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A theory of finite nuclei is formulated, based on the reaction-
matrix theory of the nuclear many-body system. The reaction
matrix appropriate to the finite nucleus is in the exact theory
determined by the solution of coupled Hartree-Fock and reaction-
matrix self consistency problems. This formal procedure is ex-
tremely dificult to carry out; the finite-nucleus reaction matrix
has instead been approximated by the reaction matrix appro-
priate to the local density, which is a nonlocal coordinate space
operator (r

~

E'~ r'). It is shown that this approximation is equiva-
lent to the assumption that a finite nucleus has the same short-
range correlation structure as nuclear matter.

The formalism used to determine (r~X~r') from the results
previously obtained in the study of nuclear matter is derived,
and the methods used in explicit evaluation are described. The
numerical results discussed are based on the phenomenological
two-body potentials of Gammel and Thaler which give an ex-
cellent description of all scattering data up to 300 Mev. The
operator (r~E ~r') obtained shows marked nonlocality for r andr'
less than 10 " cm. That this is largely associated with the re-
pulsive cores in the potentials is shown by a simple analytic
approximation to (r

~

A
~

r').The nonlocality is further enhanced

in the triplet states by the effects of the noncentral forces which
lead to marked l dependence in the even states.

The reaction matrix so determined contains a large spin-orbit
term. It is shown that this is almost entirely due to the spin-orbit
two-body potential and that the tensor forces give only a very
small contribution.

Proceeding from the reaction matrix as an effective two-body
interaction, the Hartree-Pock problem is formulated taking into
account the complicated exchange and nonlocal character of the
reaction matrix. A general result is obtained for the single-
particle spin-orbit potential which is shown in the case of a local
interaction to reduce approximately to the form of the Thomas
interaction.

An iteration method is proposed for solving the single-particle
eigenvalue problem with a nonvocal potential which reduces the
diff'erentio-integral equation characteristic of the theory to an
ordinary diFferential equation. This procedure requires the intro-
duction of a linear derivative term in the diFferential equation.
The method is exact in the limit of convergence of the iteration
method or if the nonlocal potential is replaced by a local
approximation.

I. INTRODUCTION

' 'N a series of previous papers' " a theory of the
~. nuclear many-body body problem has been de-
veloped and applied to the study of various properties
of nuclei. In these applications it has been usually
assumed that the nuclei were very large so that the
properties determined should be more properly called
the properties of "nuclear matter, " i.e., the properties
of a system of nucleons of su%cient extent so that
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surface effects can be neglected. To make such a study
possible it is also necessary to neglect the Coulomb
interaction between the protons. In this approximation
various studies have been made of the properties of
nuclear matter, particularly a recent detailed numerical
study carried out by Brueckner and Gammel" based on
the phenomenological two-body forces of Gammel,
Christian, and Thaler, "and of Gammel and Thaler. "

In the papers on the theory of the methods used in
these calculations, some discussion has been given of
the problem of Qnite nuclei, showing how in principal
it is possible to alter the methods used in the nuclear
matter problem to allow their applications to finite
systems ' """For reasons to be discussed below, these
methods cannot be applied to an actual problem because
of their excessive complexity and hence our work has
been carried out in an approximation discussed in Sec.
II. This approximation is based on the short range of
the correlation distances in the nuclear wave functions,
and hence the short range over which the nuclear re-
action matrix or effective two-body operator divers
from the local two-body potential. Once this approxima-
tion is made, it is possible to calculate the nonlocal
coordinate space operators whose diagonal matrix
elements taken with respect to the eigenstates of the
6nite nucleus give the interaction energies. These

"K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958). We shall refer to this paper in the following as I.

"Gammel, Christian, and Thaler, Phys. Rev. 105, 311 (1957)."J.L. Gammel and R. M. Thaler, Phys. Rev. 107, 1337 (1957).
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operators then can be taken to be the basis of a Hartree-
Fock calculation for the nuclear "model" state. In Sec.
III it is shown how this operator is constructed in de-
tail, proceeding from the results previously obtained in
the study of nuclear matter. This operator is of interest,
not only as the basis of a Hartree-Fock study, but also
since it is the "residual two-body interaction" or
effective two-body potential which is the basis of the
configuration mixing studies of the shell model.

The Hartree-Fock calculation is formulated in detail
in Sec. IV, taking into account the nonlocal character
of the reaction matrix and the presence of a spin-orbit
term in the reaction matrix. Finally in Sec. V it is
shown how the Hartree-Fock equations can be reduced
from the diBerentio-integral equations appearing in
the theory to differential equations. The approximation
procedure proposed is particularly useful for the non-
local single-particle potentials characteristic of our
theory.

II. APPROXIMATION TO THE FINITE SYSTEM
REACTION MATRIX

Our theory of nuclear matter and of finite nuclei is
ba.sed on the reaction-matrix E which determines the
interaction energies and correlation structure of the
many-body system. We review here only the necessary
properties of E and refer to I and earlier papers for
details of the theory.

The reaction matrix E is defined by the integral
equation

To define the Green's function 6, we introduce a
set of single particle eigenstates q; together with the
associated eigenvalues E;. Written in this representa-
tion, Eq. (1) becomes

Ki, kl ~ijkt+ 2 ,~jj,mn(+k++l +m +n) Emnklp (2),

which defines the Green's function in this representa-
tion. The sum over m and e in Eq. (2) is to be carried
out over empty states only so as to satisfy the Pauli
principle. In writing the expression for the energies E~,
we make an approximation similar to one to be made in
our use of the Hartree-Fock equation, i.e., we drop
terms in E~ which vanish for a large number of par-
ticles. These have little eGect in large nuclei and become
important only for small systems. In this approxima-
tion, the single-particle energies are

where the sum is over all ulled states. The coordinate
space potential which determiries the eigenfunctions
y; is also determined by the diagonal elements of the
E matrix:

V( )=Q '*()P(X' X'; ')y'( ) (4)

In the limit of a weak interaction, K can be replaced by
the potential v and the single-particle potential defined

by Eq. (4) is just the Hartree-Pock potential. Starting
from a given set of eigenfunctions y,'"' (e meaning,
for example, the nth iterate), the new set y, &"+" ob-
tained from the single-particle potential V(")(r, r') will

in general not agree with the input. The problem of
obtaining agreement is the self-consistency problem of
the Hartree-Fock method. It is usually solved by an
iteration-interpolation procedure, starting from a trial
guess and improving the wave functions until self-
consistency is achieved.

