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Connection between the Nuclear Shell Model and the United Model*
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The main point of this paper is to discuss the connection between
the unified model and a modified form of the nuclear shell model.
In the latter, the eNective interactions between nucleons, i.e.,
those not included in the central average potential, are assumed
to be factorable. It can be argued that inside nuclear matter the
Pauli principle greatly suppresses the oN-diagonal eNects of the
interactions, i.e. it prohibits most inelastic collisions; so that the
nucleons move nearly freely within the nucleus, at least as far as
low-energy phenomena are concerned. Short-range correlations
due to the interactions are not suppressed, but these are expected
to manifest themselves at rather high energies.

According to this view, the eNective interactions between
nucleons occur mainly at the nuclear surface and give rise to
surface oscillations. While quadrupole oscillations predominate,
higher modes also arise in a natural way. Under certain conditions,
the problem of particles subject to mutual interactions may be
solved by introduction of additional collective variables, which is
the method of the unified model. Physically, the nuclear motion
separates, at least approximately, into intrinsic and collective
motions. The resulting wave functions are very similar to the ones
used by Bohr and Mottelson, except that they are integrated over
the collective variables. Also, the energy spectra are of the form

obtained by Bohr and Mottelson, but the collective excitation
spectrum is cut oN, i.e., only a finite number of states occur.

This method is applied to a simplified two-dimensional nuclear
model. The particles are assumed to move in an isotropic harmonic
oscillator potential, and to be in addition subject to (a) one-body
spin-orbit forces, and (b) mutual quadrupole-quadrupole inter-
actions. In the absence of spin-orbit coupling, the spectrum
separates into a series of rotational bands, while in the absence
of mutual interactions we have an independent-particle spectrum.
The intermediate coupling problem is also treated in the hope
that it may provide some insight into the competition between
independent-particle and collective motions in nuclei. In the
present example, the transition between the two limiting schemes
occurs quite suddenly, in agreement with the experimental
evidence.

Another case of interest is the situation at the beginning of the
nuclear 1p shell, In the limit of pure JS coupling, the states of
maximum spatial symmetry form a rotational band, though only
very few members can appear, and collective effects are not pro-
nounced, because of the small number of particles involved. The
eNect of spin-orbit coupling can also be described in the language
of the unified model.

INTRODUCTION
' 'N recent years two nuclear models have had con-

- siderable success in accounting for a large variety
of low-energy data. The shell model, "in which the
nucleons are treated as moving independently in a
central average potential, except for some residual
two-body interactions, has generally worked well for
nuclei containing only a few nucleons outside of (or
missing from) closed shell configurations. On the other
hand, in nuclei far removed from closed shell con-
figurations, some of the low-lying excitations are most
easily described as collective, i.e., they involve a sizable
number of nucleons. Rotational states' ' are the best
known examples of this phenomenon. Collective
excitations as well as those involving single nucleons
can both be treated by the unified model, ' ' in which

*This work was supported in part by the Once of Ordnance
Research.

r M. G. Mayer and J. H. D. Jensen, Elemerttary Theory of
Nuclear Shell Structure (John Wiley and Sons, Inc. , New York,
1955); E Feenberg, . Shell Theory of the Naclerss (Princeton
University Press, Princeton, 1955).' J. P. Elliott and A. M. Lane, in Handbuch der Physik, edited
by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39.

'A. Bohr and B. R. Mottelson, in Beta- and Gamma-Ray
Spectroscopy, edited by K. Siegbahn (North-Holland Publishing
Company, Amsterdam, 1955), Chap. 17.

4N. P. Heydenburg and G. M. Temmer, Ann. Rev. Nuclear
Sci. 6, 77 (1956).

5 Alder, Bohr, Huus, Mottelson, and Winther, Revs. Modern
Phys. 28, 432 (1956).

6A. Bohr, Kgl. Danske-Videnskab. Selskab, Mat. -fys. Medd,
26, No. 14 (1952); A. Bohr and B. R. Mottelson, Kgl. Danske
Videnskab. Selskab, Mat. -fys. Medd 27, No. 16 (1953).

7A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd 30, No. 1 (1955).

D. L. Hill and J. A. Wheeler, Phys. Rev. S9, 1102 (1953).
~ S. A. Moszkowski, in Bandbuch der Physik, edited by S.

Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39.

4

the particles are assumed to move essentially inde-
pendently in the nuclear potential, but this potential
is noncentral and variable in time. A special version
of the unified model is the rotational model, in which
the shape of the potential is regarded as fixed and only
its orientation is allowed to vary. A rather basic
assumption of the unified model is that the shape and
orientation of the nuclear potential change slowly in
comparison to the characteristic frequencies of in-
dividual nucleons.

While the shell model and unified model may appear,
on first sight, to be quite different, there are good
reasons to believe that these models are basically
equivalent, being merely different ways of describing
the same phenomena. A striking case in point is the
fact that many features of the F" level scheme can be
accounted for by the shell model" and by the rotational
model. "

The purpose of the present paper is to discuss the
general connection between these models. The view is
toward development of a single nuclear model which
can describe the low-energy features of nuclei near to,
as well as far from, magic numbers. In Sec. 1 we discuss
the qualitative features of the effective two-body
interactions, i.e., that part of the nuclear interactions
which is not included in the average central potential.
These effective interactions can be described either in
the language of the shell model or of the unified model
and a connection between the two approaches is dis-

' J. P. Klliott and B. H. Flowers, Proc. Roy. Soc. (London)
A229, 536 (1955); M. Redlich, Phys. Rev. 99, 1427 (1955)."E.B. Paul, Phil. Mag. 15, 311 (1957); G. Rakavy, Nuclear
Phys. 4, 375 (1957).
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cussed in Sec. 2. In Secs. 3 and 4 we treat a simplihed
two-dimensional nuclear model which is meant to
illustrate the competition between independent-par-
ticle motion and collective motion. The level spectra
at the beginning of the nuclear 1p shell are briefly
studied in Sec. 5. We conclude this article with some
general remarks concerning coupling schemes in heavy
nuclei.

I. QUALITATIVE CONSIDERATIONS

A large part of the interactions between nucleons in
nuclear matter can be replaced by a central nuclear
potential which is essentially the average interaction
of each nucleon with the rest. If this were the only
effect of the interactions, each nuclear wave function
would be a single Slater determinant of one-particle
wave functions, and all excitations would involve a
single particle at a time. The success of the single

particle version of the shell model in accounting for
ground-state spins of many odd-A nuclei and for the
magic numbers implies that such an independent-
particle description is at least a fair approximation to
the actual situation in nuclei. ' ' Of course, even this
kind of coupling scheme implies the existence of some
correlations rather than strictly independent motions
of nucleons. First of all, the Pauli principle acts effec-

tively like a repulsive force between identical particles
(if their spin wave functions are the same), even in the
absence of any explicit interactions between them.
Secondly, a part of the correlations due to the inter-
actions is already included in the single-particle model:
Since it is unlikely to find a nucleon outside the nuclear
surface, it is improbable to find any two nucleons more
than one nuclear diameter apart.

