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A theory of finite nuclei is formulated, based on the reaction-
matrix theory of the nuclear many-body system. The reaction
matrix appropriate to the finite nucleus is in the exact theory
determined by the solution of coupled Hartree-Fock and reaction-
matrix self consistency problems. This formal procedure is ex-
tremely difficult to carry out; the finite-nucleus reaction matrix
has instead been approximated by the reaction matrix appro-
priate to the local density, which is a nonlocal coordinate space
operator (r|K|[r’). It is shown that this approximation is equiva-
lent to the assumption that a finite nucleus has the same short-
range correlation structure as nuclear matter.

The formalism used to determine (r|K|r/) from the results
previously obtained in the study of nuclear matter is derived,
and the methods used in explicit evaluation are described. The
numerical results discussed are based on the phenomenological
two-body potentials of Gammel and Thaler which give an ex-
cellent description of all scattering data up to 300 Mev. The
operator (r|K|r’) obtained shows marked nonlocality for » and »’
less than 107 cm. That this is largely associated with the re-
pulsive cores in the potentials is shown by a simple analytic
approximation to (r|K|r’).The nonlocality is further enhanced

in the triplet states by the effects of the noncentral forces which
lead to marked ! dependence in the even states.

The reaction matrix so determined contains a large spin-orbit
term. It is shown that this is almost entirely due to the spin-orbit
two-body potential and that the tensor forces give only a very
small contribution.

Proceeding from the reaction matrix as an effective two-body
interaction, the Hartree-Fock problem is formulated taking into
account the complicated exchange and nonlocal character of the
reaction matrix. A general result is obtained for the single-
particle spin-orbit potential which is shown in the case of a local
interaction to reduce approximately to the form of the Thomas
interaction.

An iteration method is proposed for solving the single-particle
eigenvalue problem with a nonlocal potential which reduces the
differentio-integral equation characteristic of the theory to an
ordinary differential equation. This procedure requires the intro-
duction of a linear derivative term in the differential equation.
The method is exact in the limit of convergence of the iteration
method or if the nonlocal potential is replaced by a local
approximation.

I. INTRODUCTION

N a series of previous papers'™2° a theory of the

nuclear many-body body problem has been de-
veloped and applied to the study of various properties
of nuclei. In these applications it has been usually
assumed that the nuclei were very large so that the
properties determined should be more properly called
the properties of “nuclear matter,” i.e., the properties
of a system of nucleons of sufficient extent so that
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surface effects can be neglected. To make such a study
possible it is also necessary to neglect the Coulomb
interaction between the protons. In this approximation
various studies have been made of the properties of
nuclear matter, particularly a recent detailed numerical
study carried out by Brueckner and Gammel® based on
the phenomenological two-body forces of Gammel,
Christian, and Thaler,?? and of Gammel and Thaler.?
In the papers on the theory of the methods used in
these calculations, some discussion has been given of
the problem of finite nuclei, showing how in principal
it is possible to alter the methods used in the nuclear
matter problem to allow their applications to finite
systems.112:13:20 For reasons to be discussed below, these
methods cannot be applied to an actual problem because
of their excessive complexity and hence our work has
been carried out in an approximation discussed in Sec.
II. This approximation is based on the short range of
the correlation distances in the nuclear wave functions,
and hence the short range over which the nuclear re-
action matrix or effective two-body operator differs
from the local two-body potential. Once this approxima-
tion is made, it is possible to calculate the nonlocal
coordinate space operators whose diagonal matrix
elements taken with respect to the eigenstates of the
finite nucleus give the interaction energies. These

# K, A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958). We shall refer to this paper in the following as I.
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% J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 1337 (1957).

431



432

operators then can be taken to be the basis of a Hartree-
Fock calculation for the nuclear “model” state. In Sec.
IIT it is shown how this operator is constructed in de-
tail, proceeding from the results previously obtained in
the study of nuclear matter. This operator is of interest,
not only as the basis of a Hartree-Fock study, but also
since it is the “residual two-body interaction” or
effective two-body potential which is the basis of the
configuration mixing studies of the shell model.

The Hartree-Fock calculation is formulated in detail
in Sec. IV, taking into account the nonlocal character
of the reaction matrix and the presence of a spin-orbit
term in the reaction matrix. Finally in Sec. V it is
shown how the Hartree-Fock equations can be reduced
from the differentio-integral equations appearing in
the theory to differential equations. The approximation
procedure proposed is particularly useful for the non-
local single-particle potentials characteristic of our
theory.

II. APPROXIMATION TO THE FINITE SYSTEM
REACTION MATRIX

Our theory of nuclear matter and of finite nuclei is
based on the reaction-matrix K which determines the
interaction energies and correlation structure of the
many-body system. We review here only the necessary
properties of K and refer to I and earlier papers for
details of the theory.

The reaction matrix K is defined by the integral
equation

K=v+GK. (1)

To define the Green’s function G, we introduce a
set of single particle eigenstates ¢; together with the
associated eigenvalues E;. Written in this representa-
tion, Eq. (1) becomes

Kij, =i, i+ 2 Vijymn(ExFEi—En— Ep) Ko 11, (2)

which defines the Green’s function in this representa-
tion. The sum over m and # in Eq. (2) is to be carried
out over empty states only so as to satisfy the Pauli
principle. In writing the expression for the energies E,
we make an approximation similar to one to be made in
our use of the Hartree-Fock equation, i.e., we drop
terms in Ej which vanish for a large number of par-
ticles. These have little effect in large nuclei and become
important only for small systems. In this approxima-
tion, the single-particle energies are

Ei= (p*/2M) i3 (Kij, i~ K, ) 3)
H

where the sum is over all filled states. The coordinate
space potential which determines the eigenfunctions
¢; is also determined by the diagonal elements of the
K matrix: :

V() =2 (1) Z(Ki,i—Ki i) edr).  (4)
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In the limit of a weak interaction, K can be replaced by
the potential v and the single-particle potential defined
by Eq. (4) is just the Hartree-Fock potential. Starting
from a given set of eigenfunctions ¢;* (» meaning,
for example, the nth iterate), the new set ¢, ob-
tained from the single-particle potential V™ (r,r") will
in general not agree with the input. The problem of
obtaining agreement is the self-consistency problem of
the Hartree-Fock method. It is usually solved by an
iteration-interpolation procedure, starting from a trial
guess and improving the wave functions until self-
consistency is achieved.

In our problem, a new self-consistency problem
arises since a shift in the representation ¢;(" — ¢,
not only changes the single-particle potentials but
also, through the change in the energy spectrum,
changes the Green’s function in Eq. (1) and Eq. (2).
This shift changes the K matrix which change in turn
reacts back on the single-particle potentials and eigen-
functions. Thus a new problem arises of obtaining a
self-consistent energy spectrum and reaction matrix.
In the study of nuclear matter the usual Hartree-Fock
problem does not occur since the eigenstates are known
(plane waves). The second self-consistency problem
remains, however, and is one of the principal difficulties
which have been encountered in the study of nuclear
matter.*%% In a finite system the K matrix and Hartree-
Fock self-consistency problems are coupled together and
very great computational difficulties arise if an attempt
is made to solve the problem exactly. In fact, estimates
of the order of magnitude of the computing problem
show that it is probably beyond the capacity of pres-
ently available computing facilities.

