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One-Dimensional Impurity Bands
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The density of states of one-dimensional crystals consisting of 8 functions randomly distributed has
been calculated on the IBM 6SO computer. The chains contained 500-1000 impurity atoms, and the most
probable error in the integrated density of states at various energies was estimated to be at most s%.
Calculations were performed for various values of the parameter s=N/iso, where I is the density of atoms
and Kp the attenuation constant appropriate to the isolated bound state. The results at different densities
are compared with those obtained from various physical models. At low densities the machine results
display a singularity in the density of states at the isolated atom energy. For e«1, a simple pair theory fits the
machine results quantitatively in the wings and displays a similar singularity. At high density (s))1) the
machine results are smooth and fitted well by a crude optical model, except for a tail below the band edge
omitted by the latter. An optical model containing local density Quctuations provides a qualitative under-
standing of the tail and a fair over-all fit for ~&1.

1. INTRODUCTION

E are concerned here with the distribution of onc-

e ~ ~

electron energy levels of an impurity band. The
impurities are taken to be of a single kind, but randomly
distributed, so that the translational periodicity charac-
teristic of most energy bands is absent. The energy
bands of disordered crystals have been treated by
several authors. ' Nearly all these treatments have been
based on Nordheim's' virtual-crystal approximation;
random deviations from the "average" potential are
then treated by perturbation theory. As several of
these authors recognized, this perturbational approach
will not yield the localized negative energy states
associated with the impurity band.

One evidently needs, in this problem, a method that
is not perturbational in character and yet is readily
applied in three dimensions. The multiple scattering
treatment provides a means of attack that satisfi. es
these requirements. In general the multiple scattering
equations must then be solved by approximate pro-
cedures. The nature of our approximations, however,
is independent of the dimensionality of the crystal.
This suggests checking our ideas by specializing our
treatment to the one-dimensional case. Numerical
solutions are easily obtained for one-dimensional
crystals, and in a way that is suitable for machine
computation.

We were thus led to consider here the impurity bands
of suitable one-dimensional crystals, We were primarily
interested in the effect of the random distribution on
the density of states. This eGect was expected to be
large in the low density or tight-binding limit, and to
decrease as the density increased.

Several workers' have previously carried out machine
calculations. We found that their results were insuS-

' L. Nordheim, Ann. Physik 9, 607 and 641 (1931);T. Muto,
Sci. Papers Inst. Phys. Chem. Research (Tokyo) 34, 377 (1938);
R. H. Parmenter, Phys. Rev. 97, 587 (1955).

2 H. M. James and A. S. Ginzbarg, J. Phys. Chem. 57, 840
(1953); R. Landauer and J. C. Helland, J. Chem. Phys. 22,
1655 (1954).
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cient for our purposes. This came about either because
the calculations were done only at one density (James
and Ginzbarg) or because the constituent concentra-
tions considered were more appropriate for the study
of alloys (Landauer and Helland).

The crystals studied by these authors consisted of
two different kinds of square wells randomly distributed.
The width and depth of each well constitutes two
parameters each, the lattice constant is a fifth param-
eter, the density of impurities is a sixth and the
energy is a seventh parameter. Clearly, it is impossible
to make an adequate numerical exploration of these
parameters to obtain qualitative understanding of the
role of each parameter. Moreover, the chains used by
I.andauer and Helland were 150 atoms long, so that
the number of nodes, E, associated with a minority
constituent (at the "top" of the band) was of order
100, and the random error' in this number is of order
(100)l. To get accuracies of order 1%%uq it is clear that
chains containing 500 to 1000 impurity atoms are
necessary. '

In view of these considerations several simplifications
were introduced.

1. We make the effective-mass approximation. This is
valid for wavelengths large compared to the lattice
spacing. Since the relevant wavelengths in an impurity
band are comparable to or larger than the mean separa-
tion 1/rs between impurities and the latter separation is
large compared to the lattice constant for an impurity
band (as contrasted wit, h an alloy), the effective-mass
approximation is automatically valid for our problem.
This implies that we may neglect the periodic structure
of the host lattice altogether. Thus we may set the host

3 For negative energies no more than one zero can occur between
impurities. If there were N,„impurities and if the zeros occurred
at random with probability p, for a given energy, the expected
number of zeros would be N =N p, and the standard deviation
would be LN,„p(1—p)]&=pN(1 —p)]&. We find in practice
(see Table II) that the errors are of this order (actually smaller
by a factor of 2). Errors in estimating the differential density of
states by taking differences between numbers of zeros at different
energies can be (and were in our case) reduced by using the same
random sequence of atoms at all energies.
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potential equal to zero and allow the impurity atoms to
assume random positions on a continuous domain.