A strict independent-particle description would

imply that the energy of any state depends only on the
orbits which the nucleons occupy, and not at all on the
way in which these nucleons couple their angular
momenta. Thus most levels would be highly degenerate,
contrary to the experimental evidence. Consequently,
in order to account for the features of nuclear level

schemes, it is necessary to consider the interactions
between nucleons, i.e., the correlations, in more detail.
For example, since the interactions are mainly attrac-
tive, they tend to maximize the spatial symmetry of
the low-lying states. These additional correlations can
be regarded as due to so-called "effective" interactions.
The problem of relating these effective interactions to
the basic two-nucleon interactions has not yet been
completely solved, but considerable progress in this
direction has been made. "In this paper, we will restrict
ourselves to some qualitative remarks on this subject.
First of all, it is very likely that the effective inter-
actions are less singular than the basic interactions,

» Brueckner, Eden, and Francis, Phys. Rev. 99, 76 (1955);
H. A. Bethe, ibid. 103, 1353 (1956); R. J. Eden, in Nuclear Re-
actions, edited by P. M. Endt and M. Demeur (North-Holland
Publishing Company, Amsterdam, 1957).

since the Quctuations are at least partially averaged
out in nuclear matter. Thus, on the basis of reasonable
assumptions regarding the basic interactions, it is
expected that the probability of finding any two
nucleons separated by 2&(10 " cm or more in the
interior of a nucleus is given nearly correctly by an
independent-particle picture. " On the other hand,
short-range correlations involving distances of 10 "
cm or less are very sensitive to the details of the inter-
actions, e.g., the existence of a repulsive core."How-
ever, these correlations should manifest themselves
only at high energies and are probably not of great
importance for most low-energy phenomena.

It is possible to fit the properties of the two-nucleon
system, vis. , the deuteron and nucleon-nucleon scat-
tering, with a variety of interactions, especially if we
restrict ourselves to low and medium energies. Thus,
below about 100 Mev, the two-body data can be
accounted for quite well with static (except possibly
for spin-orbit effects) and rather nonsingular (i.e.,
Yukawa or Gaussian) interactions. " In most shell-
model calculations to date, ' ' these have been used as
effective interactions and regarded as essentially the
complete interactions between extra-shell nucleons,
rather than as fluctuations about the average. This
approach has proven very satisfactory, especially for
nuclei with very few nucleons outside of, or missing
from, closed-shell configurations. However, in these
cases, the results depend mainly on the coupling of the
nucleon angular momenta, and to a much lesser extent
on the detailed form of the interactions, e.g., the radial
integ rais.

We would like to argue that the effective interactions
may be actually somewhat different from the above
form. Fluctuations of the matter density tend to be
suppressed by the action of the exclusion principle,
especially in the interior of the nucleus where the density
is largest. On the other hand, in the region of the
nuclear surface, the matter density is lower, and the
Pauli principle is less eGective in cutting down the
correlations. Thus, it appears plausible that the effective
interactions, at least those which are of the most im-
portance for low-energy phenomena, occur mainly at
the nuclear surface. t This approach is closely related

"K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958); Gomes, Walecka, and Weisskopf, Ann. Phys. 3, 241
(1958).This is also in accord with the small values of the absorp-
tion (imaginary) potential felt by low-energy nucleons scattered
from nuclei (see reference 2).

"Brueckner, Eden, and Francis, Phys. Rev. 98, 1445 (1955).
~~ J. Blatt and V. F. Weisskopf, Theoretica/ Neckwear Physics

(John Wiley and Sons, Inc. , New York, 1952), Chaps. 2 and 4;
R. G. Sachs, Nuclear Theory (Addison Wesley Publishing Com-
pany, Cambridge, 1953), Chaps. 4 and 6; L. Hulthen and M.
Sugawara, in IIandbuch der I'hysik, edited by S. Flugge (Springer-
Verlag, Berlin, 1957), Vol. 39.

t Note added in proof. —Some effective low-energy interactions
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detailed theoretical investigations indicate that these residual
interactions act essentially only between nucleons on top of the
Fermi sea and with approximately opposite momenta. As has been
pointed out by Bohr, Mottelson, and Pines (to be published) such
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e, j,= —P cga(r, —Rp)5(rp —Rp)Pq(cos8, k), (1.2)
X=0

where 8;k denotes angular distance between the two
nucleons:

8,p=r,7,/Ro.

In this expansion, terms for which

X)Rp/rp (1 4)

are expected to be very small.
Incidentally, for each X there is only one radial term,

and each radial integral can be factored into a product
of two integrals each involving one particle only.
Instead, if conventional interactions are used, the
radial terms depend on the coordinates of the two
particles in a more complicated way, i.e., they are not
factorable. Thus the use of surface interactions may
actually simplify the calculations. While the validity
of form (1.1) depends on the assumption that the
surface thickness is small compared to the nuclear
radius, the factorability of the effective interactions
may hold more generally.

By means of the well-known addition theorem for
spherical harmonics, the eGective interactions can be

interactions give rise to a pairing energy in even-even nuclei
analogous to the energy gap in superconducting metals LBardeen,
Cooper, and Schrieii'er, Phys. Rev. 108, 1175 (195'I)).

"C.Levinson and K. W. Ford, Phys. Rev. 100, 1 (1955).

to the idea of the uni6ed model. For example, it is
known " that a deformation of the nucleus gives rise
to an effective interaction between nucleons at the
surface.

To study this relation a little more closely, let us
consider the following e8ective interaction:

&'I = —&o&(r~—Ro)&(rs —Ro) expL —(r;I/ro)'5, (1.1)

i.e., two nucleons interact (in addition to their inter-
action via the average potential) only if they are both
on the nuclear surface, which is assumed to be sharp.
The quantity r;& is the distance between the two
nucleons, Eo denotes the nuclear radius, while ro and
Uo refer respectively to the range and strength of the
effective interactions. The specific Gaussian dependence
is chosen here only for convenience of illustration. Of
course, the above form is oversimplified; more realistic
effective interactions will certainly depend not only on
spatial coordinates but also on spins, and probably also
on the nucleon momenta. f

Note that (1.1) implies that the interactions are
also suppressed outside the nucleus, while in actual
fact, the interactions are not suppressed there at all.
However, this should not introduce any significant
errors, at least for calculations of bound states, since
bound nucleons only rarely penetrate outside the surface
region.