The magnitude of the problem described above has
been a severe deterrent to the study of finite nuclei.
We believe, however, that a reasonable approximation
exists in which the central difficulty is avoided. To
show the origin of the approximation, we examine the
structure of Eq. (2). We note that the energy differ-
ences appearing in the energy denomination are quite
large, being the difference between a pair of energies of
bound particles and a pair of particles excited above the
Fermi surface. These energies are usually quite large,
a typical difference being 150 to 250 Mev. Consequently,
to determine the Green’s function we need only give
the large energy differences accurately. These energy
differences correspond to quite small wavelengths, the
momenta in excited states being of the order of p~1.5pr
which, at normal density, corresponds to x~0.5X10-%
c.m. If the nuclear density is slowly varying over dis-
tances of this size, then we expect that the important
values of the excitation energies appearing in the
Green’s function in the actual finite system can be
replaced by those of a spectrum appropriate to a uni-
form medium at the local density.

An alternative and perhaps clearer way of viewing
this approximation is to examine the K matrix in co-
ordinate space. It has already been emphasized in
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earlier papers® that the wave function for relative
particle motion very quickly approaches its unperturbed
form, the distances involved being about 10~ cm, with
marked departures occurring only over somewhat
smaller distances. Thus the correlation distances in the
wave function are quite small. In terms of the K
matrix, this means that K approaches v at distances of
the order of 107 cm. (We shall see in more detail the
character of this approach in the following.) Thus we
expect the correlation structure in the wave function
and the correlation-dependent effects in the K matrix
to be determined only by the local density, as long as
the density varies slowly over the correlation distance.

We would like to add that the above condition of
local density uniformity is certainly a sufficient condi-
tion; it may not, however, be necessary. It seems likely
to us that a less stringent condition, such as that of
linear density variation over the correlation distance,
may still leave our approximation quite accurate.

This approximation allows us to compute the K
matrix for the finite system directly from the results
obtained in the studies of nuclear matter. The K
matrix so determined will in general be a nonlocal
density-dependent operator in coordinate space. Let
K.; r1(p) be an element of the K matrix computed in
the plane-wave representation at the density p. To
transform to coordinate space we take the Fourier
transform, i.e.,

(I’l,l'gl K(p) ] rII;IZ’)

=2 (1) ¢/* (1) Kij en(rd) eu(r2) . (5)

i, kl

Our approximation now allows to assume that this is
the correct reaction matrix in the finite system, i.e.,
that Eq. (5) defines that coordinate space operator
whose expectation value taken with respect to the eigen-
states of the finite nucleus determines the interaction
energies. This operator also determines the correlation
structure which in our approximation is the same as in
nuclear matter at the same local density.

We discuss in the next section the detailed evaluation
of Eq. (5).

III. K MATRIX IN COORDINATE SPACE; THEORY

We start from the solutions for the K matrix as
determined for a uniform medium as a function of the
density, i.e., from the solutions of the equation

Ky 1=, 11

+220, mn(Ext Ey— Ep—Ep) 7 Kpn, 1. (6)

mn

In this equation the density appears through the Fermi
momentum pr=1.52/r,. The quantum numbers appro-
priate for the uniform medium problem are the mo-
mentum, spin, and isotopic spin. To obtain the K
matrix in coordinate space, we shall carry out a Fourier
transformation on the explicit dependence of K on the
momenta but neglect the effects of the change in
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representation on the intermediate state sum over m
and #. The assumptions involved in this approximation
have been discussed in the previous section. To carry
out this transformation, we start from the definition of
the K matrix,

Ky = (ei,0m1), @)

where ¢;; is the unperturbed wave function and ¥y, is
the wave function determined by the solution of the
integral equation

Y= ot+Gn. ®)

This equation is discussed in detail in I; we need only
the properties of ¢ here and shall not again refer to
Eq. (8).

To simplify Eq. (7), we make use of a result obtained
in the studies of I which showed that the K matrix is
a very slowly varying function of the total momentum
P=pi+p; and depends strongly only on the relative
momentum k=%(pr—p;). Thus in the following we
suppress the dependence of K on P, replacing P by an
average value appropriate to the Fermi gas. This aver-
age value we have taken to be Pp=pp. Then, calling
1(p;—p;) =k, we rewrite Eq. (7) as

(K| K| k)= (ex,0x), 9)

where we have not yet indicated the spin indices ex-
plicitly. We also do not write explicitly the total mo-
mentum conservation which is contained in the K
matrix. To carry out the transformation to coordinate
space, it is convenient to introduce the coordinate
space representation of K not by Eq. (5) but by the
equivalent defining equation

(K |K|K)
- f ir f ' o (X (! | K| 1) (D)X, (10)

where we now write the spin functions explicitly, and
¢x(r) is a plane wave function for momentum k. We
note here that since (k’| K|k) is diagonal in the total
momentum, (r'|K|r) will be diagonal in the center-
of-mass coordinate, i.e., (riz]K|r’) will contain a
factor 8[3(r1+12)—%(r/—ry’)]. Upon combining Egs.
(7) and (9), it then follows that

1
e f ko (V)0 om(®), (1)

where we now write the spin indices explicitly. The
evaluation of the right-hand side of Eq. (11) can now
be carried out by using the angular momentum ex-
pansions of ¢ and y. The expansion of ¢x(r’) is

oe(r) =2 i[4r 2+ 1) T (Rr)# Y (r).  (12)

For singlet states the expansion of ¥ is not complicated
by the presence of noncentral forces, and is

Vi 0,0(0) = 2[4 (214-1) Ty () V()X (13)
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where u; ;°(r) is the radial function for the singlet
state with angular momentum / and relative momen-
tum k. The solution to Eq. (13) has been obtained in I
in determining the properties of nuclear matter.

Combining Egs. (11), (12), and (13), we find for the
singlet part of K :

4

(IK )singet=
t'| K| 1)sing1 oy

f Bk Y (24-1)j,(k Yvsinget ()
l

Xug t0(r) PO(r,x').  (14)

For the triplet states the presence of noncentral
forces results in K being nondiagonal in m. Taking
matrix elements of Eq. (11) with respect to spin, we
obtain

1
(| K| O m=—— f ko ()X 0 (W om(D). (15)
(2m)?
We now insert the angular momentum expansion of ¢
which is [see I, Eq. (43)]
Vi om(1) =2 2 [4nw (214+1) 14'C (IsOm | IsTm)
J 1
X2 w?*(r)F v m(x), (16)
ll

where F;;"(r) is an eigenfunction of the total angular
momentum, C(IlsOm|lsJm) is a Clebsch-Gordan co-
efficient, and #;;-7#(7) is the radial function for total
angular momentum J, spin s, angular momentum 7/,

driven by the entrance-channel angular momentum /.
We also make use of the equation

[ vowrer e
=§ 4n/ (2A4-1) Powrrr 7 (N E e (0,0 )00, (17)

where vyy-7¢ is defined by the equation

'Ul'l"JszfdQ F g™ oF jp . (18)

We also need the spin matrix element
X;“'*Fusm(r,r’)

=3 V' (r,t')C(lsm’ m—m'|IsTm), (19)
which we obtain by using the Clebsch-Gordan expan-

sion of F ;™. Collecting these results, we find for K
the result

4r)d
(| K[ ), m= (4)
(2

Bdk Y (—i)ut (2U+1)}

)3 i
X 51 (kg 7= () vy (r) C(V'sOm | Vs T m)
XC(ls m—m' m'|lsJm) V= (1,1).  (20)
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Equation (20) determines all matrix elements of K.
In our Hartree-Fock studies, however, we need only
the central and spin-orbit parts of K. We determine
these most simply by writing K in the general form*
for triplet states alone

/

T T
(' | k[ D)triplet = A (r,1)) + B(x,1")i(01+02) - = X~ (21)
¥ v

t'r r r
+C(I‘,l”)0‘1 . ('—,——)02 . (—,‘——)
o7 r o

/

rr r r
+D(r,r")o;- <—— -—) X (—X —,)0'2
ror r o
!

r r rr
D)
r 7 r 7
The coefficients 4 and B which interest us are then
easily shown to be given by the expressions

A(n) =5 Zn(t' | K[ 1)m,m,
B(t,t)=3V2[(r'| K| 1)_1, 0+ (t'| K| 1), 1] csche .