In our problem, a new self-consistency problem
arises since a shift in the representation q,'"' ~ q

"+'&

not only changes the single-particle potentials but
also, through the change in the energy spectrum,
changes the Green's function in Eq. (1) and Eq. (2).
This shift changes the E matrix which change in turn
reacts back on the single-particle potentials and eigen-
functions. Thus a new problem arises of obtaining a
self-consistent energy spectrum and reaction matrix.
In the study of nuclear matter the usual Hartree-Pock

problem does not occur since the eigenstates are known
(plane waves). The second self-consistency problem
remains, however, and is one of the principal difficulties
which have been encountered in the study of nuclear
matter. ""In a finite system the Ematrix and Hartree-
Fock self-consistency problems are coupled together and
very great computational difhculties arise if an attempt
is made to solve the problem exactly. In fact, estimates
of the order of magnitude of the computing problem
show that it is probably beyond the capacity of pres-
ently available computing facilities.

The magnitude of the problem described above has
been a severe deterrent to the study of finite nuclei.
We believe, however, that a reasonable approximation
exists in which the central difficulty is avoided. To
show the origin of the approximation, we examine the
structure of Eq. (2). We note that the energy differ-
ences appearing in the energy denomination are quite
large, being the diGerence between a pair of energies of
bound particles and a pair of particles excited above the
Fermi surface. These energies are usually quite large,
a typical difference being 150 to 250 Mev. Consequently,
to determine the Green's function we need only give
the large energy differences accurately. These energy
differences correspond to quite small wavelengths, the
momenta in excited states being of the order of p 1.5p~
which, at normal density, corresponds to X 0.5X10 "
c.m. If the nuclear density is slowly varying over dis-
tances of this size, then we expect that the important
values of the excitation energies appearing in the
Green's function in the actual finite system can be
replaced by those of a spectrum appropriate to a uni-
form medium at the local density.

An alternative and perhaps clearer way of viewing
this approximation is to examine the E matrix in co-
ordinate space. It has already been emphasized in
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earlier papers" that the wave function for relative
particle motion very quickly approaches its unperturbed
form, the distances involved being about 10 "cm, with
marked departures occurring only over somewhat
smaller distances. Thus the correlation distances in the
wave function are quite small. In terms of the E
matrix, this means that E approaches v at distances of
the order of 10 "cm. (We shall see in more detail the
character of this approach in the following. ) Thus we

expect the correlation structure in the wave function
and the correlation-dependent eGects in the E matrix
to be determined only by the local density, as long as
the density varies slowly over the correlation distance.

We would like to add that the above condition of
local density uniformity is certainly a sufficient condi-
tion; it may not, however, be necessary. It seems likely
to us that a less stringent condition, such as that of
linear density variation over the correlation distance,
may still leave our approximation quite accurate.

This approximation allows us to compute the E
matrix for the finite system directly from the results
obtained in the studies of nuclear matter. The E
matrix so determined will in general be a nonlocal
density-dependent operator in coordinate space. Let
E,;,pt(p) be an element of the E matrix computed in
the plane-wave representation at the density p. To
transform to coordinate space we take the Fourier
transform, i.e.,

(r„r, fE(p) f
r, ', rp')

= 2 p '*(r~) p *(rp)E';~~p ~(r~') p t(rp') (5)
ij, kl

Our approximation now allows to assume that this is
the correct reaction matrix in the finite system, i.e.,
that Eq. (5) defines that coordinate space operator
whose expectation value taken with respect to the eigen-
states of the finite nucleus determines the interaction
energies. This operator also determines the correlation
structure which in our approximation is the same as in
nuclear matter at the same local density.

We discuss in the next section the detailed evaluation
of Eq. (5).

III. K MATRIX IN COORDINATE SPACE; THEORY

representation on the intermediate state sum over ns

and e. The assumptions involved in this approximation
have been discussed in the previous section. To carry
out this transformation, we start from the de6nition of
the E matrix,

Eij, kl (Fiji etPkl)t (7)

(k'fEfk) =(p",g.), (9)

where we have not yet indicated the spin indices ex-
plicitly. We also do not write explicitly the total mo-
rnentum conservation which is contained in the E
matrix. To carry out the transformation to coordinate
space, it is convenient to introduce the coordinate
space representation of E not by Eq. (5) but by the
equivalent defining equation

(k'fEfk)

= „~dr dr'&p~ *(r')x, *(r' fE f r) ppj, (r)x, , (10)

where we now write the spin functions explicitly, and
ya(r) is a plane wave function for momentum k. We
note here that since (k' fE f

k) is diagonal in the total
momentum, (r'fEfr) will be diagonal in the center-
of-mass coordinate, i.e., (rip fE frump') will contain a'

factor 8L-,'(r&+r&) ——,'(r&' —rp')$. Upon combining Eqs.
(7) and (9), it then follows that

where p;; is the unperturbed wave function and Pqt is
the wave function determined by the solution of the
integral equation

0= v +GO.
This equation is discussed in detail in I; we need only
the properties of g here and shall not again refer to
Eq. (8).

To simplify Eq. (7), we make use of a result obtained
in the studies of I which showed that the E matrix is
a very slowly varying function of the total momentum
P= yp+p~ and depends strongly only on the relative
momentum k=-,'(pI, —p~). Thus in the following we
suppress the dependence of E on P, replacing P by an
average value appropriate to the Fermi gas. This aver-
age value we have taken to be I'A, =pr. Then, calling
—,'(p, —p,)=k', we rewrite Eq. (7) as

We start from the solutions for the E matrix as
determined for a uniform medium as a function of the
density, i.e., from the solutions of the equation (r'fEfr)x, = dkpq*(r')n(r)Pq. .. (r), (11)

Eij, kl &ij, kl

+Z&v %~+A & &) 'E ., ~i. (6)— —

In this equation the density appears through the Fermi
momentum pz= 1.52/rp. The quantum numbers appro-
priate for the uniform medium problem are the mo-
mentum, spin, and isotopic spin. To obtain the E
matrix in coordinate space, we shall carry out a Fourier
transformation on the explicit dependence of E on the
momenta but neglect the effects of the change in

where we now write the spin indices explicitly. The
evaluation of the right-hand side of Eq. (11) can now
be carried out by using the angular momentum ex-
pansions of q and. f. The expansion of pp~(r') is

pp (r') =+,L4n. (2l+1)$&j (k ')i'F '(r'). (12)

For singlet states the expansion of P is not complicated
by the presence of noncentral forces, and is

Pg, p p(r)=Q(f 4ir(2l+1)j'Nt g (r)i Ft (r)Xp (13)
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where ui s"(r) is the radial function for the singlet
state with angular momentum / and relative momen-
tum k. The solution to Eq. (13) has been obtained in I
in determining the properties of nuclear matter.