The above eftective interaction can be decomposed
into angular components as follows:

rewritten in the form

p,s ———P P L4or(2K+1)—'rgb(rp —Rp) Yg„*(8„,pot)

X5("-R.) Y..(8',.')5 (1 5)

in first order in the cq. The angular brackets indicate
the expectation value of the enclosed term. An extra
potential can also be generated by having the potential
well shape be nonspherical. Suppose, for example, that
the nuclear surface is given by

R(8, p) =R.L1+2 Z.-..Y..(8,p)5,

to erst order in the deformation parameters n),„, and
that the depth of the potential is Vo inside and zero
outside. Then the extra potential is'

—Qg Q„VpRpng„b(r, —Rp) Yg„(8,, q,), (1.8)

to first order in the n) „.
It appears from these remarks that the two de-

scriptions are at least qualitatively equivalent, pro-
vided

n),„——4rr (2K+1)—'(cg/VpRp)

X(Pa &(rs —Ro) Y~,*(8s,p ~)). (1.9)

The connection between the two approaches is dis-
cussed more fully in the next section.

2. DESCRIPTION OF INTERACTIONS IN THE
LANGUAGE OF THE UNIFIED MODEL

We shall assume, in view of the remarks in the last
section, that the nuclear Hamiltonian can be expressed
as a sum of one-body and two-body terms. Accordingly,
we write the Hamiltonian in the form

&=2;«+s 2;Zs t,p, (2 1)

where BC, denotes the one-body Hamiltonian for each
particle and v;~ represents the effective two-body
interaction. The single-particle Hamiltonian is given
by

X=T+V, (2.2)

where T denotes the kinetic energy operator and the
potential V is spherically symmetric.

As written here, the two-body part of the Hamil-
tonian also contains self-interaction terms, since we

The above interactions may be readily described in the
language of the unified model. To begin with, suppose
that at a given time, the nucleons are in specific single-
particle states. Then the interactions give rise to an
extra potential, in addition to the central average
potential. The extra potential seen by particle i at a
given time is

—Pq P„L4s.(2K+1) 'c&(Pt 5(rs —Rp) Y~„*(8I„&p~))

Xb(r, Rp—) Y),„(8;,pp,)5 (1.6)
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have
2E Z ~'~= EX ~'~+kZ ~". (2.3)

where the symbol n denotes the set of e„. The two
descriptions are seen to be essentially equivalent,
provided

These self-interaction terms (the v;,) have the same
e8ect as a slight change in the one-body potential, but
it is mathematically convenient to include these terms
in the eGective interactions, rather than in the potential.
This point is illustrated in Appendix B.

In line with the remarks of the last section, we also
assume that the e6ective two-body interactions are
attractive and factorable, i.e., that they can be ex-
pressed as follows:

(2.4)

where the c, are positive constants, while the g„repre-
sent Hermitian one-body operators, the g„* their com-
plex conjugates, and the sum is assumed to contain a
relatively small number of terms. [Each term may,
for example, correspond to one of the terms in the
multipole expansion (1.5) of the surface interaction. $
This kind of decomposition is also used in conventional
shell model calculations, but only for the angular part
of the interaction. Incidentally, factorable interactions
of the form (2.4) have been used previously for the
purpose of classifying nuclear states. Thus Racah has
extensively treated such interactions, in which the g„
are the components of the angular momentum vector,
or generalizations thereof. "In that case, the interaction
has the form of a Casimir operator, and group theo-
retical methods may be applied. Klliott" has also con-
sidered these interactions for the case that the g„are
the components of the quadrupole tensor. Note that
the g, depend on the values chosen for the scale factors
c„. If the c„have the dimensions of energy, then the
g„are dimensionless variables. In summary, the nuclear
Hamiltonian is assumed to be of the form

h(e, r)Xx(e,r) =Ex(e)Xrc(e,r). (2.10)

The intrinsic wave functions are antisymmetrized
products of single-particle functions. Note that the
second term on the right-hand side of (2.9) essentially
counts all the two-body interactions twice, but this
error is electively compensated by the last term.

The main point of this paper is to show the close
relation between the original Hamiltonian H and the
intrinsic Hamiltonian h. Thus approximate solutions
(energy levels and wave functions) of the many-body
problem (2.5) can sometimes be obtained in terms of
solutions of the intrinsic Hamiltonian, without having
to explicitly diagonalize the complete energy matrix.
In order to investigate this relation in more detail, we
begin by noting that, in

(2.11)

(2.8)

Next, we introduce a so-called intrinsic Hamiltonian:

h(e, r) =P;X;—P; Q „c„n„g„(i)+-,'Q, c,n, 2 (2.9)

which depends upon the o,„. In this paper the n„are
assumed to be real, but this is no essential restriction.
The set of particle coordinates is denoted by r.

Clearly, h generates independent motions of all the
particles in the same nonspherical potential. As will be
seen, this intrinsic Hamiltonian can be regarded as a
starting point in a perturbation calculation. Note that
the magnitude of n„depends upon the value chosen for
c„.If c„has the dimension of energy, then O.„ is dimen-
sionless. The intrinsic wave functions and energies are
given by

H=Q X;——', Q Q P c,g„*(k)g„(i)
k v

(2.5)

The instantaneous potential seen by particle i is given
by

V''(r) = V'(r) —Z Z. c.&g.
*(&))g.(i) (2 &)

We can simulate the eGect of the two-body inter-
actions by letting the potential depend upon additional
collective variables n, as follows:

V, (e,r) = V, (r) —P, c„n„g,(i), (2.7)
"G. Racah, "Group Theory and Spectroscopy, "mimeographed

lecture notes, Princeton, 1951 (unpublished). G. Racah, Parkas
Memorial Volume (Research Council of Israel, Jerusalem, 1952),
Vol. 1, p. 29. This approach was applied to calculations of nuclear
binding energies by I. Talmi and R. Thieberger, Phys. Rev. 103,
718 (1956); see also R. Thieberger and A. De Shalit, Phys. Rev.
108, 378 (1957l."J.P. Elliott, Proceedings of the Pittsburgh Conference on
Nuclear Structure, June, 1957. Elliott has also shown that the
wave functions generated by these quadrupole-quadrupole inter-
actions are surprisingly close to those resulting from conventional
shell model calculations, e.g., using Vukawa interactions of the
usual range. .

While both h and Bh/Bn„depend on n„, then„-dependent
terms which appear on the right-hand side of (2.11)
must cancel, since II does not involve 0..

Incidentally, it may be convenient to include a part
of the two-body interactions explicitly $i.e., in the form
(2.4)j in. the intrinsic Hamiltonian. f Then the intrinsic
wave functions are no longer products of single-particle
wave functions. In this case, (2.11) still holds except
that the sum v now extends only over those indices
which stand for the remaining interactions, i.e., those
not already included in h.

