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Similarity between Shell Model and Deformed Nucleus Wave Functions*
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A body coordinate system x'y's' is defined in which the density of nuclear matter is assumed axially sym-
metric about the s' axis, the angular momentum j, of each of the A nucleons in the nucleus about this axis
being quantized. The wave function of a nucleon is p„, with j, p, =a+„.The system x'y's' is rotated relative
to a system xyz fixed in space in such a way that the nucleus is in a state of total angular momentum I, with
s component M, while the s' component remains E=~~+. +ay. The nuclear wave function is +~~~. The
q„are so defined that the +~~ are similar to wave functions obtained for shell-theoretical calculations. In
order to represent at least 13 low states with A =18 and 19, three y„are needed. These q„resemble x„, the
wave functions of particles in a slightly deformed harmonic-oscillator well. Calculated ft values and mag-
netic moments are also similar to those for shell theory.

1. INTRODUCTION

HE existence of many very large quadrupole
moments has led to deformed core or collective

models of the nucleus. ' These models have had remark-
able success in predicting the rotational states and the
large transition probabilities both for y emission and
Coulomb excitation of these states. In spite of the great
flexibility of these models, ' the concepts of nonspherical
shape and hence rotation of the nucleus postulated by
them appear to be well established.

In contrast to models involving collective motion of
the nucleons of the core, there is the shell or individual-
particle model. In recent calculations based on the
shell model (the double closed shell-core model), inter-
actions between configurations of all states of a given
main shell were considered. They led both to substantial
configuration interaction and, generally, to inter-
mediate coupling. Detailed calculations have been made
for the nuclei with mass number A =18 and 19' ' and
for Pb"'.' %hile there does not exist agreement be-
tween theory and all experimental data already avail-
able, the extent of agreement for states with the parity
predicted by the shell model seems to indicate that this
model does have some validity at least in the vicinity
of the double closed shells.

It has been pointed out that a tensor force inter-
action between each pair of nucleons may lead to an
individual-particle model with deformed shape' and

* Supported by the National Science Foundation, the U. S.
Atomic Energy Commission, and the Once of Naval Research.

f Summer 1957.
' J. Rainwater, Phys. Rev. 79, 432 (1950); D. L. Hill and J. A.

Wheeler, Phys. Rev. 89, 1102 (1953);A. Bohr and B. R. Mottel-
son, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 27, No.
16 (1953).'I.. Eisenbud and E. P. Wigner, Nuclear Structure (Princeton
University Press, Princeton, 1958).' M. G. Redlich, Phys. Rev. 95, 448 (1954).' J. P. Elliott and B. H. Plowers, Proc. Roy. Soc. (London)
A229, 536 (1955).' M. G. Redlich, Phys. Rev. 99, 1427 (1955).' M, . J. Kearsley, Nucles, r Phys. 4, 157 (1957);W. W. True and
K. W. Ford, Phys. Rev. 109, 1675 (1958).' E. P. Wigner, Symposium on Rem Research Techniques in
I'hyszcs, 195Z (Academia Brasileira de Ciencias, Rio de Janeiro,
1954), p. 257.

that the wave function for this model can be speci6ed
in configuration space, ' that is, in the space of the 3A
space and A spin coordinates of the nucleons of a
nucleus with mass number A. In the present paper it
will be seen that the wave functions for A=18 and
19 of the individual-particle model for a deformed nu-
cleus are very similar to those previously obtained
for the double closed shell-core model. Some details
concerning the filling of the shells and coupling rules
will be discussed and comparisons with experimental
data given.

The wave function for the assembly, antisymmetric
under simultaneous exchange of coordinates, spins, and
isotopic spins of any two nucleons will be denoted

C'x(Xt', ,X~'), (2)

where X stands for the spin and space coordinates of
the ith particle in the body system.

The wave function (2) has the expected nonspherical
shape; however, it does not exhibit the other nuclear
property so significantly demonstrated by the collective
models —the rotation of the nucleus. This difficulty can
be formulated in another way: Since (2) is not an eigen-
function of J (or, more precisely, of J'), we do not

s M. G. Redlich and E. P. Wigner, Phys. Rev. 95, 122 (1954).

2. DESCRIPTION OF THE MODEL

Consider a box with one symmetry axis (for instance
in the shape of an ellipsoid), containing 2 nucleons.
Let the coordinate vectors of the box be i', j', ir', with
the axis of symmetry in the direction of it'. The Hamil-
tonian for one particle in this box then commutes with
l, , the operator for the s' component of the angular
momentum of the particle, and with j;=l, +s. , where
s= spin. The eigenvalue of j, will be denoted ~.

For an assembly of A particles with quantum num-
bers ~~, , ~~, the eigenvalue of the s' component of
total angular momentum J is

A

E=P rc;
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expect it to be an accurate approximation to the solu-
tion of the actual Schrodinger equation for a nucleus,

with a rotationally invariant H.
It is possible, however, to form states which are

superpositions of states of the A particles [like the
state described by (2)j in spheroidal boxes which are
identical except for the orientations of their coordinate
systems. Certain of these superpositions of states will

be eigenstates of J and of J„its component along the
z axis of the laboratory system.

The coordinates and spin of the ith particle in the
laboratory system are denoted X, and the transforma-
tion E. takes X; into X; . This will be written

l.5

.5

(b)

il I 0 tor

X =EX;. (3)

For particles without spin, (3) has the following simple
interpretation: X; and X stand for 3-component
vectors of the Cartesian coordinates and E is a 3&(3
rotation matrix. Inclusion of spin (which will be as-
sumed in what follows) is entirely straightforward, but
notationally more involved.