2. The square wells of the impurities are replaced by
delta functions. 4 5 This is a good approximation if the
width of the potential is small compared to the mean
separation between impurities, and to the range 1/«s of
the bound state wave function. It also has the advantage
of leaving us with only the parameter of most interest,
the density n, so that the e8ect of randomness can be
studied as a function of the dimensionless parameter
e=B/Kp Th. e parameter e gives approximately the
mean number of impurities within range of a given
impurity.

In Sec. 2 we describe the procedure used by the
machine to calculate the density of states. Later
sections present the results of the calculations and com-

pare them with various physical models. Each of the
models can be used for three-dimensional problems as
well as one-dimensional ones, so that the results also
suggest the range of validity of the models for three-
dimensional problems.

where the x, s are uniformly distributed with density e.
By introducing the definitions

«s ——(m~ Vs~)/O' E= —(A«)'/(2m) = (Ak)'/(2m), (2.2)

we find Eq. (2.1) reduces to the simpler form,

d2

+2«s P, 8 (x—x,) P(x) =«'lI (x).
dx'

(2.3)

The wave function associated with an isolated 8 func-
tion is given by it s exp (—«p

~

x—xp
~ ) and its energy is

given by E&= —(A'/2m)«p . Tllils «p may be interpreted
as the range of the bound state. Equation (2.3) holds
for negative energies; according to (2.2) a corresponding
equation holds for positive energies, with I(: replaced
by —it.

If a transformation were made to a new independent
variable u=nx, one would find from Eq. (2.3) that
the only relevant parameters are «/Kp, a dimensionless

2. SOLUTION OF THE DIFFERENTIAL EQUATION

The discussion in the previous section has indicated
that the impurity bands associated with localized
potentials in one dimension can be adequately in-

vestigated by considering the following Schrodinger
equation:

A2 d2
—

~
Ve~+, 5(x—x,) P(x)=EQ(x), (2.1)

21Ã dX

square-root energy, and

e= e/«s, (2.4)

a dimensionless density. The study of a particular
crystal involves a given density e and a variety of
energies «/«e.

The simplicity of the calculation of the density of
states in one dimension derives from the fact, first
emphasized in connection with this problem by James
and Ginzbarg, ' that the number of nodes in a solution
of the wave equation with energy 8 determines how
many states of the system have energies lower than E.
In previous calculations' the wave equation was solved
in each cell, with p and II' being made continuous at
the boundaries of each square well. Our choice of zero
potential for the host cells requires us to calculate It
and P' only at the 8 function themselves, which for low
concentrations greatly shortens the calculations. An
equally significant gain results from the fact that, as we
shall show below, it is not necessary to consider P and
it' separately, which requires a matrix solution, but
only their ratio lt'/lt. As a consequence of this saving
we are able to study chains of 1000 impurity atoms
(or the equivalent of 100000 cells, at 1% impurity
concentration) in a comparatively small amount of
IBM 650 machine time.

Consider the con6guration of 6 functions shown in
Fig. 1. The 8 functions are represented schematically
by deep, narrow @&elis and the coordinate just to the
right or left of point x is denoted by x+, respectively.
Since V= 0 between wells, we have for negative energies

b„=a„2«p/«, —

a +i= (b„+tanh«x)/(1+b„ tanh«x).

(2.8)

(2.9)

v(x)

Xp

$(x2 ) =P (xi+) cosh/« (xs x,))
+« 'f'(xi+) sinht «(x&—x,)$, (2.5)

f'(xs )=P'(xi+) cosh/«(xs —xi)]
+ eP (xi+) sinhL'«(xs —x,)). (2.6)

The 8-function potential produces a jump in 1('/lt
given by

4' (x2 )/it'(x2+) =II''(x )/p2(x2 ) 2«p (2.—7).
These results can be simplified by introducing

a„=iP'(x„)/«P(x„) and b„=P'(x„+)/«P(x„+) The con-.
nection formulas (2.5)—(2.7) now assume the form

The use of 8 functions for studying disordered crystals has
been criticized by Allen5 on the ground that contacts between
two bands will not occur in this case, though they do occur in
general. However, we are not concerned here with such interband
effects.

' G. Allen, Phys. Rev. 91, 531 (1953).