Combining Eqs. (11), (12), and (13), we find for the
singlet part of E:

4m.

(r'IXI r)„pst«=, k'dk P (2l+1)ji(kr')p»nsi«(r)
(2ir)'~

Xsi&, z"(r)Fis(r, r'). (14)

r' r
(r'

I
k

I r) triplet =A (r,r')+B(r, r')i(et+vs) —X—
r' r

(21)

(r r)
+C(1,1)~

Er' r) ( r' rl

Equation (20) determines all matrix elements of E.
In our Hartree-Fock studies, however, we need only
the central and spin-orbit parts of E. We determine
these most simply by writing K in the general form'4
for triplet states alone

For the triplet states the presence of noncentral
forces results in E being nondiagonal in m. Taking
matrix elements of Eq. (11) with respect to spin, we

obtain

(1 1') (1 1')
D(r r')~t

I

——
I
X I

-x - I~sir r) Er r'J

dkpi, *(r')X, '*n(r)Pi, , (r). (15)

A(r, r') =s 2-(1'I&Ir)-,-,
(23)

(
&(r,r')=-'~2L(r'I&Ir)-i, o+(r'I&Ir)o, i]cs«~ ".

X B&i
' r Fz&, r),

(r) =P P I
4r(2l+1)]li'C(ls0mI lsJm)

We now insert the angular momentum expansion of P The coefficient A and 8 which interest us are then

which is Lsee I, Eq. (43)] easily shown to be given by the expressions

where Fqi,"(1) is an eigenfunction of the total angular
momentum, C(ls0mIlsJm) is a Clebsch-Gordan co-
efficient, and siii. ~'(r) is the radial function for total
angular momentum J, spin s, angular momentum /',

driven by the entrance-channel angular momentum /.

We also make use of the equation

dQz Vi'(1')p(r)F~i, (r)

=P
I
4ir/(23+1)]'tli i '(r)FJi", (r, r')5ii, (17)

Using the explicit form for K of Eq. (20), and the
formula,

P C(l'10mIi'1Jm)C(/10mI11Jm) =
2J+1

(24)
2l+1

we obtain, for the central term A,

1 4x
A(r, r') =— ~k'dk P (2J+1)j&(kr')p« ~'(r)

3 (2ir)'~

Xp&" i '(r)Fi(r, r'). (25)

where v~ ~"J' is defined by the equation

'

dQ FJ), *eFJ),'".

We give this explicitly for the states t=0 and 3= 2, dis-
regarding the J—1, J+1 coupling except for the J= 1

state as was done in the calculations of I. We write tt as

tt(r) = p, (r)+p&(r)gi&+ pzs(r) I S. (26)

We also need the spin matrix element

x,'"'*Fgi,"(r,r')
TAsr, E I. Parameters of the Gammel-Thaler potentials. The

potentials all have the Yukawa form outside of a repulsive core
of radius 0.4)&10 "cm,

=P Vi'"™(r,r')C(lsd' m —m'IlsJm), (19)

which we obtain by using the Clebsch-Gordan expan-
sion of FJ~, '. Collecting these results, we find for E
the result

(4s.)** r

(r'I&I 1)~, = k'dk p (—i)'i'(2l'+1)-:
(2m)'&

Xj&(kr')Ni &"~'(r)p$" /~'(r)C(l'~0mIi'~Jm)

State

Triplet central even
Tensor even
Spin-orbit even
Singlet even

Triplet central odd
Tensor odd
Spin-orbit odd
Singlet odd

Strength
(Mev)

—877.39—159.40—5000—434.0

—14.0
22.0—7315

130.0

Inverse range
(10+» Cm 1)

2.0908
1.0494
3.70
1.45

1.00
0.80
3.70
1.00

XC(ls ns —m' m'I isJm) Vi '(r, r'). (20) s4 Lincoln Wolfenstein, Phys. Rev. 96, 1654 (1954).



THEORY OF FINITE NUCLEI

The matrix elements of v are

&00

vos = vzo = vr/+8,
= &c 2&t 3&r.s&

=vs+ 2vi vi.s,
v»"= v, —(4/7)t t+2vs. s.

Inserting these results into Eq. (25), we Find

4~
A (r, r') =— — ~k'dk{3j (k»)

3 (2oi)'"

X[upp" (r') v, (r')+ups" (r') v, (r')/Q8]

(27)

Again writing this out explicitly for l=0 and 2, we hand

1 kr
8'(r, r') =— k'dk js(kr) {—9u„"(r')v, (r')/g&

12 (2~)s~

—9ups" (r') [v,(r') —2vi(r') 3vrs—(r )]
—5u»" (r') [v, (r')+2vr(r') —vr, s(r')]

+14uop" (r') [v, (r') —(4/7) v, (r')+2vt s(r')]}

X&o(r,r'). (33)

In Born approximation the terms in v, and e~ drop
out, leaving

+jz(kr)Pp(r, r')[3uzo" (r')v&(r')/+8

+3ugs" (r') (v, (r') —2v, (r') —3v i s (r') )
+5ugp»(r') (v, (r')+2vr(r') —vi s(r'))

+7upos'(r') (v, (r') —(4/7) vr (r')+2vi s(r') )]}. (28)

As a check, we consider the Born approximation limit
where epQ" and u&p" vanish, upon(r') =jp(kr'), and
u»s'(r') =j&(kr'). In this case the coefFicient of v, (r') is
just jo(kr) jp(kr')+5jp(kr) jp(kr')P&(r, r') and the coeffi-
cients of v~ and zL, S vanish, as we expect.

Next we consider the spin-orbit term. Using Kq. (20)
and Eq. (23), we find

(4sr)l i

B(r,r') =-,'K2 k'dk
(2~)»

X{ P (—i)'i'(2l'+1)*'ji(kr)ut i ~ '(r')vi i '(r')
JLtrlrl

X [C(l'100
~

l'1JO)C(l11—1
~

l1JO)

+C(l'101
i
I'1J1)C(l110

i l1J1)]}
X Yi'(r', r)e '& csc8. (29)

We can bring this to somewhat simpler form by using
the relation

Ytt(cos8)e '& csc8=[l(l+1)] '— Yi'(cos8), (30)
d cosg

which is just the contribution from /= 2 to

8'(r, r') s,„„vi,s(r)8(——r r'). — (35)

IV. K MATRIX IN COORDINATE
SPACE; EVALUATION

In this section the numerical results we give are all
based on the Gammel-Thaler23 two-body potentials
which have also been used in the study of nuclear
matter. The parameters of these potentials are given
in Table I.