The wave function then is'

0 ttrK (Xl) ' )XA) -I
0

I

.5
I

l.5
I I

2 2.5

=X ' n~(R)rrsr C tr(RX„. ,RXg)d. R., (4)

where X)~(R)xsr is a representation coefficient, ' 3II is an
eigenvalue of J„Xis a normalization constant, and
the integration is over the parameters specifying the
rotation R (e.g. , the Euler angles er, P, and y). It is
readily verified that N~z~ is actually an eigenfunction
of J' and J,.

The K)~(R)&»r play the role of coefficients in the
expansion of +~~ in terms of a set of functions

C Ir (RXt, .,RXg),

with all possible rotations E. It should be mentioned
that two such functions with the same E but different
E.'s are in general not orthogonal in the space of the
coordinates and spins X~, . , Xg.

3. SINGLE-PARTICLE WAVE FUNCTIONS

The wave functions of a single particle in a deformed
well have been calculated in recent years. ' Results of
such calculations for a deformed harmonic-oscillator
well and the 1d, 2s shell will be given here. The Hamil-
tonian is

'E. P. Wigner, Gruppentheorie und ihre Anwendung uuf die
Qualtegmeckartik der Atamspektreu (F. Vieweg und Sohn, Braun-
schweig, 1931),p. 180.' S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 29, No. 16 (1955); S. A. Moszkowski, Phys. Rev. 99, 803
(1955); K. Gottfried, ibid 103, 1017 (1.956).

FIG. 1. The radial wave function for a harmonic-oscillator
potential is compared with that of a square-well potential with
infinitely high walls. In (a) the 1s functions are given and the
parameter v=1)&10"cm ' in (h) the 2s functions, with v=1.8
&&10"cm '. The radial coordinate is in 10 "cm and the ordinate
in (10"cm) &.

where 6 is the Laplacian operator, m is the nucleon
mass, v is another constant, n determines the deforma-
tion, and the coordinate vector is r' in the body system.

It seems noteworthy that the wave functions for a
harmonic-oscillator potential belonging to a given
level are very similar to those of the corresponding level
for a square-well potential. This is illustrated in Fig. 1.
The 1s and 2s radial wave functions are given there for
for both a spherical square well with infinitely high
walls, i.e., a spherical box, and the harmonic oscillator
(5) with n=0. The radius of the box is 2X10 "cm and
the harmonic-oscillator parameter v equals 1)&10"cm '
for the 1s state and 1.8)&10" cm ' for the 2s state. It
is clearly necessary in this comparison to use different
v's for the different shells, since for a given v the ex-
pectation value of (r')' for the qth level increases in
direct proportion to the energy (A' t/m)(q+z) of that
level.

The energies and wave functions of a single particle
in the deformed well of (5) may be obtained (a) from
an examination of the wave functions in rectangular or
cylindrical coordinates, or (b) by using perturbation
theory with a set of spherical wave functions and
(5'/2m)nu'(s')' as perturbation operator.

We consider examples from the 1d, 2s shell. The
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The dots indicate admixtures of wave functions of
higher states. The amplitudes of these admixtures are
in first order proportional to o., as may be seen from
perturbation theory; the amplitudes of if imp and $2 0 in

(7), however, are independent of n, since these states
are degenerate for the spherical potential. The sign of
o. is related to shape as follows:

n(0, prolate spheroid, (s'))(x'), (7a) is lower;

cr) 0, oblate spheroid, (s') &(x'), (7b) is lower.
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Fio. 2. Part (a) gives the deformation energies calculated for
states of a single particle in the 1d, 2s shell of a slightly deformed
harmonic-oscillator potential. The energies are in units of nh v/2m,
where n .0. Each level is labelled by the s' component ~ of total
angular momentum; the corresponding wave function is x„.

In part (b) the level order of the states of the corresponding
modi6ed wave functions, p„ is given, but only schematically.

spherical wave functions are fiq„and its, „, with p an
eigenvalue of /, . The wave functions in rectangular
coordinates are N, b„corresponding to energy

fide 6 (2si002 si020 N200),

it'2 as 3 *(i~002+ si020+ 1200) ~

(6a)

(6b)

As soon as the potential is deformed, a new set of eigen-
functions appears. These are Npp2, Npgp, and N2pp. FloIIl
them, two eigenfunctions of /, with p=0 may be

where a, b, and c take on values 0, 1, 2, 3, . and label
successive states of a particle in a harmonic-oscillator
potential along x, y, and s directions. The spherical

wave functions may be expanded in terms of the rec-
tangular ones, e.g. ,

Here (s') is the expectation value of s'.
The order of states and their deformation energies 8

in units of nh'v/2m, in the limit of very small negative
cr are given in Fig. 2(a). The states are classified by
s=y+)t, where fi and )i are the components of orbital
angular momentum and of spin in the s' direction.
States &f(: are degenerate because of the reflection sym-
metry of the potential about the x'y' plane. There are
three states with ~=~; in order of increasing energy
they are denoted by» -,'", —,",and two states with z=-'„
the lower denoted by —',, the higher by —,".In Table I(a)
the wave functions X, of the states which for o, =0
belong to the 1d, 2s shell are given in terms of the
spherical wave functions with spin, p,„, pi„, and ff„.
The amplitudes for I „, expanded in terms of it's with
—I( are equal in magnitude and change in sign for 1d~

only. The amplitudes do not depend upon v.
In order to obtain C& of (2), it is necessary only to

take the product of A single-particle wave functions
X„, each multiplied by an isotopic spin function and to
antisymmetrize this product. A state in the body sys-
tem is then specified by

If.y, f(:2, ~ ~ ~, Xg.