In general, the intrinsic wave functions are not
eigenfunctions of the original Hamiltonian. However,
let us suppose that operation of H on the intrinsic
function X~ gives the following:

H(r)xx(r, e) = tax(e, B/Be)xx(r, e), (2.12)

where 8~ denotes an arbitrary Hermitian differential
operator which involves n„and 8/Bn„but not particle
coordinates or momenta. We shall show that a wave
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function of the form" 2

f
p«, (r) = x«(r, n)C«„(n)dn (2.13)

is actually a solution of the many-body problem:

IIi&«, =E«,f«, (2.14)

The quantity Cz„ is a collective wave function. The
first subscript E describes the corresponding intrinsic
wave function, while p refers to the particular quantum
state of the collective motion. In this paper, we shall
be concerned mainly with the collective spectrum
based on the lowest intrinsic state Xr, (n). For the sake
of simplicity we shall, for the moment, restrict ourselves
to consideration of a single collective variable o. which

may be any function of the o,„. It is readily shown by
partial integration that

(a)

M
pc& e

L

FIG. 1. Schematized intrinsic level spectra. (a) Uniform spacing
of levels. Collective displacement operator 8/Bo. couples only
states in adjacent groups. (See Sec. 2.) (b) Essentially uniform
spacing of levels, but collective displacement operator couples
close-lying states as well as states in adjacent groups. (See
Appendix A.) Arrows connect pairs of states coupled by S/Su
The total wave function can be expressed in the form (2.46). In
case (a), we have a collective spectrum built on the lowest in-
trinsic state. In case (b), the wave function is a sum of two terms
corresponding to states L and M.

I:«(u,B!Bu)x«(r,u) j~«.(u) du

x«(r,u)L«*(u, BIBu)C'«. (u)1du (2 13)

Before studying the collective excitation spectrum
in more detail, we give a few general relations which
will prove useful in this connection. Consider any
collective variable u (say, a real function of the u„).
Starting with the commutation relation:

Thus, if (2.12) holds, (2.14) takes the form:

, "X«(r,u) [e«*(u,B/Bu)C «„(u)]du

LB/Bu, hf = Bh/Bu,

it is readily shown that

(2.20)

=E«„x«(r,u)C «„(u)du. (2.16)

Bh (B ) BEi
X.= E(E—« E~—)I —

I

—x«+ x., (2»)
BQ EBu) «, Bu

The previous equation must be satisfied for every
value of r. This requires that the collective wave
function obeys the following equation:

8«*(u, B/Bu)C «„(u) =E«„4«„(u). (2.17)

HXL es(n)XL+Qv sv(BeXL/Buv )) (2.18)

where the 6p are functions of 0. but the e2„are all
constants.

Under these conditions, the diBerential equation
governing the collective motion is of the form

82

eo(n)C'i, +Z es,
v ~Qv

(2.19)

"Wave fuI)ctions of this form have also been used as starting
point for a variational treatment of the collective motion. See
R. E. Peierls and J. Yoccoz, Proc. Phys. Soc. (London) 70, 381
(1957). T. H. R. Skyrme, Proc. Roy. Soc. (London) 239, 399
(1957};and reference 20."J.J. Griffin and J. A. Wheeler, Phys. Rev. 108, 311 (1957).

These considerations are readily generalized to take
into account several collective variables. Ke shall
show below that under certain conditions of interest
an equation of the form (2.12) is in fact approximately
satis6ed. In particular, it will be found that

where the matrix element is given by:

(B) (B) t Bxr,
I

—
I

= —
I

—
I

= ~' x«* «(222)
EBu& «, EBu&,«Bu

In particular, the diagonal element of Bh/Bu for the
intrinsic ground state is

(Bh/Bu) r, r, BEI,/Bu—— (2.23)

If n refers to any one of the n„, it follows that from the
above and (2.9) that the self-consistency relation (2.8)
must be satisfied whenever BEr,/Bu vanishes, i.e., when
we are at an equilibrium deformation. "

Let us now make some specific assumptions regarding
the intrinsic energy level spectrum. The simplest case
we will treat is illustrated in part (a) of Fig. 1. It is
assumed that the collective displacement operator
B/Bu couples the lowest intrinsic state Xr, only to states
at a specific energy, denoted here by e, above it. Thus
we have

(B/Bu) «r, 0, unless E« E——r, e. — ——(2.24)

"S. A. Moszkowski, Phys. Rev. 103, 1328 (1956).

In this case we may replace every term (E« E&)in-
Eq. (2.21) by e. No error is made by this substitution,
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since, in view of (2.24), the only states which contribute
to the sum over E are those for which Ez —EI, equals
e. Using the closure relation, we then obtain

for every P„. Using (2.32), we readily obtain

an„/Bp„= (y„/c„)lu„„. (2.34)

With t,he help of the above relations and (2.27) it can
be shown that

(2.25)XL—= —e—+ XL.
a an at t' 8'h ) 8 cjh

E QPp ) I I cjPp cjPg- LL
(2.35)

We shall assume, in addition, that e is independent
of o. and that EI. depends only weakly, if at all, on e,
Then we can write It also follows that

(cjh/Bn) XL= e(BX—L/Bn) (2.26)

If o. is an angle variable, this assumption is obviously
satisfied as a result of rotational invariance. However,
if n denotes some other collective variable, it is not, in
general, valid. Nevertheless, even if the intrinsic
energies depend strongly on n, relatively little error is
made by using (2.26) as we shall see in the following
sections.

Next, we turn to the evaluation of HXL. From (2.9)
it follows that

where

1 8 1 l9 8
F

cp Bnp P F Bpp Bpp

F=(vi v2" v-)*'

(2.36a)

(2.36b)

Substitution of this result into (2.30) gives

1 cj F 8)»I.= —-'"I P-
F BP„P„BP„II

+ (EL, ,'rte) XL. —(—2.37)
8 h/Bnpcjnv'= c„8p„'.

We can verify the commutation relation:

ILB/Bn„, Bh/Bn„g= c„.