Using the explicit form for K of Eq. (20), and the
formula,

(23)

2741
> C(U10m| V1 Tm)C(1NO0m |1 Tm) =———011, (24)
m 214+1
we obtain, for the central term 4,

1 4xw
A(ry)=——— | Kdk 3> (2J+1)51(kr")uw"#(r)
3 (2m)? Juw

Xvpa?*(r) Pu(r,r'). (25)
We give this explicitly for the states /=0 and /=2, dis-
regarding the J—1, J+1 couplihg except for the /=1
state as was done in the calculations of I. We write v as

v(r) =v,(r)+v:(r)S12Fvs () L- S. (26)

TaBLE I. Parameters of the Gammel-Thaler potentials. The
potentials all have the Yukawa form outside of a repulsive core
of radius 0.4X 1073 cm.

Strength Inverse range

State (Mev) (10+18 cm~1)
Triplet central even —877.39 2.0908
Tensor even —159.40 1.0494
Spin-orbit even —5000 3.70
Singlet even —434.0 1.45
Triplet central odd —14.0 1.00
Tensor odd 22.0 0.80
Spin-orbit odd —7315 3.70
Singlet odd 130.0 1.00

2¢ Lincoln Wolfenstein, Phys. Rev. 96, 1654 (1954).
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The matrix elements of v are

Vool = Ve,

Vool = vgo!l = Wt/\/s,
'1122H= Ve— 22)5“— 32)L,g,
voe™=1v,+29,— L5,
vee® =v,— (4/7)v+2vL5.

Inserting these results into Eq. (25), we find

@7)

A / "“1 il k2 dE{37,(k
(T,T)—gzz-w)—af {3j0(kr)

X [0 (7" )ve(r") Fwo" (r')ve(r') /A/8]
+ j2(kr) Po(x,x") [ 3u20 (' )vi(7') /A/8
+ 325" (') (ve(7') — 20(r") — 3vz5(7"))
+ 502 (') (e (r') 4 20:(r") —v1.5(r"))
+Tu2™ (r') e(r') = (4/TDve(r) + 2015 () T} (28)

As a check, we consider the Born approximation limit
where #o! and uao!' vanish, #e'(r")=jo(kr’), and
#9271 (") = 72 (kr’). In this case the coefficient of ,(7') is
just jo(kr)jo(kr')+572(kr) jo(kr') P2(r,1’) and the coeffi-
cients of »; and v1¢ vanish, as we expect.

Next we consider the spin-orbit term. Using Eq. (20)
and Eq. (23), we find

(4m)?
kadk

(2m)?

X{ 2 (=) U4+ 1) (k) w7 (r Yoy (7')

Jw

X [C(100|/'1J0)C(111—1]11J0)

+C(F101|F1T1)C (10| 1171) T}

XV (r' r)e¥ csch.

B(rr) =12

(29)

We can bring this to somewhat simpler form by using
the relation

d
Vi (cosh)e=#¥ csc=[1(1+1) ]+
d cosf

Y°(cosh), (30)

and also the identity

1 r tv'd 1
—(o1t@a2) - X~ —f(ry ) =—(01+02) -tXV f(r, u)
1

r 7' du i
=2L-Sf(ry" ). (31)
Thus the coefficient of L- S in the K matrix is
(4n)!
B(r,y) =32 f Kk
(2m)
X 2 {(=d)uV U41) (k)Y (1)
Jury
XA+ D T fupw 72 (rYowd? (7')
XLC(¥'s00|V'sJ0)C (Is1—1|1sJ0)
+C's01|VsT1)C(Us10]isJ1)]}.  (32)
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Again writing this out explicitly for /=0 and 2, we find
1 4w
B'(r,t)=—
12 (2m)®
— 9225 (") v, (") — 20:(r") — 3v1.5(7") ]
— 5122 (") 0o (") + 20 (#") — 015 (7") ]
+ 14025 (') [ve (') — (4/ 0o (') + 2025 (') I}
X Pg (l',l',) .

fk2dkj2(k7){ — Ouzott (}’)”t (/28

(33)

In Born approximation the terms in v, and v, drop
out, leaving

4
B,(r,r/)Born': fk2dk jz(kf)jg(kr’)vLS(r’)
(2m)?
XSPZ(rJ/), (34)
which is just the contribution from /=2 to
Bl(r;r,>Born:‘ULS(7')5(r—I"). (35)

IV. K MATRIX IN COORDINATE
SPACE; EVALUATION

In this section the numerical results we give are all
based on the Gammel-Thaler® two-body potentials
which have also been used in the study of nuclear
matter. The parameters of these potentials are given
in Table I.

To evaluate the expressions obtained in the previous
section, it is first necessary to remove the repulsive
core singularity in the potential, which must be treated
separately. To do this we consider as an example the
singlet state. We rewrite the singlet potential as

(36)

where by vsinglet We now mean the attractive part of the
potential. The singlet part of the K matrix then is

Vsinglet — vsinglet+ VUcorey

4

(¢ | K [ Dnaec=— 3 [ Bar@+1jur)
(2m)3 1
X [v(r)singtett-v(r) core Jur () Pr(x,x'). (37)
As in I, we next make the replacement
Veore (M) w1k (r) =Nz (r—r.). (38)

The constant A;; is determined by the boundary condi-
tion that the wave function vanish at the core radius.
This determination is discussed in detail in I [see Eq.
(55) of I]. The separation of the core contribution leads
to the appearance of a core term in the X matrix, which
is

4
(2m)°

(| K[ 1)core= ; f B2dE(20+1)

X 71(kr AP (1,1)5 (r—7,). (39)
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0 and may be taken as identical in computation.

2 is very close to that for /=

") can be replaced by the local potential.

The K matrix for /

(r|K|r

=0. The units are Mev (1078 cm)™3.

Tasie II. 272(r| K|r') for singlet

w‘“ cm) 0.25
7’(10713 cm)

For »>1.2X10™% cm,

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.10 1.20

0.40

0.35

0.30

—4048
—4802
—2758

—1099

801
1035

11049 10134 6657

0.45
0.50

0.