+sire~ is obtained by substitution of Crc in (4) and,
strictly speaking, should also be labelled by (8).

The modified wave functions of Table I(b) and
Fig. 2(b) will be discussed at the beginning of Sec. 5.

4. EXPANSION OF

Let us substitute a two-particle wave function

~.(Xi) X"(Xs) = L~f-:.(Xi)+4-:.(Xi)+4-:.(Xi)7I:~V-:"(Xs)+&7-:"(Xs)+~V-:"(X.)7, (9)

into (4), instead of 4 rc. An actual antisymmetric 4rr will consist of one or two terms like (9) multiplied by an iso-
topic spin function. The integral in (4) of individual terms, like P,„(Xi) f; „(Xs),can be readily performed. It is:

f' JS (R)rid P,„(RXi) P, ;(RXs)dR= Q ~~ S ( )Rrci)r's( )R„,.*X)'(R),.„* de;„(Xi) P, , (X,)

2J+1
C. „rc Q C, sr, ,~ $,,(Xi) P,',vi „(Xs) = —C„„rcP sr (X,)X,). (10)

2J+1
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Here the expansion for P,,(EX) PWigner, s p. 117,Eq. (26)g and the integral for the product of three representation
coefficients PWigner, ' p. 204, Eq. (22)g have been used. The C's are vector-addition coefficients, and h= J'dR.
The wave function f&&'~s'r is defined in (10); it is the wave function'for two particles with angular momenta j and

j coupled to give J and 3f It. is plain from (10) that a general two-particle 0'sr&~ can be expanded in terms of the
ordinary shell-model wave functions, and they will have the same symmetry under exchange of space, spin, and
isotopic spin as C~ does.

A similar expansion of Vsrx~ for the 16 particles of the double closed 1s and 1P shells, i.e., for Ois, will lead to the
(T,J)= (0,0) state of the double closed shells 1si' ip 1p plus small admixtures of states of higher shells.

For A = 18, one expects an 18-particle wave function C~. If, however, the expansion of 0'~~~ in terms of shell-
model wave functions is restricted to those with 16 states in the 1s, 1p double closed shell, the problem is essen-
tially reduced to the two-particle problem worked out above.

Similarly, a three-particle wave function for A = 19 can be expanded in terms of shell-model wave functions. The
wave functions for the state (T,J) may be obtained by vector addition of the wave function for the third particle
to the anti-symmetric wave function of two particles in a state PT',J'j and subsequent antisymmetrization. "The
expansion of 0 ~& follows directly from a double application of the just mentioned formula for the integral of the
product of three representation coefficients, and from the theorem involving fractional parentage coeS.cients
given in the Appendix.

It is readily seen from calculations like the above or from symmetry that %~ z, with rc for every particle multi-
plied by —1, is just equal, apart from a phase factor, to 0'~+~.

The convention of reference 9 that the spherical harmonic I' '(t), p) has dependence exp( im—q) upon the azi-
muthal angle p has been adopted in this section as well as in formula (4). The now more usual convention

exp(+snip), however, is used in the remainder of the present paper and in reference 5. Phase differences have
been taken account of in all tables.

S. COMPARISON WITH THE SHELL MODEL

The results of the shell model for A =18 of reference 3
have been augmented by complete diagonalization for
all (T,J) states of the 1d, 2s shell of the matrices of
the central Gaussian Serber two-nucleon interaction
+0.6856, where 6 is the operator which raises the
1d; and 2s; levels by the amounts observed in 0".The
introduction of the factor 0.685 instead of 1 is the only
change; all other parameters are the same. This factor
leads to essentially the interaction used' for A =19. It
changes the wave functions only slightly. The states
are denoted (T,J)x, where x=u, b, c, denotes the
order of the state, a being the lowest with these (T,J).

Modifj. ed Single-Particle Wave Functions

With the X„ofTable I(a), the wave functions for the
deformed harmonic-oscillator well, one can form

1
@p=—LXi(1) 'X i(2) —Xi(2) 'X i(1)j'ii(1) 'ri(2),

2

where g is an isotopic spin function denoting a neutron
state. I.et us now substitute Ce into (4), and obtain,
using (10), the following amplitudes for a (1,0) state:

(dsis)'. 0.51; (d3/Q)': 0.42; (siis)': 0.75. (11)

eigenvalue ~ of j, , but with diRerent coefficients a;„:

(12)

The coeScients for I(:=-,' and —-,'may be determined
so that the amplitudes (11) become precisely those of
the shell-model wave function (1,0)a. It turns out that
if states with other J's both for A=18 and 19 are
formed from this q~ and the corresponding q ~„ there
is considerable similarity between the deformed-nucleus
and shell-model wave functions for three other states
with A =18 and three with A =19.

The modified wave function p. for s = s in Table I(b)
is not precisely the one just determined, but has ampli-
tudes which differ from it by only a few percent. It
was chosen in such a way as to give the best fit to both
the (1,0)a and the (0,1)a shell-model wave functions.
No ~'s other than &—', would have been suitable, since
the (1,0)a shell-model wave function has a considerable
(s;)' amplitude.