(2.27) I et us attempt to take into account the dependence
of EI. on the P„. For simplicity, we shall, as before,

(2.28
regard e as a constant. Using (2.25), we find

where m is the number of collective variables. This
equation is just of the form (2.18) with

(2.31a)

(2.31b)

It is often convenient to use as collective variables
not the n„defined by (2.9), but certain real functions
of the n„. These quantities which we denote by p„, may
for example, describe the deformation and orientation
of the system. We shall assume that the transformation
between the n„and P„satisfies

Bpp/Bnp= (cp/'rp) *upper& (2.32)

where the c„have been defined previously, the p„and
u„, are functions of the p variables, and the u„„ form
the components of a real orthogonal matrix. An
explicit expression for the y„can be obtained as follows:
We assume that the intrinsic energy EI. is essentially
independent of all collective variables. Then according
to (2.23) we have:

(Bh/Bp„) LL= 0 (2.33)

With the help of (2.26) it then is easy to show that

(Bh/cjn„)'XL =e'(O'Xz/Bn, .')+ec,XL. (2.29)

Substituting this result into (2.11) and using (2.10),
we obtain

8 x
HXL = ——',e' p — + (EL ,'rte) XL, —(—2.30)

Cv ~CLv
2

Now suppose that the intrinsic wave function XL,, but
not the intrinsic Hamiltonian h, is independent of one
or more of the collective variables say, pi, i.e., all
matrix elements of the operator 8/Dpi vanish. In this
case, the intrinsic energy must depend on pi. In par-
ticular, with the help of (2.23) and (2.35) it is seen that

L/ctPi =Pi (2.39)

Let us, however, neglect any dependence of EI. on the
other collective variables, and assume that pi is fixed
at some value for which all BEL/Bn„vanish, i.e., at an
equilibrium deformation. Making the transformation
of (2.30) to p variables, we obtain Eq. (2.37) except
that the sum is now to be taken over all variables
except Pi and rt is to be replaced by st 1. —

In all the cases treated above, the total wave function
is of the form (2.13) except that we have several col-
lective variables. If the intrinsic structure satisfies
(2.37), the corresponding collective wave functions O'L„

obey the equation

1 8 P 8—2e' 2 — — c'L»(5)
F BP„y„BP„

I )+
~

EL e ~c'L„((1)=E@L,(y). (2.4o)2)

1 8 BE
»L ———-,'p ——e + XL

Cv - ~&v Gv—

+ (EL,—-', Ise)XL. (2.38)
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A 8

2Bp c)Ps
(2.41)

where the inertial parameter 8„is given by

Thus, we have a collective excitation spectrum built
upon the lowest intrinsic state. The first term in (2.40)
can be regarded as a collective kinetic energy, essentially
of the form

complicated so that instead of (2.12) we have the more
general relation:

+xK ZK'0KK'xK'y (2.45)

where each of the 8~~ is again a differential operator
involving n„and 8/r)n„T. hen each eigenfunction of H
is no longer of the simple form (2.13) but is a linear
combination of such functions:

B„=5'y„/e'. (2.42) p(r) =+K "XK(r,n)C K„(n)dn, (2.46)

If P„denotes an angle variable, then the corresponding
parameter is a moment of inertia. I.et us compare
(2.42) with the value obtained by use of time-dependent
perturbation theory" ":

1 t'r) p
B„=2@P-

K EK—Ei (aP.) Ki
(2.43)

By combining Eqs. (2.21) and (2.35) (again under the
assumption that EJ. is independent of P„), we may
readily show that

s

Z(EK—E~)
I

E c)P„
(2.44)

If all energy differences appearing in the sum are equal
to e, we immediately obtain (2.42) . The quantity
EI.——,'ee represents the potential energy of the col-
lective motion. If the variation of e with P„can be
ignored, then the intrinsic energy El. and the collective
potential energy diGer only by an additive constant.

Next suppose that the intrinsic level structure is more

where the collective wave functions C, (n) obey the
coupled set of di6erential equations:

QK 8K K*(n,8/r)n)CK „(n)=EK„CK„(n). (2.47)

(2.48)m= P, m(r, )

between two states denoted here by the indices Ep
and E'g', respectively. Even if we restrict ourselves to
a single collective variable, such matrix elements have
a rather complicated form. Thus it is seen that

In the example illustrated in part (b) of Fig. 1, each
of the wave functions is a sum of two terms. This case
is discussed in more detail in Appendix A.

It should be noted that the integration over n intro-
duces correlations into the total wave function, even
if the intrinsic wave function is a single Slater de-
terminant. Also, though the y and C are separately
normalized to unity, the total wave function as given
by (2.13) is not, since it is not a simple product.

Now consider the matrix element of a one-body
operator, i.e.,

where

JfC'K „*(n')OKK K(n', n)C K„(n)dn'dn
4 K;*'dT(QK,«= (2.49)

(fJ'C'K „*(n')NK K (n', n)CK „(n)dn'du)i( jJ'4K„*(n')NKK(n', n)CK„(n)dn'dn)-'*

and

NKK(n, n) = XK*(r,n')XK (r,n)dr,

0)IK K(u', n) = "XK *(r,n') On (r)XK (r,n) dr

(2.50)

(2.51)

However, if the number of particles is large, a simple
approximate expression for the matrix element can be
obtained, as we will now show.

Each intrinsic wave function is essentially a product
of single particle functions, thus any normalization
integral can be written as a product of overlap integrals,
each involving one particle. If n and o,

' are only slightly
diGerent, each of the single-particle functions changes
only a little between e and n', thus each of the one-

particle overlap integrals is only slightly less than unity.
Still, if the number of particles is sufficiently large, the

N(u', n) =S(n' —n)
'g~oo

(2.52)

where S is proportional to the Dirac delta function:

S(x)=1 if x=0

=0 if x/0.
(2.53)

By the same kind of argument, one can show that:

total overlap integral will be small. "%e may represent
this quantity as follows:

(2.54)On, (n', n):OR(n, n) S(n' —n).s' D. R. Inglis, Phys. Rev. 96, 1059 (1954); 97, 701 (1955).
"A summary of other approaches to the calculation of inertial

parameters especially moments of inertia, is given by T. Tamura,
Fortschr. Physik (to be published). Consequently, if the overlap integrals are proportional
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to 6 functions, the matrix element is given by: along the s-axis. ] The possible values of X are &E,
+(X—2) &1 or 0, and the single-particle energies
are given by

e~y= A(uo(X+1), (3.1)

C x „.*(n)5Rrc rr(n, n)C x„(n)dn. (2.55)

This result is also obtained if we regard the n not as a
generator coordinate as in (2.13) but as an extra
variable, i.e., if we write each wave function in the
product form used by Bohr and Mottelson':

Px„(r,n) =Xrc(r,n)4 Ir„(n) (2.56)

Although this wave function is not strictly correct, (it
contains too many variables), we can use it for the
approximate evaluation of one-particle matrix elements,
at least if the overlap integrals are essentially 8 func-
tions. This will usually be the case if we are dealing
with a large number of particles in unfilled shells.

3. SIMPLIFIED TWO-DIMENSIONAL NUCLEAR
MODEL; ENERGY SPECTRA

An important aspect of nuclear structure is the
competition between independent-particle motion and
collective motion. If all interactions were of the one-

body type, the nucleons would move independently
in the average nuclear potential, and excitations would
involve only single particles at a time. Closely asso-
ciated with this kind of coupling scheme is the existence
of a nuclear shell structure and also of spherical nuclear
shapes.