+
2

Fro. 1.The locations of x1+ and x2+ which appear
in Eqs. (2.5) and (2.6).
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At low densities ax))i and tanh~x~1. In addition, the
density of states may be very large for ~ ~0. Thus, a
considerable gain in the number of significant figures
results when (2.8) and (2.9) are rearranged in the
following way:

b„'=a„'—2 («/«p —1), (2.10)

fi„=a„2«p/k, — (2.12)

a +i——(0„—tankx )/(1+b„ tankx„). (2.13)

Now let b„=—tan+„, a„+r———tanX„+, . Then Eq. (2.13)
becomes

X„~i= &p +kx„, (2.14)

and the number of nodes f is given by L(X ~i/s)+ —',j—
f (y„/~)+-,'$, when L ) denotes "greatest integer

contained in."
We present the results of the machine calculations

for negative and positive energies separately. Most of
the calculations have been concerned with the negative
energy range, and it is these we present first.

a„+t'———L2 (2—b„')e
—'""$/

fb„'+ (2—b.') e
—"""]. (2.11)

Here a„'=a„—1, b„'=b„+1, and rr=«(«pe) '. The di-
mensionless parameter si„= x„/(x) =ex„ is a random
variable, independent of density, so that the same set
of N's can be used for diGerent densities.

We now count the nodes, i.e., the sign changes of
lt occurring between 8 functions. If the sign (a„+rb„)&0,
P'/P has changed sign. Inspection of Eq. (2.9) shows
that P can change sign only if b„(—1, and that at
most one node can occur. Furthermore, when b„(—1
no sign change in P is possible. The conditions b„(—1,
sign(a„+, b„) &0 are then both necessary and sufficient
for one zero of P to have occurred in the interval.

A similar procedure can be developed for positive
energies. In this case E=A'k'/2m, and defining a„and
b as before, except with ~ replaced by k, we find the
connection formulas assume the form

Thus c =A „c„and c„=A„c,so that

«/«p 1—=+e (3.2)

1&«/«p& 2: IV(«/«p) =
3

(3.6)

The probability that the nearest neighbor of an atom
located at the origin lies between x and x+dx is 2ee '"~ ~,

and the probability that the nearest neighbor distance
is less than x is e '"*. Thus, according to the pair
theory, the fraction of states for which «/Kp is larger
than the indicated value is given by

1&«/«p&2: Ã(«/«p)= ,' ', -f«—/«-p 1f'—"'", (3.3)

0&«/«p&1: X(«/«p) = ', +,' -«/«-p —1 f'"'". (3.4)

In the neighborhood of K/Kp=1, Eqs. (3.3) and
(3.4) imply that the di6erential density of states is
approximately

e(«/«p)=dN(«/«p)/d(«/«p)~2ef«/«p 1f —'. (3.5)

This distribution exhibits a long tail, leading to a first
moment proportional to e, although any fixed fraction
of the states are confined to a neighborhood of «/Kp= 1 of
order exp( —1/e). For a regular lattice, the band width
is proportional to the overlap and also varies as
exp( —1/e). At low densities the introduction of ran-
domness modifies the shape of the central region, in-
troducing a singularity at «/«p= 1, and adds a long tail
as compared with the regular arrangement.

The pair theory is correct to order e in the sense that
it yields all the moments' of de//d«correct to order e.
The moments, however, are insensitive to the behavior
of X in the region

f
«/«p —1

f
&exp( —1/e), which is the

region containing much of the band at low densities.
Schmidt' has recently obtained a solution for the one-
dimensional problem which is accurate to order e in
this region as well. His result, which follows from solving
an integral equation analogous to the procedure we
have used in the machine calculation, is, in our nota-
tion' (here c= «/Kp —1):

N

c,=P A,;c; (i=1, , X), (3 1)

where A;;=0 and A;;= («/«p —1) 'exp( —«fx;—x, f).
If atoms m and e form a pair, we may expect that
solutions localized about them have c, c„))c,, j~m, n.

3. NEGATIVE ENERGIES: LOW DENSITIES

It is reasonable to expect that at low densities the
broadening of the isolated bound level will be produced
mainly by pair interactions. We shall calculate this
effect using the multiple scattering formalism, which for

functions is easy to use, and which we shall need
later in any case. It is shown in Appendix A that for our
problem the multiple scattering equations reduce to
E linear homogeneous equations

0&«/«p&1: A'(«/«p) =
(ss ——', fc f')'

(3.7)

' Details of this and other calculations will be included in a
later paper concerned with the multiple scattering formalism as
applied to the impurity band problem.' H. Schmidt, Phys. Rev. 105, 425 (1957).

8 Schmidt's final equation contains an unfortunate misprint. It
should read e =g/(2kl). Thus his e is equal to our e/2, i.e. , n/(2«p).

Better results are obtained if one replaces e in (3.6)
and (3.7) by e/«. In our comparisons with Schmidt we
have always evaluated his formula with this improve-
ment. Machine results for &=0.01 and 0.1 are compared
in Tables I and II with the pair theory and Schmidt's
formula; the results for &= 0.1 are also shown in Fig. 2.
Table II presents results obtained when 500 atoms were
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K/K0 —1
Machine

results {%)
Pair

theory (%)
Schmidt's

formula (%)

TABLE I. Integrated density of states at negative energies, e =0.01.
0 0

2
0 0
4 5

Fn. 3. An example of an
"isolated" 5 function, as dis-
cussed in the text at the end
of Sec. 3.