TABLE I. In part (a) the wave functions x„ for a very slightly
deformed harmonic-oscillator well are expanded in terms of wave
functions P;, of a particle in a spherical harmonic-oscillator well.
The subscripts j=-'„-'„and ~~ denote 1d5~&, 1d3&2 and 2s«2 states.
In part (b) the modified wave functions, v„, (see Sec. 5) are
expanded in terms of P;„'s. All wave functions are normalized to 1
in the 1d, 2s shell. The order of coupling is s 6rst and then l to
form j.

These may be compared to the shell-model amplitudes
of Table II; both sets are normalized to 1 in the 1d, 2s
shell. We see that the signs of the amplitudes of (11)
are those of the shell-model state (1,0)u, but their
magnitudes differ considerably. Let us next consider
another single-particle wave function, q „, also having

"See, for example, reference 5, Sec. 2.

5

31
l~
3

'1 1I
2

0.45';; —0.9&P~~
0.45$;~+0.82$;;+0.37gg
0.9~;; +0.45gp

0 63y~sg —0.58@ii+0.52

(a) Deformed harmonic-oscillator
K wave function, XK

(b) Modified wave
funct1011, +K

0.44A i+0.89yp+0. 10iPp
0.96$~s~~ —0.29$)g

0.8';~—0.44yp+0. 4+;;
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This holds a fortiori for (1,0)b, and one can choose
configuration -'„—sr' (denoting xi, /rs) for this state and
determine the modified wave function y; in a similar
way. For J=O, its component E must also be 0. The
pi of Table I(b) was determined as that wave function
which is orthogonal to y; and fits best (1,0)b as well
as several other states. In a similar way it was neces-
sary to introduce p; to account for the states (s, s) and
(ss, -s') at A=19. Configurations with -'„——',, and —,

"
states lead to zero amplitudes for (ds/s)' for both (-'„—',)
and (ss, —,'). This is in sharp contradiction to the shell
model results in which this is the dominant con6gura-
tion for both states (Table IV).

All three modified wave functions p„resemble de-
formed harmonic-oscillator-well functions X„. For each
p. the dsg2 amplitude is smaller than for the similar X„.
This is surely an indication of d&~2

—da/2 splitting. In
y;, the small d3/2 amplitude has opposite sign from that
in X;. No way to represent all the changes by a change
in the single-particle Hamiltonian H is apparent.

The empirical level order is given schematically in
Fig. 2(b). It appears to be, for modified states:

for A =18; &~, &-,', &—", for A =19.

It is surprising that the q; resembles most the X.; for the
lowest state of a prolate (cigar-shaped) spheroid, while
an oblate spheroid would be expected at the beginning
of a new shell. Possibly the deformation is oblate at
A =17, but changes with the addition of another
particle.

The shell-theoretical wave function for (1,0)a could
also be obtained from rotation of particles with sphe-
roidal or modified spheroidal wave functions in I;S
coupling, like those of (7) with p=0. Since (1,0)a con-
tains both 'S and 'I' states, however, it would be neces-
sary to use two configurations with both p, =0 and p = 1
states, so that the description becomes more compli-
cated and less natural to the problem.

A =18

projections of +~+~ on the shell-theoretical states of
the 1d, 2s shell are placed next to those of the shell-
theoretical wave functions. Both types of wave func-
tions are normalized to 1 in the 1d, 2s shell. The num-
bers ~1, I~:~ for the seven states of Table II, and some
others for which their assignment is less certain are
given in Table III, together with energies from shell-
theoretical calculations, and the quantity 6. This is
defined by

8'=
~

I/rt/rs) —(S.M. ~/rt/cs)
~
S.M.) )'

=1—
f
(S.M. [...,) [s.

(13)

Here, as before, ~/rt/ts,
' (T,J)x)= ~Kt, Ks) represents a

state of the deformed nucleus, and
~

S.M.) the corre-
sponding shell-model state. The first absolute value sign
gives the length of the state vector.

TAsz.E II, A =18. Comparison of the wave functions of the
model for a deformed nucleus (labelled D.N. ), using the modified
wave functions //„of Table I (b), with those of shell-model calcula-
tions for a two-nucleon force between the outer nucleons (labelled
S.M.). Serber (S) forces~ and Rosenfeld (R) forces were used
for the shell-model wave functions. The letters (T,J)x stand for
isotopic spin, total angular momentum, and the order (o,b,c, )
starting with the lowest state. The con6guration KIK2 of the D.N.
states is also given.

Configu-
ration

State (1,0)a
S.M. S.M. D.N.

S R
S.M.

S

(1,0)b

D.N.
gl

(/t."/~)'
(/ts/s)'
(Sl/2)

0.86 0.89
0.31 0.24
0.40 0.39

0.85
0.26
0.45

—0.40—0.06
0.91

—0.46—0.06
0.88

Configu-
ration

(d5/2)'
(A/s)*
~5/2d3/2

45/2$1/2

~3/2$1l/2

S.M.
s

0.71
0.14—0.20
0.64
0.20

State (1,2a)
D.N

0.55
0.16—0.24
0.70
0.35

Quasi-Rotational Series

It has recently been suggested" on the basis of the
collective model that even at 2 =19 there exist series of

The single-particle wave functions for a slightly de-
formed 1d, 2s shell lead, when substituted into (4), to
more than 100 states for each of T=O and 1. Actually
there are only 14 independent states for each T in the
1d, 2s shell. Therefore, there must be many linear
relations between wave functions of these states. For
instance, the shell-theoretical wave function for (0,3)b
is given fairly well by either» ~' or —,', ——,'. Using the
notation

~
xt/rs, (T,J)x) for the normalized state vector

of a deformed-nucleus state (with nonzero amplitudes
assumed to be only in the 1d, 2s shell), we find that the
scalar product of the state vectors for these two (0,3)b
states is

Configu-
ration

(/t5/2)

A/A3/2
($1/2)
(A/s)'
d3/2$1/2

Configu-
ration

(~./. )
dfi/2d3/2

(d .)
~5/2$1l/2

S.M.
s

0.67
0.56
0.46—0.16
0.02

0.58
0.57
0.55—0.19—0.02

0.73
0.39
0,43—0.23
0.28

State (0,3)a
SM D

(k)'

0.62
0.22—0.05
0.75

0.61
0.11—0.23
0.75

State (0,1)a
S.M. D.N.