—6384
—4938
—3331
—1271

8756 6183

8120
5592
2476
1055

—5216

—4414

6667 6160 2547
4587 5074 3135
2063 3052

55

—4756
— 3807
—2616
—1272

—284

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.10
1.20
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—3690
—3145

—2045
—1062

—3067
—1676

166
1062
1001

2569
2086
1291

—2865
—2149
—1369

-73

1896
1062

979
691
613
667

—1858
—1523
—1127

—472

556
652

183
515
400
474

—1485
—1168

240

785
460
290

721

480

678

—1081

—480
—290

—120 —290
—120

120

230

536
460

—804
—691
—383
—130

—906
—660

—325

—676
—300
—130

—59%4
—240

—350

10
—35

190 90

370

554

—641
—557
—256

—130

—80

—567
—311

—10

402
—163

—60

—10

—272

0

A similar treatment holds for the triplet states; we shall
not give the details here but refer to I for further
discussion.

The evaluation of the integrals over k& such as that
appearing in Eq. (39) has been carried out numerically
at the computing center of the Los Alamos Scientific
Laboratory. The % integration has been cut off at a
maximum value of %2 chosen to insure convergence of
the integrals.

One approximation was necessary in carrying this
out. In evaluating the Fourier transform of K, we found
it desirable to go to very large values of relative mo-
mentum to which our previous calculations of I did
not extend. These are states far “off-the-energy-shell,”
in the terminology of I. The K matrix for these states
depends somewhat on the initial energy of the inter-
acting pair since this energy appears in the Green’s
function. The approximation we have adopted is to use
in high excited states a mean value of the initial energy
which was taken to be the value at the mean Fermi
momentum. This approximation affects the small dis-
tance or high wave number behavior of K somewhat
but is felt to be less important than the over-all in-
accuracies inherent in the K matrix evaluation. In
carrying out the integrations, the maximum value of %
was taken to be Amax=214pr which corresponds, at
normal density, to A=210~ cm. This high value of the
cutoff was necessary to insure fairly accurate repro-
duction of the details of K. Although these cannot
affect appreciably the expectation values of K in the

I I I T T T

Singlet £ =0

| | | Il
Q50 R 0.60 070 080
(10 %cm)

Fic. 1. Contour plot of 2#%(r|K|r’) for =0, singlet. [Since
(x| K l__lr’) is symmetric in 7 and 7/, the function is plotted only for
r<#'.] The contribution from the core alone [see Eq. (39)] has
not been included in this plot; it would occur as a very high
repulsive core spike at r=7"=0.4X10"1 cm.
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Hartree-Fock problem, they are of importance in ex-
hibiting the structure of K and its approach to the
local potential.

One further comment is necessary before we give
our results. The K matrix is from its definition sym-
metric in r and r’. This is most easily seen from the
integral equation for K which, if solved by iteration,
gives a manifestly symmetric result. The reason for
asymmetry is most easily seen in the core contribution.
This contains an explicit r dependence §(r—7.) but the
r’ dependence enters through the % integral

f Bk (kM (40)

It can be shown that for an infinite cutoff on the %
integral, this contains a delta function on #'—7,. Cutting
off at finite 2, however, replaces the delta function by a
spread out function of width ~1/km.. Consequently
the symmetry of K in this term is lost. For this and
other similar reasons, our computed K is slightly asym-
metric, the asymmetry extending over distances of
1-2X 107 cm. This effect is not physical and further
can have no appreciable numerical effect on the
Hartree-Fock results; therefore, the results we quote
are for the symmetrized K matrix

(| K[Dem=3L(c'[K[D)+ (x| K[r)].  (41)

To exhibit the structure of K clearly, we give contour
plots in Figs. 1 and 2 of the central part of K for the
singlet and triplet states for /=0. These results are
also given in tabular form in Tables II, III, and IV.
The K matrix shows a rather complicated nonlocal
structure for 7 or 7’ near the core but quickly approach
the local potential for » and #’ greater than 107 cm.

I [ T
Triplet £=0

't—l I

0.3 04 0.5 0.6 0.7 0.8
r (107%m)

Fic. 2. Contour plot of 2x%(r|K|r’) for I=0, triplet. The core
contribution is omitted here as in Fig. 1.

0 part of f(r)s(r—7'), where f(r)=—32.53 Mev,

cm)~3. For >1.20X1073(r| K| r’) can be replaced by the I
1.4, 1.6, 1.8, 2.0X 107 cm, respectively. For 7>2.0X10733 cm f(r) can be taken as equal to the local central potential.

0. The units are Mev (10723

—18.03 Mev, —10.26 Mev, —5.72 Mev at 7

7(10713 cm) 0.25
7/ (10713 cm)

TaBLE II1. 272(x| K |¢’) for triplet !

NUCLEI

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.10 1.20

0.40

0.35

0.30

—804
—5391
—3468
—2067

0.45 13586 12928 9018 1955

0.50
0.55

0.

—7470

—6264
—4579
—2335

1773

10829 7943

9000
6987

—6107
—5623
—3933
—2345

—952

8284 7524 3079

—5638
—4552
—3200

—1648

3475

2939 3834 2821

1644 2487

5678 6061
1170

3757

60

65
0.70
0.75
0.80
0.85
0.90
0.95

1.00

—4305
—3729
—2257

—456

1755

0.

—3212
—2347
—1505

—685
—201

630

832

2305
1535

574
573

—2067
—1643
—1068

1538
1027

—1523
—1170
—809
—419
—165

—1201
—486

—622

754 478 —80
315
—37

—183
—153

962

926

690

—1085

—712
—251

134 —27

252
—52
—244

—259

570

767
562
347
206

829
637
323

654
492
261

—843
—667
—450

—44

—898
—590
—343
—24
—12

—625
—381

103 —34

158
—74
—261
—302

298
165
118

—614
—526
—275

—62
—45
—180

—514
—298

—-93

—90
—234

—211
—274

138
—068

14
—102

—339

—164

54
—66

21
—78

163 137

82
—48

12
—32

10
1.20

—19 —206

20

81 143 121 -35 —40

90

—4

191

437
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"), where

1 to the local central

2 part of g(r)d(x—r

cm g(7) can be taken as equa

") can be replaced by the/

For >2.0X101

Bem (r|K|r

respectively.

2. The units are Mev (107 cm)=3. For »>1.20X 10~

—3.88 Mev at r=14, 1.6, 1.8, 2.0X107 cm,

~22.31 Mev, —11.97 Mev, —6.82 Mev, —3.8

TaBLE IV. 272(r| K| 1) X [5P5(r,x')]? for triplet [

g(r)

potential.