To evaluate the expressions obtained in the previous
section, it is first necessary to remove the repulsive
core singularity in the potential, which must be treated
separately. To do this we consider as an example the
singlet state. We rewrite the singlet potential as

Vsinglet ~ Vsinglet+Vcoreq (36)

where by v„.„g&,t we now mean the attractive part of the
potential. The singlet part of the E matrix then is

4n-

(r
~
Jt

~
r)singlet= P ~,

k'dk(2l+1) j&(kr')
(2or)' i &

8 (1',1' )Born — k dk $2(kr) j2(kr )vLs(» )
(2~)s~

X5I',(r, r'), (34)

X [v(r)singiet+v (r)core]utt. (r)&t (rrr ). (37)

As in I, we next make the replacement

(3g)vcore(»)uu (») =&tp"&(»—«,)

The constant A&&" is determined by the boundary condi-
tion that the wave function vanish at the core radius.
This determination is discussed in detail in I [see Kq.
(55) of I].The separation of the core contribution leads
to the appearance of a core term in the Ematrix, which
ls

(4sr)l i.
8'(r, r') =-,'W2 ~ k'dk

(2~)s~

X g {(—i)'i'(2l'+1) ljt(kr) Yi'(r', r)
Jllll fr

X[l(i+1)]—4ct t"s'(r')vt"ts(r') 4m

Q t k'dk(2l+1)
(2v)s

(r
~
&~ r)core=

X[C(l's00
i
l's JO)C(ls1 1~ lsJO)—

+C(l's01
i
l's J1)C(ls10

i
lsJ1)]}. (32)

and also the identity

1 1' 1' d 1
—(tri+tro) -X— f(r,r', y) = (rr—t+rro) rXv-f(»,r', u)

r r' dp, i
=2L Sf(r,r', p) (31).

Thus the coefficient of L S in the E matrix is
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r') is symmetric in r and r', the function is plotted only for
r(r'. g The contribution from the core alone (see Eq. (39)j has
not been included in this plot; it would occur as a very high
repulsive core spike at r =r'=0.4)&10 "cm.

A similar treatment holds for the triplet states; we shall
not give the details here but refer to I for further
dlscllsslon.

The evaluation of the integrals over k such as that
appearing in Eq. (39) has been carried out numerically
at the computing center of the Los Alamos Scientific
Laboratory. The k integration has been cut off at a
maximum value of k chosen to insure convergence of
the integrals.

One approximation was necessary in carrying this
out. In evaluating the Fourier transform of E, we found
it desirable to go to very large values of relative mo-
mentum to which our previous calculations of I did
not extend. These are states far "off-the-energy-shell, "
in the terminology of I. The E matrix for these states
depends somewhat on the initial energy of the inter-
acting pair since this energy appears in the Green's
function. The approximation we have adopted is to use
in high excited states a mean value of the initial energy
which was taken to be the value at the mean Fermi
momentum. This approximation aGects the small dis-
tance or high wave number behavior of E somewhat
but is felt to be less important than the over-all in-
accuracies inherent in the E matrix evaluation. In
carrying out the integrations, the maximum value of k
was taken to be k,„=14p/ which corresponds, at
normal density, to X—10 "cm. This high value of the
cutoff was necessary to insure fairly accurate repro-
duction of the details of E. Although these cannot
affect appreciably the expectation values of E in the
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Hartree-Fock problem, they are of importance in ex-
hibiting the structure of E and its approach to the
local potential.

One further comment is necessary before we give
our results. The E matrix is from its definition sym-
metric in r and r'. This is most easily seen from the
integral equation for E which, if solved by iteration,
gives a manifestly symmetric result. The reason for
asymmetry is most easily seen in the core contribution.
This contains an explicit r dependence 8(r—r,) but the
r' dependence enters through the k integral

It can be shown that for an infinite cutoff on the k

integral, this contains a delta function on r' —r, . Cutting
o6 at 6nite k, however, replaces the delta function by a
spread out function of width 1/k . Consequently
the symmetry of E in this term is lost. For this and
other similar reasons, our computed E is slightly asym-
metric, the asymmetry extending over distances of
1-2)&10 '4 cm. This eGect is not physical and further
can have no appreciable numerical eBeet on the
Hartree-Fock results; therefore, the results we quote
are for the symmetrized E matrix

To exhibit the structure of E clearly, we give contour
plots in Figs. 1 and 2 of the central part of E for the
singlet and triplet states for /=0. These results are
also given in tabular form in Tables II, III, and IV.
The E matrix shows a rather complicated nonlocal
structure for r or r' near the core but quickly approach
the local potential for r and r' greater than 10 " cm.

1.0

.8

E.7
I+

.5

4

0,2 0.3 0.4 0.5 0.6 0.7 0.8
(10 ' cm)

F&o. 2. Contour plot of 2~'(r~E~r') for l=0, triplet. The core
contribution is omitted here as in Fig. 1.

Q

cd

I 0

~ o
cd

0

~ 0

0

9 eO+
II

cd

&u ~
&8

~O
+X

wA

0

Y)

X~~

A"
80 ~

~ 7O

gXoO

O QO

c3
~ II

p5
~ M

cd

(Q

' CVOt
II ~
~ I

C4 &

~O
I

H QOH w

II)
Qo

CO

O
00

QQ Ch

I

O O
QO PD

I I I

~QOOm+~
QO
O QO ~ n

Ch

QQ

I I

QO
O & O

(

I I I

CV

t
I I I

O O

I

lE)OamOQO%
CV

I I I I

O

I

QO M O QQ M t M OWKOWHHO
I I I

l
QO

VO

I I I I

O W

I

v) v-I QQ
CO w W QO O

I I I I

I

e O
Ch

O~ t c t~t O+QO~~~~Cq~

QO M W ~ ~ t QO t t M t
QO M M VDO&~OQQ&mOt

QOWWQOChOWCht
QO~QOmWW ~CnQQuDm
QQ

NOt t &rVWOQOOQOmmt ~mmeO Ch t
Ch V0

O & O % O K O % O
'vD t t QO QOOOOOOOOOOOO

O O O

+ ~ QO t N O cq + ~ t
O Ch V0 % & W ~ W ~ & QO
QO m W O W uD QO t- W

I I I
I



B RUECKNER, GAMMEL, AND WEITZNF R

(Q ~
rd

6
V

cd

I o

~C
C' cd

cd

v5

II ~

"„8

X
O

4A

Ew

O"l

G4

V

A

0 V

+ co

ce
I

gXvo

O 00

O
O

1/)