While a large part of the basic internucleon inter-
actions can be represented in the form of an effective
one-body interactions, i.e., the self-consistent potential,
there are always some remaining terms which give rise
to correlations between the motions of nucleons. At
least a part of the correlations involve polarization of
the nucleus. If these effects are strong enough, they
lead to stable nonspherical nuclear shapes and to
rotational spectra. In nuclei, we have a situation
intermediate between the two extremes mentioned
above. It is expected that collective effects become
relatively more important as the number of particles
in unfilled shells increases. Thus nuclei which contain
very few nucleons outside of closed shell configurations
are usually well described by an independent-particle
model, while nuclei which are far removed from closed-
shell configurations usually possess rotational spectra.

In this section, eve shall consider a very simplified
two-dimensional nuclear model which, it is hoped, will
provide some insight into the intermediate-coupling
situation. All the particles are assumed to move in a
two-dimensional harmonic oscillator potential. The
single-particle states of this potential are characterized
by the principal quantum number X and the orbital
angular momentum X. )In two dimensions (x,y) there
is only one possible direction of angular momentum—

independent of X. The quantity oro denotes the charac-
teristic oscillator frequency. Each particle is assumed
to have an intrinsic spin of magnitude -„ i.e., the
component ~ of spin along the s axis is either —,

' or ——',.
Besides the oscillator potential, we postulate that each
particle is subject to a spin-orbit coupling:

(3 2)

Finally we will suppose that the particles are subject
to two-body interactions of the form

~,2
—— G'(m~—o/2A)2r 2r22 cos2 (rp; p„—), (3.3)

i.e., two-dimensional attractive quadrupole-quadrupole
interactions. We impose one additional condition: all
matrix elements of the interaction which involve a
change in the X of any particle are assumed to vanish.
Altogether the Hamiltonian for the system of particles
can be written as follows:

where
H=Hi, , +H, , +Ho c2,

HI, .=Q, (X,+1)hcuo,

H, , = —cp, h, o.„
Ho-o = —lG' 2 Z2 2"f'(&)f.(i)

(3.4)

(3.5)

(3 6)

(3.7)

The quantities f„are defined as follows:

fi(i) = (m&uo/2A)r 2 cos2 y, ,

f2(i) = (m(ao/2A)r 2 sin2p, ,

(3.8a)

(3.8b)

triMO (s —y ) 1 (p~ pz )—fi=
I I+ -I I, (3»)

2b E 2 2 2m(nohow 2 j

f2=
wcoo 1

2'5 2222MOA

(3.9b)

We may also write Ho o in the form (2.5), i.e.,

(3.10)

where
(3.11)

(3.12)

but all matrix elements of the f's between single-
particle states of different X vanish. Note that (3.7)
contains so-called "self-interaction" terms. The sig-
nificance of these is discussed in Appendix B.

A more accurate expression for the f's which auto-
matically gives the same matrix elements as (3.8)
between states with the same S and vanishes when
taken between states of different S is
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For the present problem the calculation of the energy
matrix may be simplified by the introduction of some
new quantum numbers. We regard each single-particle
state of principal quantum number X as having
associated with it a fictitious three-dimensional angular
momentum t given by

(3.13)

and with component along a fictitious s axis equal to:

a rotational band with A having the values &2T,
&2T—2, &1 or 0. (The physical justification for
this description is discussed below. ) Of course, the
energy ratios are slightly different from the values
appropriate to three-dimensional rotation. Thus, for
an even number of particles, the sequence of h. is 0, &2,
&4, with an energy ratio of second excited state
equal to 4 rather than to 10/3. Note that all bands have
the same moment of inertia:

(3.14) A'/2~~ =G'/8. (3.23)

In the following we assume that there are e particles
in the shell of principal quantum E. All other shells
are assumed to be either completely filled or empty and
thus they do not enter into the excitation spectrum. The
first term in (3.4), namely Hi, , may be ignored, since
it has the same value for all possible states.

(a) Only Quadrupole-Quadrupole
Interactions Present

We will first treat the case of no spin-orbit coupling,
i.e., that only quadrupole-quadrupole interactions are
present. '4 These interactions can be conveniently
expressed in terms of the t operators. Thus it is easily
shown that f, has the same matrix elements as the
operator t . These are given as follows:

(fi)~ i, ~),= 4[(&'—~&) (&'+&&)]'4 +8', ip2, (3.13)

and

(t,)t'&, ', tt, = ~~[(t' —t,&)(t'+t, &)]l8q ~5i, ', 4+2, (3.16)

where A.& and X& denote, respectively, the larger and
smaller of P and X', and the same for the f,. Thus we

can make the correspondence:

For any configuration, the band with the largest
value of T, denoted by To, occurs lowest in energy.
The quantity To is equal to the maximum possible
value of —,'A for the particular configuration. It is easily
shown that if there is an even number e of identical
spin —,

' particles in a shell which can accommodate g
particles, then

To ———,'m(g —e). (3.24)

In particular for the shell of principal quantum number
S, we have

g=2E+2. (3.25)

As a simple example, for a configuration of two particles
in the shell E the allowed values of T range from 0 to
To (which equals E), in steps of unity. Figure 10(b)
shows the calculated energy level scheme for the con-
figuration of two particles in the /= 2 shell.

The present problem can also be treated very con-
veniently by the method of the unified model. The
intrinsic Hamiltonian corresponding to (3.7) is given
by:

t = —G 2'[rifi(~)+~2f~(i)]+2(~i'+~2') (3 26)

and similarly
(3.17a) We next define two new collective variables P, 8 as

follows:

(3.17b)

The total Hamiltonian can then be expressed as follows:

cli= p cos28,

n2 ——P sin28.

(3.27a)

(3.27b)

H=Ho o 'G'[T '+T ——']—=-—-'G'[T' —T '] (3.18)

where
(3 19)

Each resultant many-particle state is characterized

by the two quantum numbers T and T„where

(3.20)

(3.21)

The T, range from —T to T in steps of unity.
In this limit, the energy levels are given as follows:

(3.22)

Thus all states of the same T can be regarded as forming

"This is the two-dimensional analog of the model considered
by Elliott, reference 18.

Using definitions (3.8) for the f, we can rewrite (3.26)
in the form

It= —PG(moo/2A)g, [rP cos2(&p;—8)]+~P', (3.28)

but with the extra condition that all matrix elements
involving a change in the X of any particle vanish.
The first term in h represents a deviation of the potential
from spherical. If this term is added to the central
oscillator potential, it is found that the surfaces of
constant potential are elhpses. The quantity p can be
regarded as a deformation parameter. The angle
between the major axis of each ellipse (i.e., the direction
of maximum elongation) and the fixed axis is denoted

by 0. The second term in h denotes a restoring term
which tends to oppose the deformation.