—0.999
10—4

—10 3

10—6

. 10—ll

10—20

10—35

—10 40

2X10 4'

]Q-35

10—20

]0—11

10—6

10 5

10—4

1

98.6
91.4
89.3
87.5
79.7
70.5
64.1
63.3
30.6
30.3
26.6
19.1
12.2
10.4
8.3
0.0

99.0
91.6
89.7
87.9
80.0
70.0
60.0
58.2
44.6
40.0
30.0
20.0
12.1
10.3
8.4
0.0

99.0
91.8
89.9
88.0
81.4
71.9
61.3
59.5
36.6
33.7
25.9
17.7
11.4
9.9
8.1
0.0

where @=i/m, and z~Kp, so that the resulting states
lie in a neighborhood of exp( —1/p) of the bound level,
and always slightly higher in energy. This conclusion
is in qualitative agreement with the results of the
machine calculations.

4. NEGATIVE ENERGIES: HIGH DENSITIES

At high densities the number of atoms within range
of a given one is large, and the fractional Quctuation
of this number is small. Thus in the limit e—+~ we
expect that

~
c,

~

=c, so that we may take c;=e'P'*'c. One
then obtains'

added to the chain to make a total of 1000 atoms. The
error due to the Monte Carlo nature of the calculation
is seen to be of order —,'%%uz.

From these results it can be seen that the pair
solution is adequate for the wings of the distribution,
but that it does not predict the asymmetric shoulder
for K +Kp. Schmidt's solution gives a good fit to the
entire distribution, but his method is entirely one-
dimensional and his results valid only for e&(1.

The following argument suggests the existence of
the shoulder. In calculating the density of states on
a pair model, we assumed all atoms to be members of
pairs. From Fig. 3, we can see that this may easily not
be the case. Here 1 and 2 and 4 and 5 form pairs, while
3 remains "isolated". It is a simple calculation however,
to show that the energy level of an "isolated" atom
with a pair at a distance x is given by

~/~p= 1-e-"*,

K/Kp 1=p e "~*r *'~+'"'&*~

iwi
(4.1)

——1+P c "~*& *'t+'P 1

all j
(4 2)

Ic/Icp —1=—1+ ~ ndppe "~*i+'P *

= —1+(2n~)/(~'+ k"). (43)

Thus
Ic'+ k"= 2nirp. (4.4)

At high density (p))1) the sum on the right, by the
"law of large numbers, " exhibits relatively small
Quctuations, and we may approximate the sum by its
ensemble average;

$.0
K/KO

Machine
results (%)
(SOO atoms)

Machine
results (%)
(1000 atoms)

Pair Schmidt's
theory (%) ' formula (%)

0.9

0.8

0.7

0.6

N(It.') 0.5

o.a

0.3

0.2

0.1

0
0.9

l

0.5
I

0.5 f.0

0.001
0.67
0,92
0.99
0.997
0.999
0.9995
0.99968
0.99985
0.999995
0.999999
1.0Q0000
1.000005
1.00032
1.0010
1.0030
1.01
1.078
1.33
2.00

89.6
84.6
78.6
70.6
65,6
62.6
61.4
60,2
58,6
53.8
51.4
42.8
36.6
32.8
31.2
29.0
25.4
18.6
6.4
0.4

89.2
84.6
77.9
69.7

61.1
59.9
58.6
53.2
51.4

37.0
33.4
31.8

25.9
18.2
7.7
0.5

91.0
85.7
78.8
70.0
65.6
62.6
60.9
60.0
58.5
54 4
53.0
50.0
45.6
40.0
37.4
34.6
30.0
18.9
7.9
0.0

90.8
86.4
79.4
71.0
66.9
64.1
62,3
61.3
59.9
54.7
52.9

38.5
33.8
32.0
28.6
26.0
17.2
7.3
0.0

FIG. 2. Integrated density of states versus the dimensionless
square root energy ~/rp for p=0.1.

' Equation (4.3) can also be obtained directly from (4.1) by re-
placing the sum by an integral involving the pair distribution func-
tion N(x~x;). Since N(x)x;)=(Z;»s(x; —x))=(Z;B(x; x)) s(x, — —
—x) =I—B(x—x;), the result follows.
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Local
density

model (%)
Machine

results (%)
Optical

model (%)«/Ko

E(s/sp) =k'/(arm),

X(K/Kp) = (2RKp —K') &/(m. e).