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.10

0.35 0.40

0.30

w‘ls cm) 0.25
1"(10'\18 cm)

—12045
—12833

— 5876
—5301

2048
8293

139326 9393

0.45
0.50

0.55

—13255
—8506
—6851
—2645

—1024

8292

12 353

—7323
— 7486
—4771
—3566
—1332

—7433
—5903
—2152

2857
2116
2890
2319

5468 6054 6054

4973

BRUECKNER,

—7315
—35091
—3847
—1394

—405

5286 5286

1598
1423

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.10

—4593
—4149

—2316
—1509

1598
1433

338

445

—3692
—2294

—1557

—452

—2049
—1843

—1091

239
523

346
669
232
—130

808

719
628

718

628

605

—1652
—1102

—205

555
755
650

—1036

—442

—398
—105

346
356

411
434

189
—133
—318
—317

+71

138
111
254
209
146

609

608

—871
—568
—414
—122

—952
—537
—376
—114

—800

—237

—762

—10

517
207

517
207

—3571
—553
—240

248
—38

70
12
—106

60
—10
—140

56
—300

—329

—284
—299

95

—527
—267

—55

—283
—302

174 174

82
—78
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—301

75

56

103

The structure of the K matrix shown in Figs. 1 and 2
can be qualitatively understood rather easily. We re-
turn to the definition of the K matrix in Eq. (11) and
consider for simplicity the singlet case. As in Egs. (32),
(33), and (34) we eliminate the repulsive core and obtain

(rlIKlr)‘_‘(rl|K!r)core+(r,|K}r)a, (42)

‘where for .S states alone

) P [kdk'(k Y(r—r o, (43)
T Deore=—— | k2dk o(k")6(r—7ro)Aox®,
@)

4
| K| )a=— f Bk jo(kr 0u(FYuo(r), (44)
(2m)?
the constant Ax* is [see Eq. (55) of I]
Aop0= — [jo(kfc)+47rj Go(vc,r")va(r”)MOkOO(r")r”2dr"]

X [4mr2Go(rere) T (45)

We now work to first order in the interaction v4(r) and
replace #o:®(7"’) in Eq. (45) by its first Born approxi-
mation value jo(k7”"). In so doing we of course retain
only the qualitative features of the K matrix. We then
substitute for Aex® in Eq. (39). The result is

|K|p) 4Wfkdk'(k)'(k)
T Y)core=——"— 2 0 7” ol R7¢
oy Jo(kr')j

d(r—re) (4m)? dr'’'Go(re,r’")
o [r
dr 2Go(reyre)  (2m)3 Ay 2Go(7 ey )

Xoa(r") f Bk jo(k)jo (k). (46)

The Green’s function is a slowly varying function of &;
if we neglect its variation, we can do the integrals over
k which give

4rr 8(r' —re)
T dk joleryiolry =, (47)

(27r)? 47y,

and similarly for the integral with r. replaced by 7.
Thus Eq. (47) becomes

8 —71o)d(r—re)
('| K| 1)core=————"——
(47"702)260(7'0;7'6)

_M%(ma(r-n). (48)

G(7e7e

We next consider the term in K resulting from v4(r),
given by Eq. (44). We now retain the first order term
in v,(r) and replace #o*(r) by the second Born
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approximation
10i%(7) = 7o(kr) +47rfGo(r,r')'ua (P jo(kr")(P")2dr'.  (49)

Substituting Eq. (49) into Eq. (44) and carrying out
the % integrals, we obtain

8(r—r") Go(7',70)
(| K|1)e=——0,—08(r—70)v.(+')————. (50)
7['1’2 0 7c,rc>
The combined result of Kcore K, then is
6(7,— rc)a(r_rc
B E
(41 2)*Go(reyre)
Go(7' 7c)
— [6 (r—r0)v(r)———+ (r & r')]
0(7¢cy?¢
8(r—r7")
+24(7) ,  (51)
47r?

which is now manifestly symmetric in » and »'. We see
that the core repulsion not only leads to the term
proportional to 8(r—7,)8(r'—7.) which has not been
included in Figs. 1 and 2 but also to the appearance of
repulsive terms lying along the lines =7, and 7'=r,.
These are the origin of the repulsions seen clearly in
Figs. 1 and 2. The effects of our finite momentum cutoff
are seen in the displacement of roughly 107 cm of the
repulsive peak from the repulsive core line.

The approach of (r|K|r') to the local potential can

I | I | | |

04 0.5 0.6 0.9 10 1

07 _.08
r(107"%m)
Fi1c. 3. Integral of (r|K|r’) normalized to the correct asymp-

totic behavior, for singlet =0 and /=2. Also included is the local
singlet potential with parameters shown in Table I.

439

-0 N N TN N NN B B
4 06 08 10 12 14 16 18 2.0
r(10"%m )

F1c. 4. Integral of (r| K|r’) for triplet /=0 and /=2, together with
the central part of the triplet even-state potential.

be seen more readily by considering the function

()= f av' (x| K| ), 52)

which approaches the central part of the local potential
9,(7) for large r. The actual point at which f(r) and v.(r)
become equal is a sensitive test of the correlation dis-
tance in the wave function since it is this which deter-
mines the difference between the reaction matrix K
and (7).

The function f(r) together with v,(r) is given in
Figs. 3 and 4 for the singlet and triplet states. For
convenience we have also included with the /=0 result
the predictions for /=2. In the singlet case, for both /
values, the departure from the potential is marked only
for »<107® cm, particularly at the core where the
integrated K matrix vanishes, in contrast to the be-
havior of the potential. This difference is, of course, due
to the vanishing of the wave function at this point. We
also note that the values of # for which K and v are
appreciably different coincide approximately with the
region where K is markedly nonlocal. This is, of course,
an expected result. A further feature clearly shown in
the results is the close similarity of the /=0 and /=2
terms in the singlet K matrix except for » close to the
core radius. This is due to the particularly rapid
approach of K to v in the singlet case. For the triplet
case, the /=0 and /=2 terms show much greater differ-
ence, reflecting the strongly /-dependent effect of the
noncentral forces. In Born approximation these do not
contribute to the spin-averaged K matrix we consider,
as emphasized in the last section. They do have a pro-
nounced effect at distances less than 2X 10~ cm where
the noncentral terms in the potential strongly per-
turb the wave function.

We next consider the spin-orbit term in the K matrix
as given by Eq. (17). It would be convenient to break
this down into two contributions, the first arising from
the tensor forces and the second from the spin-orbit
and tensor forces combined. It is not possible, however,
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jl_’s/(::)_"

~100—

| | | | J |
04 0.6 08 12 14 1.6 1.8 20
r(10 Pem )

F1c. 5. Integral of (r|K|r')Ls from tensor forces in Gammel-
Christian-Thaler potential compared with the same integral for
Gammel-Thaler potential. Also included are the Gammel-Thaler
spin-orbit potentials for even and odd-states.

to do this with our present results. Instead we shall
quote some results obtained with a previous choice of
the even state potentials which contained no spin-
orbit force but otherwise fit the scattering data. These
were the Gammel-Christian-Thaler potentials con-
sidered in I. The parameters of the even-state potentials
are tabulated in Table V. For simplicity we give only
the K matrix in this state integrated over #/, choosing
the normalization so that in Born approximation we
would obtain the local spin-orbit potential (if such a
term were present).

This function is given in Fig. 5. For comparison we

1.0

@

o

r'(io"' cm) |

o

| | | |
G50 060 070 080 090

r(10"%m)

F1c. 6. Contour plot of (6a2/5)(r|K|t")1s/[5P:(r,x')]
for even states.

|
20 030 040
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give the similar term computed from the present
Gammel-Thaler potentials we consider together with
the spin-orbit term contained in their even and odd
state potentials. It is clear from these results that the
even-state tensor term in the two-body potential gives
an almost negligible contribution to the spin-orbit term
in the K matrix and that this arises almost entirely
from the spin-orbit term in the potential. We give in
Fig. 6 a contour plot of the L-S term in the K matrix
and also in Table VI the numerical values.

