers with energy 8,, P, is the
Fermi-Dirac function

Oo +—g)

(Wa
—V.l

X 1—exp~
~

dhgha, (8.7)

P (h~)={ p(h —~)/kT+1} '. B.2
where e(h.) =N. (8,)P,($,) and p(ha) =Na(ha)
X(1—Pa(ha)). For small lja IJ p and p, —aip, (8.—7) gives

The number of electrons in the conduction band is
given by the well-known Fermi integral

|a iiopp (ai Pa)/k T= go (p. pa)/kT, (8.8')—
where go is the equilibrium generation rate„

m=4rU(2m. kT/h') '5;{(p, —hc)/kT}, (8.3)

'4 P. T. Landsberg and T. S. Moss Proc. Phys. Soc. (London) V~I =
B69, 661 (1956). Kq. (5). The following changes in notations
have been made: —a„~p„,p;~F;, IJ,,~FI,, N;~G;, p„~A„.

t,
x Ov

'N(h. )p(ha)'Y. a(h„ha)
iOOPO OC

Xd hgha. (8.9)
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The quantity ns is given by (8.3) (replacing p. by ps);
obviously a similar expression can be stated for pz.
Equation (B.S) confirms that the expression (4.3) is
still valid for transitions between a degenerate electron
and hole gas; consequently expression (4.7) applies
to the noise. Furthermore, from (8.3) we find that

Hence,
1/r= go(1/$.«+1!bpo) (8 11)

For complete degeneracy of an e-type sample, $&=1
and $,=3kT/[2(ps h&—)j. Then (8.11) is equivalent
to a result of MacIntosh and Allen. "

Equations (8.11) and (4.7) yield

r;((ps —ac)//s2')
5N = p,es(P,—Ps)/k T,P,=

2F', ((pp —So)/kT)

4$.$amopo t'
G(f) =

p,ms+gyps &1+oPr')
(8.12)

n= —ori—= err —(1/$,ms+1/$spo) gs. (8.10)

Similarly, for holes

&-t((hv —f o)/&2')
&p=«= $spo(po fJs)//s—&,&a=

2&,((hv —po)/N')
Thus (B.S) yields

Integrating the spectrum, the expression for (d,ts') is
found to be in complete agreement with a recent result
of Oliver. " For InSb the correction of the $'s is
estimated to be very small ((5%) by these authors.

"I.M. MacIntosh and J. W. Allen, Proc. Phys. Soc. (London)
B68, 985 (1955)."D.J. Oliver, Proc. Phys. Soc. (London) B70, 244 (1957).
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Multiple Echoes in Solids
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By the study of the Zeeman resonance of a nucleus having
a large quadrupole moment, like iodine, Watkins and Pound have
shown that a cubic crystal like KI is never perfect, and that
random electrical gradients always exist at the locations of the
nuclei. However, by the cw' method only a lower and upper limit
can be set to the interaction of the quadrupole moment of the
nuclei with these gradients. In order to get more information
about their distribution, the spin-echo technique, with large
rf field, was used. The calculations, performed in the limit of a
field much larger that the random quadrupole interaction, show
that, if at time t=0 we apply a 90' pulse, and at time t=7. we

apply a qr pulse (with an optimum for y around s/5), we get:
three "allowed" echoes, at times t such that (t r)/r = ,', 1 an—d 2, -
which are bell-shaped curves; two "forbidden" echoes for
(t—r)/r=-', and 3, which are derivatives of bell-shaped curves.
These predictions are in agreement with the experiment, and from
the width of the allowed echoes, an average of the random quadru-
pole interaction can be determined: this average, expressed in
gauss, was found to vary from 18 gauss to 36 gauss in different
samples. We could verify, by using this method, that the crushing,
as well as the quenching of the crystals increase the magnitude of
the random gradients.

''N an ideal cubic crystal of the XaCl type, there
~ ~ should be no electrical gradients at the positions
of the nuclei, and therefore the width of the nuclear
resonance line should be determined by the magnetic
dipole-dipole interaction only. However, Watkins and
Pound' have shown that in a real cubic crystal, there
are always small electrical gradients which, through
their interaction with the quadrupole moments of the
nuclei, will greatly influence the Zeeman resonance
of spins greater than —,'. A cw experimental method is
not very well suited to study the magnitude of these
interactions and, as shall be seen later, only lower and
upper limits can be set to them by the study of line
shapes. However, since these interactions are static,
it is natural to study them by means of spin-echo
techniques" which give more detailed information on
their distribution.

' G. D. Watkins and R. V. Pound, Phys. Rev. 89, 658 (1953).
2 E. L. Hahn, Phys. Rev. 80, 580 (1950).
3 H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).

with
F 9———artI, '+ constant,

a=-', yG(3 cos'8 —1). (2)

G is a measure of the strength of the quadrupole
4 R. V. Pound, Phys. Rev. 79, 685 (1950).

I. FORM OF THE INTERACTION

We assume, for simplicity, that the imperfections of
the crystal produce electric fields of axial symmetry.
The angle 0 between the axis of symmetry and magnetic
field H, as well as the magnitude of the electrical
gradient, vary randomly from one nucleus to the other.

We observe signals of iodine in potassium iodide
(or in some cases in sodium iodide), in a magnetic field
H of 5000 to 10 000 gauss.

We shall make the calculations in a frame rotating
at the Larmor frequency cv=pH with the s axis along
the magnetic held H. The quadrupole interaction for a
given nucleus is, in first order, 4