(4.5) 14.1
13.8
12.4
10.5
8.1
4.9
3.4
1.3
0.3
0.0

14.1
13.8
12.4
10,9
9.6
6.7
4.85
3.2
1.5
0.7

0.00001
1.00
2.00
2.83
3.50
4.16
4.47
4.97
5.50
6.00

14.1
13.8
12.6
10.9
8.8
5.2
0.0
0.0
0.0
0.0

(4.6)

We often refer to this result as the "optical model, "
since Eq. (4.3) is a continuum approximation.

Results for ~=5 and &=10 are presented in Tables
III and IV. Figure 4 is a graph of the results for e= 10.
The results are compared with the optical model
approximation of Eq. (4.6), and it can be seen that the
model approximates the results reasonably well, except
at the band edge where Quctuations are significant.

Fluctuations may be taken into account by avoiding
our previous approximation of taking an ensemble
average. ' For calculational purposes it is simpler to use
the following model, which is suggested by the form
of the multiple scattering calculation. Since fluctuations
are signi6cant primarily near the band edge where

we consider fluctuations in

relation:
cosk'a'= coshaa' —(Kp/K) sinh~a'. (4.9)

Thus the local density model yields the following
formula for the integrated density of states:

k'(x, G)
dGP(G)—

~e'(G)
E(x)=

~ gmin
(4.10)

1)

Here P(G) is given by Eq. 81 for P(F) with F replaced
F—P B

—"il'I—&il (4.7) by G and G is related to a' by (4.8). Using (4.9), we
can evaluate k' in terms of u' and x=s/Kp. Finally G;„

TABLE III. Integrated density of states at negative energies, 6=5. ( ) ( ' )
x&1 or x&1, respectively. A short calculation gives
tanh(saba' )=8=—min(x, x ') andMachine

results (%)
Optical

model (%)«/«0

he numbers of zeros in cosk'x in a length I, is TABLE IV. Integrated density of states at negative energies, &=10.

(k'L)/~, so that the number of zeros per impurity
atom is

0.001
1.00
2.32
3.16
4.00

20.0
19.0
13.6
9.2
2.6

20.1
18.1
13.6
0.0
0.0

F is similar to the sum entering the multiple scattering
calculation for k =0, and its distribution P(F) is more
easily calculated than that for k'"0. In fact, P(F),
for any value of ~, is calculated in Appendix B. The
result is that F has a Poisson-like distribution, which
becomes Gaussian at high densities.

Now a particular value of F would also be obtained
from a regular lattice with a certain lattice constant u'.
In fact, for a regular lattice,

Gmin=
2a )1 8't """—

1 n(1—+P &

(4.11)

0,2l

8=10

Our primary interest in the local density model is as
a means for calculating corrections to E(x) as given
by the optical model at high densities. However, it may
be observed that the model also yields good results at
low densities, since for P(F) one then recovers the
nearest neighbor distribution, a,nd subsequently obtains
the density of states given by the pair theory. Thus one
may expect the model to yield qualitatively satisfactory
results at all densities, including intermediate ones. This
actually turns out to be the case, as we shall see later.

n ~ n+0
&
—«1C'I n

«$Q
(4 8)

0.1 8

O. l 5

MACHtNE

OPTICAL MOPEI
L,D. MODEL

We now represent our density of states as that resulting
from an ensemble of lattices having diferent lattice
constants u', where the distribution of u' is such as to
make the distribution of G equal that of F. We call
this the "local density" model (L. D. in the figures).

The computational advantage of this model is, of
course, that the density of states corresponding to a
regular lattice of lattice constant a' is easily obtained.
For negative energies (an analogous result holds for
positive energies), this is the Kronig-Penney dispersion

O. lP. —

w('w)

0.09—

0.06—

0.03—

0 I I

4 3 2
K/Ko

0 2 3 4 5
K/Ko

FIG. 4. Integrated density of states vesls the dimensionless
square root energy K/Kp for a=10.
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200

~ 60 -----g

)00
90
80
70

60

30

20

result,

F00

E(x) dye —x'/(2e) j&
s4I 'I +2/(2e)

Xexpg —(2~)&(y—1)'j. (4.12)

If we put x'= 2e, we obtain the fraction Eo of the density
which Quctuations have pushed below the band edge
of the crystal of uniform density. From (4.12) one
finds that Eo is proportional to e '~ . Since the fraction
below E=O is proportional to e 'I', this suggests that
the eGect of fluctuations on the density of states near the
band edge will be significant even for rather large
values of e. The e dependence of Eo, as obtained from
the machine calculations, is shown in Fig. 5. From the

TABx,z VII. Integrated density of states at
negative energies, ~ = 1.0.