O

O

O

00

O
00
O

O

O

O

O

l/)
l/)
O

mnO~mOOM
I I

I I

00
O00O~&

I

I I I

t w W O
m O c

I I I

m Ch W Ch oo O O

I I I I

O
Ch W Ch O W ~

I I I I

00 ~ W M O
I

I I I I I

VO ~ ~ ~ Ch M Ch M 00
m O m & m m m oo n ~

00
00

I I

I I I I

I

O

I

O

I

OO
I

The structure of the E matrix shown in Figs. 1 and 2

can be qualitatively understood rather easily. We re-
turn to the definition of the E matrix in Eq. (11) and
consider for simplicity the singlet case. As in Eqs. (32),
(33), and (34) we eliminate the repulsive core and obtain

(r'
I
E

f r) = (r'
f

E
[ r),.„,+ (r'

f

E l r)., (42)

the constant Koodoo is [see Eq. (55) of Ij
t'

jp(kr, )+4m
'

Gp(v„r")v, (r")upj, oo(r")r'"dr"

X [4~r,oGp(r„r, )j—'. (45)

We now work to first order in the interaction e, (r) and

replace upioo(r") in Eq. (45) by its first Born approxi-
mation value jo(kr"). In so doing we of course retain

only the qualitative features of the E matrix. We then
substitute for Xoi,oo in Eq. (39). The result is

kr
(r'~&)r)o = — k'dk jo(kr') jo(kr.)

(2ir)'~

5 (r—r.) (47r)' p dr "Go(&.,&")

&r,'Gp(r„r, ) (2~)o& err, 'Gp(r„r, )

where for S states alone
I

4~
(r'~E~r)core= t k dk jo(kr')5(r —r,)Xpz „(43)

(2m)' ~'

4m.

(r'~ztr). = Ik'dk jp(kr')o (r')ul, "(r'), (44)
(2m)'~
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k'dk jp(kr') jp(kr"). (46)

The Green's function is a slowly varying function of k;
if we neglect its variation, we can do the integrals over
k which give

4ir t 8(r' —r.)
k'dk jo(kr') jp(k

(2ir)'~
)

4mr, '

and similarly for the integral with r, replaced by r".
Thus Eq. (47) becomes

We next consider the term in E resulting from it, (r),
given by Eq. (44). We now retain the first order term
in v, (r) and replace upq" (r) by the second Born

5 (r' —r.)5(r—r.)
(l'

~

IC
~

i')core=
(4~r,o)'Gp(r„r.)

G(r„r')
v, (r')b(r —r,). (48)

G(r.,r,)
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approximation

Np„'(r) =j p(kr)+47r~ G'p(r, r')v, (r') jp(kr') (r')'dr'. (49)

Substituting Eq. (49) into Eq. (44) and carrying out
the k integrals, we obtain

b(r r'—) Gp(r', r,)
(r'le l r),= v—. &(r —r,) —p(r') . (50)

4z-r' Gp(r„r,)

-200

-400

The combined result of E„„,+E, then is'

8 (r' —r.)5 (r—r,)

(4prr P)'Gp(r „r,)

1 I I I I I I I

0.6 0,8 1.0 1.2 1.4 1.6 1.8 2.0
r(10 cm )

FIG. 4. Integral of (r
~ Kl r') for triplet l= 0 and f =2, together with

the central part of the triplet even-state potential.

be seen more readily by considering the function

f(r) = dr'(r
l
X

l
r'),f

(52)

0-

-100

-200

-300

-400

I I I l I l

0.4 0.5 0.6 0.7, 0.8
r(10 "cm

~

0.9 1.0 1.1

FIG. 3. Integral of (r~E~r') normalized to the correct asymp-
totic behavior, for singlet l =0 and l =2. Also included is th|; focal
gjnglet potentia) with pgrgrget;erg shown in Table I.

which is now manifestly symmetric in r and r'. We see
that the core repulsion not only leads to the term
proportional to 8(r—r,)8(r' —r,) which has not been
included in Figs. 1 and 2 but also to the appearance of
repulsive terms lying along the lines r=r, and r'=r, .
These are the origin of the repulsions seen clearly in
Figs. 1 and 2. The eGects of our finite momentum cutoff
are seen in the displacement of roughly 10 '4 cm of the
repulsive peak from the repulsive core line.

The approach of (rl 8
l
r') to the local potential can

which approaches the central part of the local potential
tt, (r) for large r. The actual point at which f(r) and v, (r)
become equal is a sensitive test of the correlation dis-
tance in the wave function since it is this which deter-
mines the difference between the reaction matrix E
and t(r).

The function f(r) together with v, (r) is given in
Figs. 3 and 4 for the singlet and triplet states. For
convenience we have also included with the l= 0 result
the predictions for /=2. In the singlet case, for both I
values, the departure from the potential is marked only
for r&10 " cm, particularly at the core where the
integrated E matrix vanishes, in contrast to the be-
havior of the potential. This difference is, of course, due
to the vanishing of the wave function at this point. We
also note that the values of r for which E and v are
appreciably different coincide approximately with the
region where E is markedly nonlocal. This is, of course,
an expected result. A further feature clearly shown in
the results is the close similarity of the l=0 and l=2
terms in the singlet E matrix except for r close to the
core radius. This is due to the particularly rapid
approach of E to v in the singlet case. For the triplet
case, the l=0 and l=2 terms show much greater differ-
ence, rejecting the strongly l-dependent eGect of the
noncentral forces. In Born approximation these do not
contribute to the spin-averaged E matrix we consider,
as emphasized in the last section. They do have a pro-
nounced eQ'ect at distances less than 2X10 "cm where
the noncentral terms in the potential strongly per-
turb the wave function.

We next consider the spin-orbit term in the E matrix
as given by Eq. (17). It would be convenient to break
this down into two contributions, the erst arising from
the tensor forces and the second from the spin-orbit
@nd tensor fqrces combined, Jt is not possible, however,
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TanLE VI. (12/5)rr'(r
~
K~ r') X [5Pr (r,r')) ' for spin orbit, f= 2. The units are Mev (10 "cm) '.

For r) 1.1X10 "cm, (r~ E
~

r') can be replaced by the local potential.

X r (10-»
r'(10-»~.cm)

cm)Q

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

0.3

0
0

4064
2429

272
87

141
31—12

0,4

0—3867
1534
1238
161—58
35
32

0.5

—7468—2204
366
385—78—96

51

0.6

—3454—1650
96

368—102—168

0.7

—1630—569
100
90—53

0,8

—662—280
41
67

Or9

—315—122
21

1.0

—161—68 —80

minimum in nuclear matter occurring at —15.2 Mev
per particle at ro= 1.02)&10 "cm. If the density varia-
tion of the E matrix is neglected, the system will not
show saturation.