We finally turn to another important property of
the K matrix, its variation with density. This is par-
ticularly important since, as we shall see, it determines
the saturating character of the interaction. To show
the density effect, we consider the integrals over »’ of
the K matrix for /=0 since it is only in this state that
appreciable density variation appears. We first con-
sider the contribution from the attractive part of the
potential. This is shown in Fig. 7 and Fig. 8 for the
singlet and triplet state, at densities corresponding to
70=0.80X 10~ cm and 7,=1.07X10""* cm, a density
ratio of 2.39. These show a density dependence which is
sufficiently weak so that we neglect it in the following.
A much more striking effect is seen in the core repulsion

TaBLE V. Parameters of Gammel-Christian-Thaler even-state
potentials. The potentials all have the Yukawa form outside a
repulsive core of radius 0.5X107% cm.

Strength Inverse range
State (Mev) (1018 cm™1)
Triplet central —6395 2.936
Triplet tensor —45 0.73421
Singlet —905.6 1.70

computed from Eq. (39). To compare the result at the
two densities it is convenient to replace the sym-
metrized core contribution of Eq. (39) by a function
with the same volume integral, of the form As(r—r.)
X[8('—r,)/4xwr ). Comparing this with Eq. (39) for
1=0, singlet, leads to

Asing]et, 1=0=—

A7) e
EZT; f er’ . f K2k jo(kr"Yhor®, (53)

72

together with a similar result for the triplet state. The
constant 4 has the values in these cases (for /=0)
Aginglet=215 Mev (1078 cm), 70=1.07X 107 cm
=301 Mev (107% cm), 70=0.80X 107 cm,
A priptet =257 Mev (1072 c¢m), 7o=1.07X 107 cm
=346 Mev (10 cm), 7o=0.80X 10 cm,

(54)

which is an increase in repulsion at the higher density
of 39.79, for singlet and 34.79, for triplet. This change
is much more pronounced than that of the attractive
part of the potential. The rapid increase in the re-
pulsion with increasing density is the principal origin
of the saturation of the forces, the pronounced energy
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TasLe VI. (12/5)x%(x| K |t')X[5Ps(r,r") 1™ for spin orbit, /=2, The units are Mev (10713 cm)™3.
For »>1.1X1078 cm, (r] K[r’) can be replaced by the local potential.

Nz (101
¥ (10-183\ cm) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
cm)N\
0. 0
0.4 0 0
0.5 4064 —3867 — 7468
0.6 2429 1534 —2204 —3454
0.7 272 1238 366 —1650 —1630
0.8 87 161 385 96 —569 —662
0.9 141 —58 —78 368 100 —280 —-315
1.0 31 35 —96 —102 90 41 —122 —161
1.1 —12 32 51 —168 —53 67 21 —68 —80

minimum in nuclear matter occurring at —15.2 Mev
per particle at 7o=1.02X 10 cm. If the density varia-
tion of the K matrix is neglected, the system will not
show saturation.

The origin of the different behavior of the attractive
and repulsive parts of the K matrix is easily seen. At
high densities the attractive part of K approaches
closely to the attractive potential except near the core
radius; consequently the attraction is only weakly
affected by density variations, at least near normal
nuclear density. On the other hand, the single core
gives a repulsive term in the K matrix which never
approaches the Born approximation limit and instead
varies with increasing rapidity as the sensity is in-
creased, particularly as ppr, starts to approach unity.?

To represent the density effect on the repulsive core
terms in the K matrix, we shall assume that it has the
density dependence

Keore~(140/r0)7 L (55)

This form of the dependence is given by the theory of a
core repulsion alone and is a reasonable approximation
for a range of 7y from 0.8 to 1.6)X107% cm, this corre-
sponding to a density variation from 2.39 to 0.30 times
the normal density (ro=1.07X10"% cm). From our
above results, we find a value for & of —0.488X 101
cm for singlet and —0.459X 1073 cm for triplet, which
allows us to write

Keore(ro)
Keore(1.07X 1071 cm)
=0.544(1—0.488/70)7, singlet
—0.472(1—0.459/r0), triplet

with 7o measured in units of 107 cm. This result we
shall use in our actual calculations, together with the
predictions for the attractive contributions at 7,
=1.07X107% cm.

All of the above remarks of the section refer to the
even angular momentum states only. To treat the odd
angular momentum states, we content ourselves with a

25 H. Bethe and J. Goldstone, Proc. Roy. Soc. (London) A238,
551 (1956). This point is also discussed in L.

much cruder approximation. Before discussing this we
wish to summarize some of the features of the odd-state
contributions.” They arise from considerably weaker
interactions than those acting in even states, except
for the spin-orbit term. The attraction in the triplet
central odd state also tends to be compensated by the
singlet odd repulsion. As a consequence of the weakness
and opposing signs of these forces, the contribution
(from the central forces) to the nuclear binding as
evaluated in the nuclear matter studies of I is negli-
gible. The strong-odd state spin-orbit force also has no
binding effect since it vanishes on spin-averaging in a
spin-uncorrelated medium. This is true only if the
force does not appreciably polarize the medium, this
however does not occur in the odd angular momentum
states.

For these reasous it is sufficiently accurate to treat
the odd-state interactions in Born approximation. One
complication arises from the repulsive core; we ap-
proximate to the effect of this by cutting off the poten-
tial at the core radius. This approximate procedure has
been checked by numerical evaluation of the energy and
found to lead to results in good agreement with the
exact calculations of I.

=
- 200! <-—r°=0.80xldlt3:m
o =1.27x40'm
-300— i

[ [ | | | |
04 05 06 07 _08 09 10O
r(10"3%cm)

F1c. 7. Integral of (r|K|r’) for triplet /=0, at densities corre-
sponding to 7o=0.80)X 1071 cm and 7o=1.07 X107 cm. The core
contribution is omitted.
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F1c. 8. Integral of (r|K|1’) for singlet /=0, at densities corre-
sponding to 7o=0.80X 10" cm and 7o=1.07X10"1 cm. The core
contribution is omitted.

V. HARTREE-FOCK EQUATIONS

Taking the nonlocal density dependent operator
(r]K|r') discussed in the previous section as an
effective two-particle interaction, the formulation of
the Hartree-Fock problem proceeds in the usual way.?¢
We simplify the result obtained by dropping terms of
the form

(ml|K|mn), I#£n

z.(n

which vanish for a large system. These considerably
simplify the equations to be considered and have only
a very small quantitative effect in the systems we shall
study. This approximation can be removed in a more
exact formulation of the problem. If such terms are
dropped, then the Hartree-Fock equation for the single-
particle eigenfunctions and eigenvalues becomes

(57)

pé
— m), nFEm
2N

(E*Ho)%(rl)=Zf'/’j*(r2)[(1’12|Kl 112 W (12 (1)

— (t1o| K[ 10 ), (xd Woi(xy) Jdry/drs/drs,  (58)

where the second term arises from the exchange of all
particle coordinates. In evaluating the exchange, we
shall not use the isotopic spin formalism but instead
separate the sum over neutrons and protons. Thus if
1 and j refer to different charge states, the exchange
term does not appear. For identical particles, we sepa-
rate K into singlet-even and triplet-odd operators, i.e.,
we write

(12| K| 115") = (112 K| 119) 5, & (1— 01 - 09)
+ (r12|K| 1'12') ¢, oi (3-|'0’1'02)- (59)

26 See, for example, F. Seitz, The Modern Theory of Solids
(McGraw-Hill Book Company, Inc., New York, 1940), Chap. VI.
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We also carry out the spin exchange indicated in the
exchange term by introducing the spin exchange
operator

P‘r:%(l‘i‘ﬂ‘l'ﬂ'z)‘ (60)

We next exchange the variables of integration ry/, .’
in the exchange term, making use of the fact that these
are dummy variables in the integration. We then can
rewrite that part of the right-hand side of Eq. (54)
which comes from like-particle interactions as

Z fdr1’dr2dr2,|l/j(r2){ (r12 i Ki r12’)

—[(r12| K| 11)s, & (1—01-05)
+ (T12 [ Ki - 1’12/)5, oﬁi‘ (3+01 '0'2)]

X3(1+01-02) W, (1 )u(ry).  (61)
We next use the results
1(1—o1-0))3(1401-02)=—1(1—01:09), 62)
1@B+0109)3(1+01-02)=1(3+0:-09).
and
(l‘llel —1‘12’)3, = (l'lel 1‘12/), (63)

(1'12[K| - 1‘121)m= - (1‘12] KI ).