K/KQ

Machine Optical
results (%) model (%)

Local Local
density density

model (1) (%) model (2) (%)
10
0.0) 0.02 0.03 0.04

No

0.06 0.08 0.)0

Fro. 5. Density variation of E0, the fraction of
states below the optical model band edge.

At high densities a considerable simplification of
the equations results. Thus (4.8) becomes (a') '—2 '/~, G
and (4.9) reduces to the optical model result (4.4), as it
must. In addition I' assumes the Gaussian form given
by Eq. (89).If we insert these results in Eq. (4.10) and
make the substitution y= (2e) 'G, we find the simple

0.001
0.800
1.00
1.18
1.37
1.53
1.69
1.84
2.00
2.20
2.50

45.6
39.8
34.3
30.2
26.8
22.3
18.3
14.0
10.3
6.4
2.5

45.0
37.0
31.8
24.8
11.0
0.0
0.0
0.0
0.0
0.0
0.0

45.0
37.0
31.7
27.4
21.9
17.1
12.7
9.1
5.8
3.1
1.1

45.0
37.0
33.5
28.0
22.3
16.6
11.1
7.0

1.8
0.6

TABLE VIII. Integrated density of states at negative energies, e =2.

TABLz V. Integrated density of states at negative energies, ~=0.25.
K/KQ

Machine
results (%)

Optical
model (%)

K/K0

0.0
0.50
0.90
1.00
1.10
1.50
2.00

Machine
results (%)

76.8
74.6
62.8
40.1
26.4
11.2
0.8

Pair
theory (%)

80.3
75.0
68.0
50.0
36.0
10.0
0.0

Schmidt's
formula (%)

82.0
75.9
65.4
44.4
23.9
9,8
0.0

«/KP

().001
0.50
0.80
0.90
1.00
1.10
1.20
1.35
1.50
1.75
2.0Q
2.50

Machine
results (%)

60.7
58.0
52.6
49.8
38.8
32.4
28.0
22.2
17.8
10.4
4.6
0.6

Pair
theory (%)

68.9
62.5
56.7
53.9
50.0
43.9
36.2
27.1
18.5
7.6
0.0
0.0

Schmidt's
formula (%)

71.3
64.0
57.6
53.8
44.4
36.8
32.0
23.8
16.9
7.2
0.0
0.0

Local
density

model (%)

61.6
58.4
51.5

23.5

7.7
2.2
0.5
0

TABLE VI. Integrated density of states at negative energies, e= 0.5.

0.001
0.50
1.00
1.50
2.00
2.50

32.0
30.6
28.6
22.8
15.0
8.4

31.8
30.9
27.6
21.0
0.0
0.0

5. NEGATIVE ENERGIES: INTERMEDIATE DENSITIES

At low densities the density of states is peaked
near ~/so=x=1, while at high densities the k'=0 peak
occurs near x=(2e)'/'. We expect that the transition
between the two cases will occur near &=1. In Tables
V—VIII and Figs. 6 and 7 we present the machine
results for e=-„', » 1, and 2.

figure one obtains ED~Ca '~', so that the local density
model apparently predicts qualitative features of the
Quctuations.

Equation (4.12) has also been used to calculate E(x)
for ~=10. The results are shown in Fig. 4. The curve
for X(x) given by the local density model has the same
shape as the curve obtained from the machine results,
but the tail is only about half as large.
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From Tables V and VI and Fig. 6 one sees that ~= ~~

and e= —,
' are in the low-density range. The density

of states is similar to that predicted by both the pair
and Schmidt theories, but the band is broadened by
triplet and larger cluster interactions not included in
these theories.

On the other hand, &=2 is still a relatively "high"
density, as can be seen from Table VIII. The optical
model correctly predicts the density of states, except
near the band edge.

Both the high- and low-density peaks are barely
discernible at & = 1—see Fig. 6, which also shows the
results obtained from the local density model with

0.5

fC/Ko

27r
4m

6'
8m

10'
20m

Machine
results (%)

17.4
24.9
43.1
62.8
82.6

101.8
203.9

Optical
model (%)

17.4
24.6
42.4
61.7
81.3

101.0
200.6

TAsLE X. Integrated density of states at positive energies, a=0.5.

K/KQ

Machine
results (%)

Optical
model (%)

TAsLE IX. Integrated density of states at positive energies, e = 10.

0
0.71
1.00

60.7
75 ~ 2
88.4

63.7
78.0
90.0
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N(z)
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Fzo. 6. Integrated density of states versus the dimensionless
square root energy «/r&p for e =-,'.

0 7~

the optical model is even more satisfactory at positive
energies than it is at negative (see Table IX, which
presents results for e=10).