In order to find the intrinsic energy levels and wave
functions, it is convenient to express the h in terms of
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PGT—.+ (3.31)

In particular, the lowest eigenvalue, the "ground state
intrinsic energy" is given by

Ei,= PGT+ ',P'. —-(3.32)

The corresponding intrinsic wave function is denoted
by X&. Note that in the present case all intrinsic wave
functions are independent of P. the equilibrium defor-
mation, which gives minimum energy is

P.,=GT,

and the corresponding intrinsic energy equals

(3.33)

(3.34)

At this point, there are two alternative ways of
proceeding. One method is to regard P as fixed and
equal to GT, and to treat only variations of 8 (i.e.,
rotations). This constitutes the rotational model. The
other possibility is to treat variations of both 8 (rota-
tions and P (vibrations). The latter approach is a more
general version of the unified model.

We shall first treat the problem by the rotational
model. Note that the intrinsic levels are uniformly
spaced in energy, with intervals between adjacent
levels (ET=1) given by

e=PG=G'T (3.35)

It is easy to show, in addition, that the operator 8/88
couples only intrinsic states separated by e. Conse-
quently, this problem can be treated by the method
discussed in Sec. 2. The total wave functions are of the
form (2.13), where the collective rotational wave
functions C»ii obey an equation of the form (2.40).
From (2.32) it is readily shown that the quantities pe
and po are given by

(3.36a)

(3.36b)

Thus, Ii defined by (2.36b) equals

F= 2P. (3.37)

the t operator. Thus we obtain

h= —PG[T, cos28+ T„sin28)+siP'. (3.29)

It is seen that the eigenfunctions of h are also eigen-
functions of T', since this operator commutes with
T, and with T„.However, since the potential depends
on direction, the orbital angular momentum is not a
good quantum number for these functions. The eigen-
functions of Ii can be expressed in the form x(r, q'),
where

(3.30)

denotes the angular coordinate of particle i in the body
reference frame, i.e., relative to the direction of maxi-
mum elongation.

It can be seen that the eigenvalues of h must be the
same as the eigenvalues of

Cry= (2s-) '*e"-" (3.39)

and the energy levels are given exactly by (3.22).
We see that the rotational model reproduces the

correct energy levels at least for the present problem.
Each total wave function is of the form

Pri, (r) = (2~) *' t Xi, (r, p', 8)e'~'d8 (3 40)

except for a normalization constant. Note that while
Xl. is not an eigenfunction of A, the integration over
angles picks out of it the component of given A. Thus
if we express X~ in the form

then
XI.(r, ~',8) =P~ eixr~(r, q'),

frii (r) = constaqXrq(r, p).

(3.41)

(3.42)

The total wave function is nonvanishing only if the
corresponding u~ is finite, even though the collective
wave function (3.39) by itself is an eigenfunction of
(3.38) regardless of the value of A. The rotational
spectrum (3.40) goes only up to a certain value of A,
and for each spectrum only even (or odd) values of h
can occur, according to whether T is integer or half-
integer.

If 0=0, then each of the single-particle wave func-
tions in the deformed potential is an eigenfunction of
t,. All single-particle states in the major shell Ã are
characterized by a fictitious angular momentum X/2.
The lowest intrinsic state has component ~E along the
x axis. For the next higher state, the x component
equals ~E—1, and so on. The intrinsic two-particle
state of lowest energy is evidently obtained by putting
two particles in the orbit with component —,X. This
two-particle state is characterized by a fictitious angular
momentum To= Ã with maximum possible component
along the x direction, and it generates the lowest
rotational band. The intrinsic state which generates
the next higher rotational band (T=To 1) may be-
formed by putting two particles into the lowest two
orbits, but with a spatially antisymmetric wave func-
tion. (The corresponding spatially symmetric wave
function generates the ground-state band. )

As was mentioned earlier, the present problem may
also be treated by regarding both 8 and P as collective
variables. Since the intrinsic wave functions are inde-
pendent of P, all matrix elements of 8/BP vanish. The
method of Sec. 2 is again applicable, since all that is
required is that matrix elements between states of

In view of the remarks following Kq. (2.39), the sum p,

in (2.40) extends only over the angle variable 8 and the
eGective number e of collective modes is unity. Thus
the equation for the collective motion is

siG—'(d%&i/d8') ,'G'—T—(T+1)@r&=E@rz. (3.3g)

The collective (rotational) wave functions are
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The characteristic vibrational energy is given by

~vib=G To. (3.45)

In the limit of very large Tp, this is the same as the
energy diGerence between bands whose T differs by 1,
and in any case, it is equal to the excitation energy of
the next to lowest band. The zero-point amplitude is
given by

O'El. ) '*

~P=) W.;b —
) =G(To)&,

BP' ] (3.46)

which is, indeed, small compared to the equilibrium
deformation (3.33) if Tp is large. The resulting energy
spectrum is:

E=G'L —
o To(To+1)+t4To+oh. 'g. (3.47)

If Tp is very large, this agrees with the previous result
(3.22) provided we identify t4 with the quantity Tp T. —
The corresponding collective wave function is of the
form

energy difference other than e vanish (2.24). On the
other hand, since the intrinsic energy depends on P,
and this dependence is only partially taken into account
in this method, we cannot expect to reproduce the
correct energy levels and wave functions exactly. This
time, al/ excitations (i.e., changes in 8 or in P) are
regarded as collective, based on the intrinsic state of
lowest energy (with T=Tp). The sum over t4 in Eq.
(2.40) now extends over both P and 8 and v=2. We
regard e as a constant, but the other quantities as
functions of P. Substitution of (3.32) and (3.35—3.37)
into (2.40) gives

G4To(8o 1 8 1
+ +

2 (BP' 8 BP 4P' 88'3

+(—PGTo+ —',P' —G'Tp)C =EC. (3.43)

According to (3.43) the collective motion consists of
rotations and vibrations, the latter involving oscil-
lations of P about the equilibrium value GTo. If the
zero-point amplitude of the vibrations is small compared
to the equilibrium deformation, the previous equation
can be approximated as follows:

G4Tp' O'C O' O'4
+l(~-GT.)'C

2 BP' 8 88'

—-', G'To(To+2)C =EC. (3.44)

the one-body spin-orbit coupling (3.6). We will now
treat the opposite limiting case; i.e., only spin-orbit
coupling present, besides the central oscillator potential
and no mutual interactions between the particles. In
this limit, the particles move independently.

Note that while the spin-orbit interaction is spin-
dependent, it cannot give rise to any spin-Qip. Thus
the X and 0- of each particle separately remain good
quantum numbers. (On the other hand, in the three-
dimensional case, neither /, nor s, remain good quantum
numbers, only their resultant does. ) In the absen. ce of
any further interactions, each of the single-particle
states is doubly degenerate; the states X, 0- and —A.,—0. occur at the same energy. Thus, a configuration
consisting of an even number of particles will have a
ground state with total orbital angular momentum and
total spin both equal to 0, while for an odd-A con-
figuration, the net angular momentum is just that of
the last odd particle.