The origin of the diGerent behavior of the attractive
and repulsive parts of the E matrix is easily seen. At
high densities the attractive part of E approaches
closely to the attractive potential except near the core
radius; consequently the attraction is only weakly
aGected by density variations, at least near normal
nuclear density. On the other hand, the single core
gives a repulsive term in the E matrix which never
approaches the Born approximation limit, and instead
varies with increasing rapidity as the sensity is in-
creased, particularly as prr, starts to approach unity. "

To represent the density eGect on the repulsive core
terms in the E matrix, we shall assume that it has the
density dependence

This form of the dependence is given by the theory of a
core repulsion alone and is a reasonable approximation
for a range of ro from 0.8 to 1.6X10 " cm, this corre-
sponding to a density variation from 2.39 to 0.30 times
the normal density (ro ——1.07X10 " cm). From our
above results, we 6nd a value for b of —0.488X10 "
cm for singlet and —0.459X10 "cm for triplet, which
allows us to write

much cruder approximation. Before discussing this we
wish to summarize some of the features of the odd-state
contributions. They arise from considerably weaker
interactions than those acting in even states, except
for the spin-orbit term. The attraction in the triplet
central odd state also tends to be compensated by the
singlet odd repulsion. As a consequence of the weakness
and opposing signs of these forces, the contribution
(from the central forces) to the nuclear binding as
evaluated in the nuclear matter studies of I is negli-
gible. The strong-odd state spin-orbit force also has no
binding eGect since it vanishes on spin-averaging in a
spin-uncorrelated medium. This is true only if the
force does not appreciably polarize the medium, this
however does not occur in the odd angular momentum
states.

For these reasons it is suSciently accurate to treat
the odd-state interactions in Born approximation. One
complication arises from the repulsive core; we ap-
proximate to the eGect of this by cutting oG the poten-
tial at the core radius. This approximate procedure has
been checked by numerical evaluation of the energy and
found to lead to results in good agreement with the
exact calculations of I.

I I

E core (r0)

Ecore(1.07X 10 "cm)

=0.544(1—0.488/ro) ', singlet

=0.472(1—0.459/rs) ', triplet
(56)

-100

-200

with ro measured in units of 10 " cm. This result we
shall use in our actual calculations, together with the
predictions for the attractive contributions at ro
=1.07X10 "cm.

All of the above remarks of the section refer to the
even angular momentum states only. To treat the odd
angular momentum states, we content ourselves with a

-300

0.4 0.5
I I I I

1..00.6 0.7 0.8 0.9
r(fP cm )

re H. Ilethe and J. Goldstone, Proc. Roy. Soc. (London) A258,
551 (1956).This point is also discussed in I.

Fro. 7. Integral of (r~E
~

r') for triplet 1=0, at densities corre-
sponding to r0=0.80)&10 "cm and r0=1.07)(10 "cm. The core
contribution is omitted.
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[ l I I

Singlet +=0
We also carry out the spin exchange indicated in the
exchange term by introducing the spin exchange
operator

P, =-,'(1+vi es). (6O)

-100

-2X
r, =0.80x 10 cm

We next exchange the variables of integration r~', r~'

in the exchange term, making use of the fact that these
are dummy variables in the integration. We then can
rewrite that part of the right-hand side of Eq. (54)
which comes from like-particle interactions as

f
drr'drsdrs'P, (rs) ( (rrs I

K
I
r]s')

-MC

0.4 0.5 0.6 0.7
,
0.8 0.9 1.0

r(10 cm )

I I t I I I

(rrsl &I r» )s, es(1 rri'&s)

+(risl&I —r»')~, .s(3+~i os)$

X-,'(1+mr es)}P,(r,')f, (rr'). (61)Fro. 8. Integral oi (r)E
~

r') for singlet 1=0, at densities corre-
sporiding to ra=0.80)&10 ' crn and ro ——1.07)(10 '3 cm. The core
contribution is omitted. We next use the results

V. HARTREE-FOCK EQUATIONS

Taking the nonlocal density dependent operator
(r I

E
I
r') discussed in the previous section as an and

effective two-particle interaction, the formulation of
the Hartree-Fock problem proceeds in the usual way. "
We simplify the result obtained by dropping terms of
the form

4 (1 ~i'0's) s (1+rri'rrs) = 4(1

s (3+rrr ' o's) s (1+Irr ' Irs) = 4 (3+rri ' rrs) .

(r»I&l —r»'). , =(ri-I&lr»')
(rrs

I &I —rrs"), .= —(ris I
&

I
r»').

(62)

(63)

(~ilail~~), f~~

( P"
m I, e~m

2X

(57)

which vanish for a large system. These considerably
simplify the equations to be considered and have only
a very small quantitative effect in the systems we shall
study. This approximation can be removed in a more
exact formulation of the problem. If such terms are
dropped, then the Hartree-Fock equation for the single-
particle eigenfunctions and eigenvalues becomes

(&—&o)0'(») =Z~' A*(rs)L(r»l&lrr~')~t (rs')0'(rr')

—(r» I
E

I rrs')P, (ri')P, (r~')]dr, 'dr~'drs, (58)

where the second term arises from the exchange of all
particle coordinates. In evaluating the exchange, we
shall not use the isotopic spin formalism but instead
separate the sum over neutrons and protons. Thus if
i and j refer to different charge states, the exchange
term does not appear. For identical particles, we sepa-
rate E into singlet-even and triplet-odd operators, i.e.,
we write

(r»l&lr»') = (r»l&lr»'). ..l(1—~r ~s)

+(rrsl&lr»')~, ;,'(3+~i ~s). (59)
2 See, for example, F. Seitz, The M'oderrI, Theory of Solids

(McGraw-Hill Book Company, Inc. , New York, 1940), Chap, VI.

Collecting these results, we find that the exchange
term is exactly equal to the direct term. Consequently,
in evaluating the sum over states j in Eq. (58) and
Eq. (61), the exchange effect simply introduces a factor
of two for those terms in the sum where the state being
summed over is occupied by a particle of the same
charge as that for which the single-particle potential
is being calculated. It is therefore convenient to break
the sum over j in Eq. (58) into contributions coming
from like- and unlike-particle interactions. We consider
first a neutron; Eq. (58) can then be written

(F +0)f'(rl) =, I (rl rl )f'(rl )drl

where

"~t,*(rs)L(r» I
&

I
r»'),

j (neutrons) ~

+3(r»
I El r»') &, .$P, (rs')drsdrs

+-' 2 A*(rs) I:(r» I
&

I
»s'),

j (protons)

+3(rls I
&

I
rls') t, .+(rls I

&
I
r12') ...