R (k)'

—0.52—0.04
0.84
0.10—0.13

(0,3)b
S.M.

s

—0.40—0.16
0.87
0.06
0.24

D.N,
4, 2'

0.76
0.02—0.07—0.64

0.52
0.07—0.09—0.85

(0,1)b

S.M. D.N.
s

&-', —s; (o,3)&Is, s'; (0,3)b)=o g9.

The shell-theoretical wave functions are compared
with those for the particles with modified deformed well
wave functions in Table II. The amplitudes of the

a M. G. Redlich, reference 3, extended to include higher states. The
term 5 is changed to 0.6856.

b J. P. Elliott and B. H. Flowers, reference 4.

12 E. B. Paul, Phil. Mag. 2, 311 (1957); G. Rakavy, Nuclear
Phys. 4, 575 (1957).
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TABLE III. A = 18. Summary of all states with calculated inter-
action energy E negative. 8 follows from shell theory with inter-
nucleon interaction of Serber type. The numbers K1 and K2 are
assigned from the D.N. model. %=K&+K2. The quantity 8' is
defined by Eq. (13).

Calcu-
lated

energy
B, in
Mev

Calculated
energy
above

ground
state of Observed
0», in energya

Mev in Mev

(1,0}a —5.35 0
(1,2)a —2.38 2.97
(1,0)b —1.43 3.92
(1,4)a —1.13 4.22
(1,2)b —0.22 5.13

0
1.98

3.55

1
2
1

g/
2
1
2
1/
2

0
0
0
Ob

0

0.02
0.04
0.02
0.18
0.23

(0,1)a
(0,3)Q.
(0,5)
(0,1)b
(0,2}a
(0,3)b
(0,1)c

—4.85 0.50—3.27 2.08—2.84 2.51—1.39 3.96—1.22 4.13—0.56 4.79—0.16 5.19

13c 1
2
1
2
1
2
1/
2
1
2
1/
2

0.10
1 0.05
ib 0

0.17
1b 007
1 011

(1)b,d

a 0, M. Bilaniuk and P. V. C. Hough, reference 15; F. Ajzenberg and
T. I auritsen, Revs. Modern Phys. 2V, 77 (l955).

b Assignment uncertain.
e This number =the experimental energy difference+(n-p) mass differ-

ence —Coulomb energy difference between ground states of F» and 018.
It is thus the energy difference due to nuclear forces only.

d Possibly the first member of a third series with K =l.

1
2
1/
2
1
2

0, 2, 4
0) 1, 2, 3, 4
1, 2, 3, 4

Higher series occur for higher single-particle states.
Also, there may be higher J values associated with
each series, due to the higher states which occur in a
single-particle wave function for a deformed well. The
J's in the table just given can all be obtained from
shell-model configurations of the 1d, 2s shell alone. The
series with two states which differ only in sign of K do
not lead to odd J, as may be seen by direct calculation,

'3Litherland, Bartholomew, Paul, and Gove, Phys. Rev. 102,
20$ (1956).

levels similar to the rotational series which are well
known in the rare earth and trans-Pb regions and were
also discovered" at and around A =25.

The following general but not necessarily universal
rules are suggested by the present model and the re-
sults for the oxygen region.

1. 2 nuclear state niay be considered as a meniber of
the quasi-rotational series. —That is, suppose that a
state n may be obtained from A particles, with modified
deformed-well wave functions, rotated to give the J of
the state n. Then, using (4) one can also form from this
A-particle configuration states with other values of J.
The set of these states is called a quasi-rotational series.
Under particular circumstances, we expect them to
form an ordinary rotational series, with energies pro-
portional to J(J+1).

For low positive-parity states at A=18, a series is
specified by K&, K&. The lowest. ones for T=1 are

K2

using (4) and (10).The amplitudes of states with odd J
are then simply zero. Configurations like —,', ——,",on the
other hand, do lead to odd-J states.

For T=O, the low series at A=18 corresponding to
configurations of the 1d, 2s shell are

Kl K2

1
2
1/
2
1
2

1, 2, 3, 4, 5
1, 2, 3, 4, 5
1', 3,

'5' '

A=19

The wave functions for the J=-,', —,', and —', states
both for T=-,' and —,

' and for both models are given in
Table IV. Close correspondence again generally exists,
even though the total number of amplitudes is very
much larger than for A =18.

The results for the wave functions of Table IV, to-
gether with the calculated and observed energies, are
summarized in Table V. Ke note a coupling rule,
analogous to a Mayer-Jensen simple coupling rule:

4. Like particles fill levels of the deformed nucleus in
pairs for the love states Thus, two like par.ticlespll states
i~ and —ii to give E'=0; a third particle then fills the

los@est remaieieg state.
One sees in Table V that the shell-theoretical calcula-

tion for T=~ leads to a ground state with E=—,
' and

'4 A. K. Kerman, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 30, No. 15 (1956).