Indeed, satisfactory agreement is obtained even for
e as low as rs (Table X). However, since the fraction
having energies less than zero is vr '(2/e)' on the
optical model, it is clear that this model must fail as
e—+0, since the fraction actually can never exceed
unity. On the other hand, for suKciently high energies
perturbation theory shows that the optical model must
be correct. Both these eGects can be discerned in the
results for e=~ and E= yp which are presented in Tables
XI and XII. It might be remarked that even for
positive energies a correct treatment near zero energy
for low densities is not easily obtained from ordinary
perturbation theory.

7. SUMMARY

The primary conclusion to be drawn from this work
is that the pair theory at low densities and the optical

0.5 1.0 1.5
«/a,

2.0
1

2.5

TABLE XI. Integrated density of states at
positive energies, e= 0.25.

FIG. 7. Integrated density of states versus the dimensionless
square root energy s/aa for e= 1.

sr ——2Kp. t This choice was made because of the large
tail present at &=1.It is tabulated in Table VII in the
column headed Local Density Model (1). Results with

Ky=Kp are preSented under the heading LOCal DenSity
Model (2), and it can be seen that this choice of Kr

yields better results near Kp, but poorer results for the
tail, as one would have expected. ) Again the local
density model predicts the shape of the tail correctly,
but it yields results only about half as large as those
obtained from the machine calculation in this region.

6. POSITIUE ENERGIES

Results obtained for positive energies have been
compared with the optical model. For high densities

K/K 0

0
0.20
0.35
0.50
0.71
1.00

Machine
results (%)

76.8
79.0
89.4

100.6
120.0
152.8

Optical
model (%)

90.0
93.6

100.0
110.0
117.6
155.9

K/K 0

0
0.05m
0.10m-

0.15m.

0.20~

Machine
results (%)

89.2
104.4
144.2
188.8
234.2

Optical
model (%)

142
150
174
206.8
244. 1

TABLE XII. Integrated density of states at
positive energies, e= 0.1.
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(&/&s) '= —2''e'Ly+ ln (1—y) ]+2 e, (7.1)

where y=k'/7rss For lar.ge s and negative energies Eq.
(7.1) can be expanded in powers of y and the dominant
term agrees with our dispersion relation, Eq. (4.4). For
positive energies erroneous results are obtained.

Improving agreement with machine results at high
densities requires a more adequate description of the
tail. A more systematic treatment of the tail than that
given by the local density model can be based on a
multiple-scattering approach including fluctuations.
This multiple-scattering treatment will be presented in
a future publication. '
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APPENDIX A

The multiple-scattering equations can be obtained
by specializing the general multiple-scattering equations
(3.7) and (3.8) of the review article by Lax" to the

'0 P. Aigrain, Physica 20, 978 (1954).
"M. Lax, Revs. Modern Phys. 23, 287 (1951),and Phys. Rev.

85, 621 (1952).

model at high densities give a surprisingly good picture
of the density of states in spite of the considerable over-
simplification that each involves. The pair model is
quantitatively correct in the wings and has the correct
type of singularity at the center. The errors in the pair
theory occur near the center, where contributions from
distant atoms can be expected to be important. For
energies greater than that of the band edge of the optical
model, the latter theory is in good agreement with the
high density machine results. The presence of a tail
below the band edge can be ascribed to fluctuations
neglected in the optical model. The local density
model represents a crude attempt at taking these
fluctuations into account and it succeeds in giving a
qualitatively correct picture of the tail.

The only presently published general theory of
impurity bands that may be compared with our
results is that due to Aigrain. "Since Aigrain calculates
his density of states from a dispersion relation E= E(k')
his theory is optical in nature with the usual disad-
vantages: (1) it is valid only at high density; (2) it
omits fluctuation effects and produces no tail. Our
dispersion relation is, in a sense, exact and yields
good agreement with the machine results above the
band edge. The correctness of Aigrain's theory may
then be assessed by comparing his dispersion relation
with ours, Eq. (4.4). To obtain comparable results, we
must apply Aigrain's procedure to our one-di. mensional.
problem. For his atomic orbital we use exp( —s~x~)
rather than the isolated orbital exp( —ss~x~). With
this significant improvement (since K differs appreciably
from ss near the band edge) we obtain the dispersion
relation

case of one dimension and delta function potentials.
Since these general equations were presented without
proof we shall present a simple proof for the special
case at hand.