+3(rrslElrrs')~, .]P,(r,')drsdrs'. (65)

The proton potential V„(ri,r, ') is similar except that
the sums over neutrons and protons are interchanged.
For convenience in the following we shall simply write



the neutron and proton potential as

V, (ri, ri')

Q C'
J 4 (r2)(r»l&l r»')4'(r2')dr2dr2', (66)

Next we need to evaluate

Q C jJ p' (r2)r2+(r12, r12)fj(r2)dr2dr2 ~ (73)

where C,, is the proper statistical factor appearing in
Eq. (65).

To carry out the angular momentum reduction of
Eqs. (64) and (66), we first consider the expectation
of the spin-orbit term

2(vl+tr2) 'r12XP128 (rl2 f12) ~ (67)

We suppose that the state of particle "1"is being con-
sidered and is a specified spin state. The expectation
value of e2 summed over the spin states of particle 2
then will be taken to be zero if the states are all popu-
lated equally with spin up and down. This is not exactly
true since a spin-orbit interaction in the single-particle
potentials splits the two states with the same orbital
motion but opposing spins. This eGect appears, how-

ever, to second order in the spin-orbit potential strength
and we shall drop it, since the spin-orbit potential is
weak relative to the cen tral potential ~ We shall also
neglect any possible lack of spin-pairing in unfilled
shells. Consequently our results will hold only at and
near closed shells. To evaluate the expectation value
«1.&gX p~2, we erst write I ~2 as

r12Xp12 2(rlXPl+r2Xpz rlXP2 r2Xpl) ~ (68)

We then use the relation

This must be proportional to a vector constructed from
r& and r&'. If the nonlocality in 8 is of very short range,
it is sufficiently accurate to simply take this vector to
be r& ~ This approximation is similar to that already
made in removing pi from the integral of Eq. (71). We
therefore retain only the component of r2 along r~, i.e.,
we make the replacement

r2 ~ (rl' r2) rl/rl ~ (74)

This allows us in taking the expectation value of the
spin-orbit term to make the replacement

(r12Xp») ~ riXpi(1 —ri r2/ri ). (75)

X (r12 I
lt

I
1'll )centrals(r2 ) q (77)

(ril V'""lri')

This treatment of the spin-orbit term gives for the
single-particle potential

(r
I V'I r ') = (r I

V"'
I
r ')

+L, s, (r, lv &18 Iri'), (76)
where

(ril V;&'I ri') =p C„,I dr2dr2 Ill j (112)

P2+ (r12 r12) pl+ (r12 r12)

so that Eq. (68) can be written

rg2X pg2 ~ rgX p&
—rgX pz.

(69)

(70)

=p C,;Jt dr2dr2'p, (r,)*(r12IEIr12)IS
i

X (1—ri r2/ri )p, (r2'). (78)

Consider first the expectation value of the firs t term.
This is

P C;; Pj*(r2)Lri X piB'(rt2, r12') jP,. (r2')dridr2', (71)

where the operator pi operates only on B(r», r12'). We
now make use of the delta function on the center-of-
mass coordinate which previously has not been ex-

plicitly included. Evaluating the integral over r2, we

then obtain
IA'(r2) I'= p(r ) (79)

Making this replacement, Eq. (78) becomes

Before going on to the angular momentum reduction
of Eq. (58), we note in passing a further simplifying
approximation to Eq. (78). Let us for the moment
neglect exchange effects and also assume that the L S
two-body interaction is local. In Eq. (78) we then re-
place (r»IXI r12') js by fis(r12)ti(r12 —r12'). This also
allows us to replace the product f,'*(r2)f, (r2') by

I p;(r2) I
. Then the sum over j is just the density, i.e.,

8+ c,;, pj*(r2)l rixpi&'(r12, r» —2(ri —ri'))
1 (rl

I

v""
I
ri') = ll (rl —rl') «2p(r2)

Xp, (r2+ r, ri') )dr2 —(72).
If.8' were a local function and hence contained a delta
function on rI —r~', then r~ —r~' would drop out of
pi(r2+ri —ri') and we could remove riXpi from the
integral. We shall still proceed to do this, arguing
(a) that the nonlocality in B' is of very short range,
and (b) that g j is slowly varying relative to J3'.

Xfi s(r») (1—ri r2/ri'). (80)

P(r2) P(rl)+(r2 rl) '+1P(rl)+ ' ' '

We next make the change in variable from r2 to 1II—r~

=x. We also introduce the expansion of p(r2) about
1'2= I'I)

(81)
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We then can rewrite Eq. (78) as

(ri! V ! ri )=t&(rt —1'1))I dX

1'1' X

XI p( )— v p( )+ j f (*). (82)
r 2

where

f
VN (rl, rl ) +N(r2 r2 )L(r12!It!r12 ).,

2
'

1
+3(r12!E!r» )t, o, central]«2d r2'+ — H p (rstr 2 )

X [(r12!+!r12 ) s, e+3(r12!+!r12 )t, e, centralThe term proportional to p(rl) vanishes on angular
averaging; the second term gives [now dropping higher
derivatives of p(r, )7

(ril ViS ri')

+(r»!E!r12')...+(r»!E!r»')t .« t„ljdrdr2', (89)

3
VN (rl, rl ) I +N(r2, r2 ) (r12!If!r12 ) t, o, I Sdr2dr2

2~
! 4xp1d= —8(r,—ri') —x'dxfi, s(x) ——p(ri), (83)

3 aJ r1 df1 3 f+ l
+ (Pr, 2r)2I„(r12!If!r12 ) t, , I S

4J
+ (r,2!Ir;!r12'), , I,sjdrtdr2' (90).

which is just the familiar form of the Thomas L.S
potential.

It is now convenient to break the sum over j in

Eq. (78) down into sums over the principal quantum
number e, the total and orbital angular momenta J
and l, and the s component of angular momentum m.
To do this we separate the angular dependence of the
wave function, writing

&.&z(r2)
P, (r,)=— —F„;(r,), (84)

The proton potential is given by the same expressions
with H~ and B~ interchanged.