"O. M. Bilaniuk, University of Michigan dissertation, 1957
(unpublished); O. M. Bilaniuk @nd P, V. C. Hough, Phys, Rey.
108i 305 (1957),

This time, even- J states are forbidden for —,', —~~, though
not for (-',)'.

2. 2 single deformed nucl-eus configuration describes
many low lying n-uclear states fairly accurately Tha.t—is,
configuration interaction is small near the ground state,
as is seen from the columns of 8' in Table III. As the
energy increases, however, discrepancies between shell-
model and deformed-nucleus wave functions become
larger. This may be an indication of inaccuracy of the
shell-model wave functions, or of increased configura-
tion interaction in the deformed-nucleus model.

It might be suspected that such configuration inter-
action would occur only between states of a given E.
A calculation based on the collective model, "however,
has suggested that mixing of states with different E's
does occur for %'".

The energies calculated from shell theory for the
members of a given series and also the experimental
energies" for the —,', ——,'series with T=1 in 0" are not
proportional to J(J+1).This might be due at least in
part to interaction between different KlK2 configurations.

3. The levels of a quasi rotational s-eries usually appear
in order of ascending J.—This seen for 2=18 in Table
III. For low levels at A=19, however, this rule is
violated (Table V). It is known empirically and from the
deformed-core models that E=—,

' series are anomalous.
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Configu-
ration

State (T,J) =(-;, -,')
SM. D

s 2 2 2 ~

S.M.
s

D.N.
1 1/

22 22 2

(d5/2)3

(ds(2) SIi2

{Sl//2) d5/2

(d5/2) d3/2

(d 5/2d 3/2) Sl/2

(d3/2) d5/2

(d 3/2)'Si/2

L1,2]

[1,2]
[1,3]
[1,0]
[1,2]

0.85
—0.04
—0.43
—0.09
—0.06

0.03
0.04

—0.28
0.04
0.02

0.83
0.08

—0.36
—0.21
—0.04
—0.11
—0.22
—0.21

0.01
—0.13

0.95 0.96

0.06 0,05

—0.06 —0.06

—0.05 —0,03

0.30 0.26

Configu-
ration LT',J'j

State (-;, s)
S.M. D,N.

(4, k)
S.M.

PT/ J'j S
D.N.

1 i
22 ST S

(A/2)'
(dW2)'»i2

0.73 0.71
0.65 0.60

0.30
[0,1] —0.37
[1,0] 0.52

0.55
[1,2] o.17
[0,1] —0.08
[1,1] 0.01
[0,1] —0.33

—0.00
0,12
0.01
0.22
0.09
0.03

(Sl/2)
(d5/2) A/2 [1,0] —0.01 —0.20

[1,2] 0.07 0.19
(d5/2d3/2)sl/2 [1,1] 0.12 0.13

[1,2] 0.08 0.08
0.10 —0.11(Sl/2) d3/2

(d3/2)'d5/2 0.14 —0.09 [1,2]
[0,3]

0.04 0.04 [1,0]
Lo, l]

(dl/2) Sl/2

(d2/2)' 0.01 —0.09

0.42
—0.41

0.60
0.26
0.09

—0.10
0

—0.38
0
0.15
0.03
0.18
0.08
0.06

Configu-
ration

State (-'„$)
S.M. D.N.

s 22 2 ~ 2

(), —',)
S.M.

PT/, J/'j S
D.N.

(d5/2)' [1,0]
gb

L

[0

L

L

(d5/2d 3/2) Si/2

(d5/2)'Sl/2 0,3]
1,2]

,1]
1,0]
1,2]
1,4]
0,1]
0,3]
1,2]
1,3]
0,2]
0,3]

(d, /, )'d, /,

(Sl/2) d3/2

(A/2)'A/2

(d3/2) Sl/2

[1,0]
[1,2]
[0,1]
[0,3]
t 1,2$
Lo,3]

0.69
0.15

—0,22
0.23

—0.25
0.36
0.13
0.20
0.13
0.10

—0.08
0.01

—0.07
—0.09

0.08

0.62
0.13

—0.31
0.31

—0.24
0.35
0.11
0.17
0.18
0.09

—0.11
0

—0.13
—0.14

0.16

029 021
0.07 0.10
0.11 0.10
0.04 0.04
0.05 0.09
0.01 0.02
0.02 0.03

0.46 0.38

[1,2] 0.22
[0,1] —0.11

0.32

0.36
—0.15

0.37

[1,O] —O.34 —O.48
L1,2] —0.29 —0.24
[o,1]
[o,31
[I»]
L»2]
[0,1]
[0,2]

[0,1]
[1,2]
[0,1]
[0,3]

—0.28
—0.14

0.00
—0.09

0.06
0.13

—0.19
—0.09

0.09
—0.09

0.06

—0.23
—0.10

0
—0.16

0.12
0.23

—0.25
—0.11

0.07
—0.05

0.05

[1,2]
[0,1]

0.08 0.10
0.07 0,10

—0.20 —0.13

' Reference 5, extended to include states with J = ~s.
b The states t1,0j and (0,1j here are not orthogonal. The symbol J

denotes the state orthogonal to $1,0). LSee reference 5, Eq. (14).)