Collecting these results, we find that the exchange
term is exactly equal to the direct term. Consequently,
in' evaluating the sum over states j in Eq. (58) and
Eq. (61), the exchange effect simply introduces a factor
of two for those terms in the sum where the state being
summed over is occupied by a particle of the same
charge as that for which the single-particle potential
is being calculated. It is therefore convenient to break
the sum over j in Eq. (58) into contributions coming
from like- and unlike-particle interactions. We consider
first a neutron; Eq. (58) can then be written

(E—=Hoy:(r)= f Va(r,rWi(r)dr!,  (64)
where

Va(r,r)=3

> Y () [ (112 K| 115)s, 0

7 (neutrons)

+3(r12 [ K[ 1'12,) ¢, o]¢j(rzl)dr2d1'2’

+% > ‘Pj*(m)[(l‘llel r12)s, e

7 (protons)

+3(l‘12iK[ 1‘12/)5, ot (1’12IK1 1'12')3,0

+3 (1‘12 | K [ 1‘12/) t, o]il/j(r2,)dl'2dr2l- (65)
The proton potential V,(ry,ry) is similar except that
the sums over neutrons and protons are interchanged.
For convenience in the following we shall simply write
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the neutron and proton potential as
Vi(rl,rl’)
=2 Cy f Y% (12) (10| K | 110 )¢, (s )drodry!,  (66)
7

where C;; is the proper statistical factor appearing in
Eq. (65).

To carry out the angular momentum reduction of
Egs. (64) and (66), we first consider the expectation
of the spin-orbit term

% (0'1+0'2) -T12X me' (ru,rm’) . (67)

We suppose that the state of particle “1” is being con-
sidered and is a specified spin state. The expectation
value of o2 summed over the spin states of particle 2
then will be taken to be zero if the states are all ‘popu-
lated equally with spin up and down. This is not exactly
true since a spin-orbit interaction in the single-particle
potentials splits the two states with the same orbital
motion but opposing spins. This effect appears, how-
ever, to second order in the spin-orbit potential strength
and we shall drop it, since the spin-orbit potential is
weak relative to the central potential. We shall also
neglect any possible lack of spin-pairing in unfilled
shells. Consequently our results will hold only at and
near closed shells. To evaluate the expectation value
of 112X p12, we first write L;; as

rieX prz=1(r; X prtroX p.— 11X pa— 12X py).  (68)
We then use the relation
p2B’ (r1g,112") = — p1B’ (112,112") (69)
so that Eq. (68) can be written
112X P12 — 11X pr— 12X p1. (70)

Consider first the expectation value of the first term.
This is

2 Ciif%*(”z)[flxplB'(fn,1’12')]%(1’2')df2dr2', (71)

where the operator p; operates only on B(ris,ri2). We
now make use of the delta function on the center-of-
mass coordinate which previously has not been ex-
plicitly included. Evaluating the integral over ry’, we
then obtain

82 Cijflpj*(IZ)[rlx p1B’(r1, r12—2(r1—17'))

X\Lj(l"z‘f‘l‘l—l'l/)]drg. (72)

If. B’ were a local function and hence contained a delta
function on r;—ry’, then r;—ry’ would drop out of
Yi1(re+11—11') and we could remove riXp: from the
integral. We shall still proceed to do this, arguing
(a) that the nonlocality in B’ is of very short range,
and (b) that y; is slowly varying relative to B’.
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Next we need to evaluate
Z Cz‘jflpj*(I'Q)l‘zB(1'12,r12/)l//j(r2/)drzdl’2/. (73)
¥

This must be proportional to a vector constructed from
r; and ry’. If the nonlocality in B is of very short range,
it is sufficiently accurate to simply take this vector to
be r;. This approximation is similar to that already
made in removing p; from the integral of Eq. (71). We
therefore retain only the component of r; along 13, i.e.,
we make the replacement

(74)

This allows us in taking the expectation value of the
spin-orbit term to make the replacement

(r1eX pr2) = 11X pri{l—r1-12/71%).

r,— (r1-12)11/7,%

(75)

This treatment of the spin-orbit term gives for the
single-particle potential

(11| Vil r) = (1:] V9| xy)

+Li-Si(n| Vi 1y),  (76)
where
(l’1| V@ l I‘f):Z Cijfdrgdrgll//j*(nz)

7
X (1‘12 I KI l‘12l)centralll/j(1'2/), (77)
and
(0| V=8 1))
=2 Ciffdl‘2df2'¢f(f2)*(l‘12]K| 1) s
X (A=r11-15/rA;(ry).  (78)

Before going on to the angular momentum reduction
of Eq. (58), we note in passing a further simplifying
approximation to Eq. (78). Let us for the moment
neglect exchange effects and also assume that the L-S
two-body interaction is local. In Eq. (78) we then re-
place (rie| K|t12")rs by frs(ri2)d(rie—r1s’). This also
allows us to replace the product y¥;*(ro)¥;(ry’) by
|;(r2) |2. Then the sum over j is just the density, i.e.,

2ili(ra) [P=p(r2). (79)
Making this replacement, Eq. (78) becomes
(| VES 1)) =5(f1—1’1/>fd1'210(7’2)
Xfrs(ri) (1—1112/713).  (80)

We next make the change in variable from r; to r;—r,
=x. We also introduce the expansion of p(rs;) about
ry=ry,

p(r)=p(r)+(rz—r11) - Vip(r)+---. (81)
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We then can rewrite Eq. (78) as

(r1| VLS| rl') :3(1‘1— r{)fdx

r

X[o(r)—x-wip(r)+---]

1'X

frs(®). (82)
712
The term proportional to p(r;) vanishes on angular
averaging; the second term gives [now dropping higher
derivatives of p(r1)]

(!1'[ III)
1 1 | Ls(¥ pP\71), 83

71 dry
which is just the familiar form of the Thomas L-S
potential.

It is now convenient to break the sum over j in
Eq. (78) down into sums over the principal quantum
number #, the total and orbital angular momenta J
and /, and the z component of angular momentum .
To do this we separate the angular dependence of the
wave function, writing

R (r)
¥i(r2) =- —F 5" (r2),

(84)

8
where F;;"(rs) is an eigenfunction of the total angular
momentum. In evaluating the sum over the z com-
ponent of angular momentum, we shall neglect the
possible nonfilling of the state and carry out the sum
as if the state were completely filled. Thus the sum over
azimuthal quantum numbers gives

Z FJlsm(rZ)*FJlsm(r2l)
3 NJln

(2l+ 1 )

i /21

where N i, is the actual number in the state. For a
completely occupied shell, Ns;, is of course equal to

2J+1. We carry out the remaining sums over J, #,
and introduce new functions

Hy (x9,12) = H ¥ (ra,rs") Y0 (1a,1),
.