In the approximation described in the previous sec-
tion, Et ., «n«» is given by A(r», r»') as defined in

(28), &t . r.s by 8'(rts, r&2') in Eq. (33), E,, , in

Eq. (14), and the odd states in Born approximation.
The final step to be carried out is the angular mo-

mentum reduction of the Hartree-Fock equation.
A in'n d E 4 . q. (64) as

r2

=~ drt'{(ri! V'&! ri')+Li Si(ri! V'~S&! ri'))

R„gl(ri')
X Fgt,"(ri'). (91)

r1&r2l+1) ' Ngt
Vto(rs, r2'), (85)

4 42r & 2J+1 The angular function F~t, is an eigenfunction of Li Si,.
hence, operating to the left with Li Si, we obtain the
eigenvalue 2! J(J+1)—l(l+1)—e). We next introduce
the angular momentum expansions of V&' and V'

where EJ~„ is the actual number in the state. For a
completely occupied shell, SJ&„ is of course equal to
2J+1. We carry out the remaining sums over J, n, l
and introduce new functions (ril V"

I
ri') =Et(2ly1) Vt&'(rt, rt')Pt(rt, rt'),

(92)
(ri! V& &! ri') =pt(2l+1) Ut& &(ri r1')Pl(ri ri').+N(r2 r2 ) QIft (r2 r2 ) Vl (r2 r2 )

l.

+P(r2 r2 ) Q+l (r2 r2 ) Vl (r2 r2 )
l

MultiPlying Eq. (91) from the left by Fzts *(rt) and
integrating over the angles of r1 and r1', we finally
obtain

(86)

by defining equations

EI1
N (rs, r2') 1 1 d' l (l+1) '

—F+ —— R.gt(r, )
ri 2M dr1' r1'

21.'„~t(r2) E„~t(rs') )Vz„t /2l+1

r2 r2' 2J+1 4 42r )
(87)

n.T (neutrons)
2t.'„„(r,')

=4tr ' (rt')2drt'Vgt(rt, rt')
s (93)

J rlHtP(r„r2')
Jl( 2)rF. Jl( 2) rNJ l

&
+2l)1z

st (protons& t 2 r2' 2J+1 4 4&r

where

VJl (ri, ri') = Vl" (ri, ri')
+-,'LJ(J+1)—l(l+1)--:jVl'"'(.i,r '). (94)The neutron and proton potentials then can be written:

VN(ri, rl') = VN&'(r„rt')+UN& '(r, , r, ')L, Sl,
(88)

Vl (ri, ri') = Vp" (rl, ri')+ Vp& & (ri, r, ') L, S„
This completes the angular momentum reduction of the
Har tree-Fock equation.

ga 1 tro ucing q. (8 ) for P„we rewrite E
where Fqt, (r2) is an eigenfunction of the total angular
momentum. In evaluating the sum over the s corn- 1 1 ) d' l(l+1) ~

~ponent of angular momentum, we shall neglect the —' &+
I + ! F st(rt)Fzt. (ri)

2M dr' r'
possible nonfilling of the state and carry out the sum
as if the state were completely filled. Thus the sum over
azimuthal quantum numbers gives

p FJt,"(r2)*Fgt."(r2')
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VI. APPROXIMATE REDUCTION OF THE
HARTREE-FOCK EQUATION TO A

DIFFERENTIAL EQUATION

The Hartree-I'ock equation derived in the previous
section is a differentio-integral equation due to the
nonlocality of the single-particle potential. %e shall in
this section discuss an approximation to this equation
which reduces it to a much simpler form. The approxi-
mation we use is useful since it is exact in the limit of
convergence of our iteration procedure and also exact
if the potential is replaced by a local approximation.
This latter feature is particularly useful since the po-
tential V(ri, ri') is nonlocal over quite small distances.

The equation to be solved is of the form

R(r)
(E—Hp) =4m~' r'dr' V(r,r')R(r'). (95)

r

This equation can also be rewritten

R(r) R(r')R(r)
(F. Hp) = —4n- r'dr' V (r,r') R(r)

D()
(d+ &a' r'dr' V(r, r')R(r')

~

—R(r) ~ D(r)
(dr i

dR(r)X, (96)

where
D(r) =R'(r)+a'(dR/dr)'

and a is a constant with dimensions of length. We dis-
cuss its choice in the following. Let us now consider
the computation of the (v+1)st approximation to the
solution of Eq. (96), assuming that we know the nth

solution. We then approximate to Eq. (96) by
Rn+1 (y)

(&—Hp)

R"(r')R" (r)
'

air ' r'dr' V(r, r') R"+'(r)
D"(r
R"(r') dR" (r) dR"+'(r)

+ 4m.a' r'dr' V(r, r')— (9&)
D"(r) dr dr

This now is an ordinary differential equation for R"+'(r)
which dif'fers from the usual Schrodinger equation in the
appearance of the first derivative term. H this equation
is solved by a convergent iteration-interpolation pro-
cedure, then it of course converges to the'exact answer.

We note here that the appearance of the gradient
term in the equation is necessitated by the nonlocal
nature of V. At the zeros of R(e), the integralfr'V(r, r')R(r')dr' does not in general vanish. Conse-
quently, if we wish to retain this feature, we can do it
most simply by adding a derivative term to the ordinary
differential equation which automatically will not
vanish at the zeros of R. This feature also suggests that
a convenient choice for a is a length determined by the
nonlocality in V, which we expect to be about 0.5 to
1.0X10 "cm.

This approximation of Eq. (93) still is not quite
satisfactory since we have not yet made use of the short
range of the nonlocality in U. To see this, we replace U

by a local function,

V(, ') f( )~( —'),
4xr'

in which case Eq. (97) becomes

R"+1(r) ( $Rn(y)]PR"+1(y)yaPRn(r)PRn(y)/dy]t'dR"+1(y)/dy])
(E—Hp) =f(r)—

r $R"(r)]'+a'PRn (r)/dr]P
(99)

The correct equation in this limit is of course

Rn+1 (y)
(E—Hp) =f(r)R"+'(r),

final approximation

R"+'(r) dR "+'(r)
(100) (F Hp) Fn(y)Rn—+1(y)+Gn(r) (102)

r
where

dR" (r') dR" (r)
X R"(r')R"(r)+a'

dr' dr
(103)

V(r,r')
G"(r) =47ya' ~r'dr'

D-(r)
dR" (r) dR"(r')

X R-(r') R-(r)—This term vanishes at convergence; in the limit of
locality it cancels the last term of Eq. (99) and adds the
appropriate term to give the exact result.

Combining Eq. (93) and Eq. (95), we obtain as our
These equations are now being solved; the results mill
be presented in a later paper.

which is aPProached by Eq. (99) only at convergence. V(y r&)

To remove this diKculty, we have made a further F"(r)=4pr r'dr'
modification of Eq. (99), which is to add an additional " D"(y)

term to the right-hand side:

V (r r') dR" (r') dR""'(r)
4m a' r'dr'

D"(r) dr' dr

dR"(r') dR" (r)
+ — R"+'(r) . (101)

dr' dr