TABLE IV. A = 19.Comparison of the deformed-nucleus (D.N. )
wave functions~ with those for the shell model (S.M.). The inter-
action is of Serber (S) type. The D.N. configuration //1//2//2 is
given. The amplitudes of the lowest three states for T=-', and
T = -', are listed in this table. When more than one state of a con-
Gguration (j&j&)j3 exists, each state is speci6ed by its parent state,

J=—,'. This contradicts Rule 3, which leads to a ground
state with J=~. The spin of this state is not known ex-
perimentally, but it must be either ss or ss, since it J3

decays with allowed transitions to two states of F"with
splns 2 aIld 2.

There are five independent parameters for the three
modified wave functions q „, these account for six wave
functions at A = 19 with 75 amplitudes, in addition to
seven wave functions at 3=18 with 22 amplitudes.

Comparison with Experiment

a. Energies. —The wave functions for the shell-model
calculation lead to the best energies for the double
closed shell-core model. The wave functions of the
present model differ only slightly from them. They
undoubtedly correspond to a somewhat different Hamil-
tonian. It has been suggested' that nuclear deformation
may be an effect of tensor forces. The present wave
functions may very well be quite accurate for a Hamil-
tonian with a central+tensor interaction between each
pair of particles. Tensor forces lead to a reduction in
amplitudes for configurations (2st~s)2 and (2si/2)3 in low
states; the (2st~s)3 amplitude is indeed low for the
deformed-nucleus wave function, as is seen in Table IV.
The discrepancy in 1d3~&2s&~2 amplitudes for the states
(0,1)a and (0,1)b may also be due to neglect of tensor
forces in the shell-model calculation, since for central
forces, there is no interaction between O' 'S and ds 'D.

The amplitudes of (Ids/2)2 and Ids~22st~s for state
(1,2)a have recently been derived from experimental
data on the 0"(d,p) cross sections. " They are 0.81
&0.05 and 0.48&0.05. This compares with 0.55 and
0.70 for the D.N. wave function (Table II). The dis-
crepancy may be an indication both of too high an
amplitude for 2s1~2 in the ~=-,' wave function and of
interaction between D.N. configurations.

A central-force+spin-orbit splitting calculation gen-
erally leads to smail but nonzero admixtures of (1fr/2)2
This is not in accord with the deformed-nucleus model

State
(T,J)

Calculated
energy Ii in

Mev

—8.59—8.02—6.58—17.05—16.89—15.40

Calculated
energy
above

gI'ound
state of

F19 (Mev)

8.46
9.03

10.47
0
0.16
1.65

Observed
energya
(Mev)

7 7b, o

9 2c

0
0.20
1.57

K1 K2

1
2
1
2
1
2
1
2
1
2
1
2

3
2
1/
2
3
2
1
2
1
2
1
2

0.15
0.00
0.10
0.10
0.03
0.08

a F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 2V, 77 (1955).
& The spin of the ground state of 0'9 is either —', or $.

This represents the energy difference due to nucleaI forces. The Coulomb
energy difference and (p-n) mass difference have been added to the experi-
mental energy difference.

TABS.K V. A =19. Summary of the three lowest states of T=-,'
and T= -', types. The interaction energy E is calculated from shell
theory. The numbers ff:I, I~:2, ff:& specify the deformed-nucleus con-
6guration and E=ff,I+a2+ff3. All wave functions are given in
Table IV. The quantity i/2 is defined by Eq. (13).It is noteworthy
that two single-particle states are -'„—-'; for each of these states.
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of the present paper. It would require the addition of a
term for tabb;„with j=—,

' in formula (12) for the modified
wave function y„,. and orbital angular momenta l= 0, 2,
and 3 would all appear in q „.Parity would not be con-
served in q„, and this would lead in general to states
with diferent parities in the expansion of a two-particle
0'~~~ also. If both the parity of %~~~ and the reQection
symmetry of Cz in the x'y' plane should be preserved,
these considerations suggest the possibility that the
two-nucleon interaction be such a combination of
central and tensor forces as to connect only states
which on the unperturbed spherical harmonic-oscillator
model belong to levels 2ts&e, 4hte, apart (A&o= energy
interval between successive levels). On the other hand,
it may be that the (1frts)' amplitude which surely does
appear at least for most force combinations indicates a
limit to the accuracy of the D.N. model.

The recent shell-model calculations' for Pb"', which
lead to excellent agreement with experiment, are con-
sistent with tensor forces, since for the low states of the
two neutron holes, singlet-even forces play the major
role. For zero-range forces, more accurate here than in
the oxygen region, odd states have zero interaction
energy.

b. Other qlamtiHes. —A few experimental quantities
have been calculated with the wave functions of the
B.N. model. They are given in Table VI and compared
with shell-model results and experiment. p-ray lifetimes
depend very sensitively upon higher configurations and
have not been included. The high ft values for the two

P transitions from the 0" ground state probably indi-
cate that the D.N. wave function for this state is not
very accurate.

0. CONCLUSION

The results of Sec. 5 indicate that a wave function
specified by l~:& . , a& with individual-particle states
resembling those of a simple deformed well is a good
approximation probably (1) to the wave function for
the double closed shell-core model and possibly (2) to
the actual wave function of some low-lying nuclear
states. It may be that superpositions of states of two
or more configurations of the deformed nucleus, perhaps

TxBIE VI. Comparison of the deformed-nucleus model (D.N. )
with the shell model (S.M.) and experiment. p is a magnetic
moment.

ft value for F' ~0"
ft value for Ne" ~ F's
ft value for 0'9 ~ F"(s+)
jt value for 0' ~ F"(-', +)
t (F", l+)
t (F" -'+)

S.M.