Hp(l’2,l'2’) =3 H P (rory) Ylo(l’2,l'2')
i

Ylo(r27r2l)) (85)

(86)

by defining equations

H N (ra,r2) s
5 Rogi(r2) Runi(ry’) Noywm (21+1)’

2J+1\ 4rx
(87

nJ (neutrons) 7o 1’2’

Hi" (ro,r2) )
5 R,7i(re) Rusi(re)) Nim (Zl—}—l)2

4
The neutron and proton potentials then can be written:
V() =Va© (ry,r))+ VyES (r,r)/)Li- Sy,
V(L) =Vp@© (r,1)+ V&S (r,r/) Ly Sy,

nJ (protons) 72 r2' 2]+ 1

(88)
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where

1
Vy© (l‘l,rl') =5fHN(l’2,r2/)[(l'12 | K l r12l> s, e

1
+3(r12| K| 1151, 0, central]drzdrzl“l“;pr (19,12")

X [:(ru I K I l'12’) s, e 13 (1'12 | K ] r12')z. e, central
+ (r12] K| 112")s, 0 (£12| K | 112)1, 0, centrat Jdrodry’,  (89)

3
VN(LS) (l’l,rll ZEfHN(I'g,rzl) (l'12 [ Kl rlzl)t, o, Lsdl‘gdrzl

3
+;fHP(l‘2,rzl)|:(l‘12 | K | 1'12') t e, LS

+ (r12| K |712) 1,0, L5 Jdredry’.  (90)

The proton potential is given by the same expressions
with Hy and H p interchanged.

In the approximation described in the previous sec-
tion, Ky, , central is given by A (ris,r12’) as defined in
Eq. (28), K¢ 1s by B'(r15,112)) in Eq. (33), K,,. in
Eq. (14), and the odd states in Born approximation.

The final step to be carried out is the angular mo-
mentum reduction of the Hartree-Fock equation.
Again introducing Eq. (84) for y;, we rewrite Eq. (64) as

1 1 /@ 10
IE

+ + +1))'R (M)F 5 (x)
— —_— n r smr
2 \dre ,o l Ji(r)F gy 1

71

N fdn'{ (11| V|1 )+ Ly 8y (xy | VES [ 1))}

Runi(ry)
X____—

FJ‘lsm(rl/). (91)

71

The angular function F s, is an eigenfunction of L;- Sq;
hence, operating to the left with L;-S;, we obtain the
eigenvalue 3[J (J+1)—I1(/+1)—27]. We next introduce
the angular momentum expansions of V(9 and VS):
(] VOIR) =L@ DV () Pilee), o
(1‘1 l Vs | 1’1,) = Zz(Zl+ 1) VZ(LS) (1’1,1’1/)P1(l‘1,1‘1/) .
Multiplying Eq. (91) from the left by Fj;*(r;) and

integrating over the angles of r; and ry/, we finally
obtain

1 1pad 1(1+1)
fredd
7 ZM dflz 7’12
Rng(hl)

:41rf(rll)zdh’VJl(h,h,)——T*, (93)

71

R'nJl(”l)

where
Voilryr) =V (ry,ry)
+3[JT+D) =10+ =3V ES (). (94)

This completes the angular momentum reduction of the
Hartree-Fock equation.
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VI. APPROXIMATE REDUCTION OF THE
HARTREE-FOCK EQUATION TO A
DIFFERENTIAL EQUATION

The Hartree-Fock equation derived in the previous
section is a differentio-integral equation due to the
nonlocality of the single-particle potential. We shall in
this section discuss an approximation to this equation
which reduces it to a much simpler form. The approxi-
mation we use is useful since it is exact in the limit of
convergence of our iteration procedure and also exact
if the potential is replaced by a local approximation.
This latter feature is particularly useful since the po-
tential V (ry,ry’) is nonlocal over quite small distances.

The equation to be solved is of the form

R
(E—H,) (r)=47rfr’dr’ V(r,)R(r). (95)
r
This equation can also be rewritten
R
(E— Ho) R [ wfr’dr' V(r,r’)%(_rz]R(r)
d
+[41ra2fr’dr' V(r,r’)R(r’)(d—rR(r))/D(r)]
XdR(r), (96)
dr

where
D(r)=R2(r)+a*(dR/dr)?,
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solution. We then approximate to Eq. (96) by
Rn—H(r)
(E—H,)
7
, R(ORND|
[4arf dr’ V(rr)-—D—(r)—J +(r)
R" (") dR™(7) ‘IdR"+1 (r)
2N . (97
+|:47ra f dr' V(ry) 0y dr J = 97)

This now is an ordinary differential equation for R**(r)
which differs from the usual Schrodinger equation in the
appearance of the first derivative term. If this equation
is solved by a convergent iteration-interpolation pro-
cedure, then it of course converges to the exact answer.

We note here that the appearance of the gradient
term in the equation is necessitated by the nonlocal
nature of V. At the zeros of R(n), the integral
SV (rg")R(r")dr' does not in general vanish. Conse-
quently, if we wish to retain this feature, we can do it
most simply by adding a derivative term to the ordinary
differential equation which automatically will not
vanish at the zeros of R. This feature also suggests that
a convenient choice for a is a length determined by the
nonlocality in ¥V, which we expect to be about 0.5 to
1.0X107 cm.

This approximation of Eq. (93) still is not quite
satisfactory since we have not yet made use of the short
range of the nonlocality in V. To see this, we replace V
by a local function,

and ¢ is a constant with dimensions of length. We dis- , 1 ,
cuss its choice in the following. Let us now consider Vir") ”"4;]( (ns(r—1"), (98)
the computation of the (n--1)st approximation to the 4
solution of Eq. (96), assuming that we know the nth in which case Eq. (97) becomes
RH(7) {LR"(r) PR (r)+a*R*(r)[dR"(r) /dr JLdR™*(r) /dr]
(E—Ho) = (7’) } . (99)
7 LR*(r) P+a’[dR"(r)/dr
The correct equation in this limit is of course final approximation
Rn—l—l 7 Rn—l—l( Rn-H (1,)
(E—H,) =f()R"(7), (100)  (E—H,) =F" R+ (N+6"(r)———, (102)
dr
h
which is approached by Eq. (99) only at convergence. where V(r »
To remove this difficulty, we have made a further F»(r)=4x f
modification of Eq. (99), which is to add an additional D*(r)
term to the right-hand side: dR*(+") dR™(r)
n( ! n 2.
Vinr)| dR'()  dR™() T
47ra2fr dr’ { — R*(r) (103)
D*(r) ar' dr V)
dR*(¥") dR*(r G"(r)=47ra2fr'dr’ .
) R™1(r) {. (101) D(r)
dr’ dr

This term vanishes at convergence; in the limit of
locality it cancels the last term of Eq. (99) and adds the
appropriate term to give the exact result.

Combining Eq. (93) and Eq. (95), we obtain as our

dR(r) dR"(r")
X[R"(r’) R*(y) ]
dr dr

These equations are now being solved; the results will
be presented in a later paper.