By making use of the fact that the operator
[ds/dx' —s'] ' can be represented by the Green's
function" (2s) ' exp( —s~x —x'~), Eq. (2.3) can be re-
written in the form

0 (*)= ~(x)+ («/~)

or

XJ exp( —ic~x—x'~) Q &(x'—x;)P(x')dx', (A1)

lt (x) = p(x)+Q; («/ic) exp( —ic~x—x, ~)P(x,), (A2)

=v(x)+Z L (x) (A3)

where qr(x) is the external incident wave (if any), and

L, (x) = (Ks/ic) exp( &Ix—xsl)lI (xs),

=exp( six —* l)Ls'(xs'),

(A4)

(AS)

is the field emitted from scatterer j.
The effective field P' on scatterer i diB'ers from the

total field by the field emitted by i,

or
P'(x) =P(x) L,(x), — —

lt*'(x) = ~(x)+Z L (*).

(A6)

(A7)

Equation (A3), evaluated at x=x; with L;(x;) trans-
posed is

(A8)f (*') («/s)0(x*) =—0'(x~)

P(xc) =y'(x;)+ (h/ss —1) '0'(x,).
or

(A9)

Comparing with (A6), we find that

L;(x,) = (s/ss —1) Q'(x;),

or in view of (AS), changing i to j:
(A10)

(A12)

where A;;=A(~x;—x;~), and from (A3)

0(x) = p(x)++ A (I x xs Of'(x ), (A13—)
"See P. M. Morse and H. Feshbach, Methods of Theoretical

Physics (McGraw-Hill Book Company, Inc. , New York, 1953),
p. 1071, vrith ~= —ik.

L, (*)= (~/ss —1) ' exp( —~ ~x—*,~)lt '(x ), (A11)
=—A (i x—x;i)1I&(x;).

Relation (A11) between the field incident on j and the
field emitted by j could also have been obtained by
solving a problem involving only one scatterer.

If we set x=x, in (A7) and use (A11), we obtain an
equation for the effective fields:
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where
A(~h~)=(Ic/Ko —1) 'exp( —«~x~). (A14)

I

Equation (A12), with f'(h, ) written for brevity as c,,
reduces to Eq. (3.1) of the text if we set (o(x) =0. This
choice corresponds to a "self-sustained" solution.

APPENDIX B

The distribution of the variable

F=g;~; exp( —«i~x, —x, ~)

can be computed by using techniques developed for
problems in random noise. Rice" gives the following
formula

1.50

1.25

1.00

LL

CL. 0.75
(O

0.50

0.25

0
0

9/E, = 1

Fio. 8. The distribution P(F) of P=Z;e "'~*'~ for points g;
distributed randomly on a line with density n, plotted for the
case n/~1 ——1.

where f(x)= exp (—xi
~
h

~ ) .
This equation can be transformed to an integral

equation by the following procedure, which was suggested
to us by Pollak and Gilbert. "From Eq. (B1), we have

2e
FP(F) =—~ P(x)dx,

xi Jo
(B6)

1 f fQo

P (F)=—' exp i pu+
—ts (e'"~ (*&—1)dx dst,

2x QQ —QO

ifP&1 and

«f (y)P(P—f(y) )
1

e
—'~" exp rt

J
(e*'"r (*& 1)dh-

27l Qo w QQ

if 0&F&1. Equations (B5) and (86) can be rewritten
as diGerential equations:

1—2n/xi
P'(P)+ P(P)

F

so that

f(y) P(P f(y) )cy—

Xc'" irtf (y) Ctt, (B2) = —(x,p)-'2ttP(p —1), F) 1 (B7)

=0, 0&F&i.

It is easily verified that P(p) =CF'"/"' ' is a solution
for 0&F& 1. For larger F, one can use the relation

1 f
dge '"~—exp I (e'"r('& —1)Ck . (B3)

2 J „CN p (p) —p (s n / gy) —1

Integrated by parts; the result on the right-hand side
is then recognized as iFP(F) ~ Thus

P (LP7) 2rt
t

~ P(x 1)dx-
(F7(»/n) —i „J„, xs

(Bg)

f(y) P(P f(y) )Cy =PP (F—).
where )F7 means the greatest integer contained in F.

(B4) Finally, C is determined by the normalization condition

For f(y) = e "'~ "~ we obtain the simple result

/here x=F—f(y)7,

2e
FP(F)= P(x)ch, —(B5)

Kl It' —1

S. O. Rice, Bell System Tech. J. 23, 282 (1944) and 24, 46
(1945). Reprinted in Noise artd Stochastic Processes, edited by
N. Wax (Dover Publications, New York, 1954), p. 133.

i4 E. Gilbert and H. Pollak (private communication).

P(F)dF= 1.
0

The solution obtained in this way for rt/«i ——1 is shown
in Fig. 8.

For e))1 a simpler approach is sufficient. In this case
Rice shows that P(F) is Gaussian. From his formulas
one readily finds P= 2rt/xi, os= ((F—F)')«„=rt/xi. Thus

P (F)—(Ki/2srrt) i exp/ —xi (F—2'/xi) '/(2rt) 7. (B9)