2890
1590

373 000
49 400
2.94
3.74

3430
1760

511 000
72 000
2.91
3.68

F.xperimenta

4170+330
1700&170

335 000+ 100 000
21 400+6500
2.628 nm
3.50~0.24 nm

"F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 2V, 77 (1955).
tM (F», ~s+): W. R. Phillips and G. A. Jones, Phil. Mag. 1, 576 (1956).

all having the same E, would account for many other
states.

The essential feature of the model is the existence of
an axis in the nucleus about which the density of nuclear
matter is cylindrically symmetric. The nuclear shape is
surely not spherical. The single-particle wave functions
are not precisely those for a very small ellipsoidal de-
formation; however, one characteristic of a spheroidal
model, the symmetry of the quantum-mechanical
probability about an axis fixed in the nucleus, is
maintained.

From the model of particles moving in a deformed
well, it is plain that the amplitudes for higher spherical
well states in the expansion of the deformed-nucleus
wave function increase with increased deformation. One
expects this to be so also for the present model with
modified single-particle wave functions. The small ad-
mixtures of higher shell-model configurations obtained
for nuclear force calculations at A = 18 and 19 then are
an indication of low deformations.

This model can yield the observed rotational series
with energies proportional to J(J+1),for heavy nuclei. "
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APPENDIX: A THEOREM

Giblets: (1) A configuration C=jijsjs with a complete set of p antisymmetric orthonormal wave functions, each
with (T,J). They are P(err, TJ), , P(et~, TJ). The n's specify all other parameters, including C. (2) An anti-
symmetrization operator A on any three-particle function x(1,2,3), defined by

~x(1 2,3) =x(1,2,3)—x(3,2, 1)—x(1,3,2).

(3) Functions

Ls( &
C' T)J.js(3),TJj (A2)

for particles 1 and 2 in an antisymmetric (a) state of configuration C~, =

Cjoy

' with $T',J'$, and particle 3 in a
state t=-,', jj,.

'~ R. E. Peierls and J. Yoccoz, Proc. Phys. Soc. (London) A70, 381 (1957); J. Yoccoz, ibid A70, 338 (1957)..
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To prove: that

Av'C(C&T J )ajar(3)~TJ7=3
Z(CrT J i jt, )n'TJ)'p(n'~TJ)~
i 1

where (CsT'J';j&In~TJ) is a fractional parentage coefficient.
Proof.—The usual expansion of iP(n, ,TJ) is

iP(n;, TJ)=P' P (pl (C&T'J').j&(3),TJ](C&T'J',j i, ')ln, TJ),

(A3)

where the first sum is over all distinct j&. Since the set of $(n, ,TJ) is complete, the wave function (A3) can be

expanded as

(A5)

where

b(n;) = i'(n;, TJ)* AvoDC&T'J'), j s(3),TJ]d»drsdrs (A6)

The integration in (A6) is over the coordinates and spins of the three particles. Introducing the symmetrization

operator S, analogous to A of (A1), and recalling that iver(n, ,TJ) is antisymmetric, we obtain

b(n;) = 5 g (n, ,TJ)*pDC&T'J'),j t, (3),TJj)tdrtdrsdrs, (A7)

which, from (A4), equals just three times the same integral without 5, and hence

b(n;) =3(C&T'J';j t, )nt~TJ),
which proves the theorem.
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Prompt Neutron Emission from Spontaneous-Fission Modes of Cf'5sf
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The number of prompt neutrons emitted and the velocities of the fragment pairs have been measured

for individual spontaneous fissions of Cf"2. The time-of-Right measurements of the fragment velocities
have sufIicient resolution to provide a good determination of the mode of fission as characterized by the
total kinetic energy Ez and the mass ratio Rz of the fragments. The neutrons are detected with high effici-

ency in a large cadmium-loaded liquid scintillator. It is found that the dependence of the average number
of neutrons per fission, v, on the parameters Err and Rz may be approximated by a plane P(Ex,Ra) over
the region that includes the majority of the fission events. The slopes that specify the orientation of this

plane are determined to be Bu(Err, Rx)/BErc = —0.143+0.020 (neutrons/6ssion)/Mev and Bv(Err, Rg)/BRx
= —6.3+1.1 (neutrons/fission)/unit mass ratio. The value of the first slope indicates that the average
total excitation energy of the fragments, required for the emission of one more neutron on the average, is

7.0+1.0 Mev. From this number and the measured dependence of P on mass ratio, the average excitation
energy Ex of the fragments is determined as a function of the mass ratio. This function Ex(R&) and the
measured dependence EI/.. (RA) determine the average prompt energy of fission as a function of mass ratio.
The widths of the neutron-number distributions have been obtained as functions of E~ and Rg. The data
do not support the statistical theory of fission proposed by Fong.

I. INTRODUCTION

'HE hssion process, even for but one species of a
spontaneously fissioning nucleus, yields a large

variety of fragment nuclei and associated neutron and
gamma radiations. Experimental technique has devel-

oped to the point where it has become feasible to

f' Work performed under auspices of the U. S. Atomic Energy
Commission.

investigate correlations that may exist between modes
of fission and the associated radiations. Measurements
of the velocity distribution of hssion-fragment pairs
from Cf"' and the coincident gamma-ray spectrum
have recently been reported. ' Studies of the neutron-
emission probability as a function of the mode of 6ssion

~ J. C. D. Milton and J. S. Fraser, Bull. Am. Phys. Soc. Ser.
II, 2, 197 (1957).