Another special property of the spin-orbit coupling
in two dimensions (but not in three) is that the levels
are uniformly spaced in energy. It is evident from (3.6)
that an energy of c is required to raise any particle to
the next higher orbit. I et us restrict our consideration
to states with Z=O. Any single-particle excitation
between two such states involves a change of two units
in the orbital angular momentum X of this particle, and
therefore also in the total orbital angular momentum
h..Thus the first excited state of an even-A configuration
occurs at energy c above the ground state and has
6=&2, while the second excited state (at 2c) is
degenerate with A=O, &4.

Altogether, we can express the energy spectrum in
the form

E=Ep+ pc) (3.49)

The intrinsic energy of the lowest state (v=0) is given

by

where Ep is the ground-state energy, and v is a non-
negative integer, which may be regarded as the number
of excitation quanta. The equal spacing of levels is
suggestive of an alternative description of the spectrum,
namely to regard the excitations not as jumps of indi-

vidual particles, but as vibrational excitations.
Since there are no mutual interactions, the intrinsic

Hamiltonian contains no terms which tend to deform

the nucleus. For this case, it follows from (2.9) that

(3.50)

C.'r4 =44r. r(P GTo) e'4', — —(3.48) Ei=Eo+ ,'t3'- (3.51)
where the m are the solutions of the one-dimensional
oscillator problem.

(b) Only Spin-Orbit Coupling Present

Up to now, we have considered only quadrupole-
quadrupole interactions in this section and neglected e=c. (3.52)

The coefficient of the P' term is actually arbitrary for
this case and we set it equal to unity. As before the
method of Sec. 2 is applicable, since the intrinsic levels

are uniformly spaced, at intervals given by:
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This time Eq. (2.40) has the form

~&vib =&) (3.54)

just the same as the spacing between intrinsic levels
and the collective energy spectrum is exactly given by
(3.49). Note that the term —c in (3.53), i.e., the last
term on the left-hand side of (2.40), is just cancelled
by the zero-point energy.

(c) Both Quadrupole-Quadrupole and Spin-Orbit
Interactions Present

Having treated separately both the cases of quad-
rupole-quadrupole forces and spin-orbit coupling, we
are now in a position to study the more general inter-
mediate-coupling case that both interactions are
present. This forms a highly simplified nuclear model,
which exhibits the transition between independent-
particle motion and collective motion. For this kind
of system, the total orbital angular momentum A and
also the intrinsic spin Z are each constants of the
motion. We will suppose that there are two particles
with o equal to +—', and —-'„respectively, so that the
resultant Z vanishes. Each particle is assumed to have

(cI2 1 8 1 ct2)
—C C

I ap' pap 4p2 F02)

+(Eo c—+',P')—C =EC, (3.53)

which is just the Schrodinger equation for a two-
dimensional isotropic harmonic oscillator. The char-
acteristic vibrational energy is given by

T„(w)=Q; t„(i), (o.,=+2) (3.56)

there will be no change in either of these quantities.
Consequently the group of particles may be regarded
as equivalent to the original single particle. For ex-
ample, a system of two particles in the %=1 shell
(t=-', ) which form a spatially symmetric wave function
is equivalent to a single particle in the N=2 shell

(t= 1), and the problem of 4 particles in the E= 1

shell is, in many respects, equivalent to that of two
particles in the N= 2 shell.

For the intermediate-coupling problem, the unified-
model approach is simpler, though less accurate, than
the explicit treatment of all the interactions, and will
be presented first. Ke shall treat both vibrations and
rotations. The intrinsic Hamiltonian corresponding to
(3.55) is given by

h= —c[T (+) T (—)]
—GP[T, cos20+ T„sin20]+ iP' (3 57)

Apart from the effect of the restoring terms, the in-
trinsic single-particle energies are

a fictitious angular momentum To/2. The Hamiltonian
is given by

H = —c([T,(+)]—[T,(—)])——',G'[T '+T„']. (3.55)

In this way we are actually covering a more general
case, as may be seen in the following way: Suppose
that one or both of the particles (say the one with o.=-,'
and specified X) is replaced by a group of particles each
of which has f7= ~ and which couple together to form
a resultant T equal to —', To and orbital angular mo-
mentum A. equal to X. Since the Hamiltonian depends
on the t's of the individual particles only through the
operators

QJ
K

R
LLI

+2

y I0 -2

+ I'-2 -2

2 =0

I

2i G2p2)2

r (c2+G2p2) ~ (3.58)

where r ranges from ——,'To to —', To in steps of unity.
For large values of P and II=0, r is equal to the eigen-
value of t for the single particle state, while for small

P and o =+-', it approaches &t„ i.e., &-',X. Figure 2
shows a sketch of the intrinsic energy levels for a par-
ticle in the N= 2 shell as function of deformation.

The intrinsic energy of the two-particle system is
obtained by adding the single-particle energies (3.58)
and the restoring term (-',p'). For the lowest intrinsic
state, we find

(P) — T (c2+G2P2) I+LP2 (3.59)

Higher states are uniformly spaced in energy at intervals
of

c= (c2+G~p2) l (3.60)

Pro. 2. Intrinsic single-particle levels in the X=2 shell as
function of deformation. Each state is characterized by a quantum
number ~ defined by (3.58). Also given are the values of X and 0.
in the limit of P =0. Each energy level is doubly degenerate.

x= TOG'/c. (3.a1)

In Fig. 3 we have sketched the ground state intrinsic

We will find it convenient to define a coupling parameter
as follows:
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A(o;b =c(1—x)i. (3.64)

From (3.46) it follows that the zero-point vibration
amplitude DP is given by

(3.65)

According to (3.59) the effect of anharmonicity of El,
is expected to be proportional to the ratio

in lowest order.
As the coupling strength goes from 0 to 1, the energy

levels move closer together, but without any change in
their relative spacing. If Tp is large, deviations from the
harmonic law become appreciable only when x is close
to unity. While the excitation spectrum can be quali-
tatively characterized as vibrational even in the limit
x=0, this kind of description is completely accurate
only if the frequency of the collective motion is small
compared to the characteristics frequency of individual

energy as function of P for several values of x. It is seen
that if x(1, the equilibrium shape is spherical, while
for x) 1 it is nonspherical. '

Let us now consider the two coupling schemes in
somewhat more detail. In the weak coupling case, an
expansion of Er, in powers of P gives

EI, c—=Tp+ ', (1 -x)P—', (3.62)

to second order in P. While the equilibrium shape is
spherical, the energy curve becomes flatter as x in-
creases toward unity. The spacing between adjacent
intrinsic levels is equal to c at P=O, independent of x.
The characteristic vibrational energy is quite generally
given by

(3.63)

For the present case, we have

is small compared to unity, which requires that x is
close to unity.

When the coupling strength exceeds unity, a pro-
nounced change in the spectrum occurs. The spherical
shape becomes energetically unstable and the system
requires an equilibrium deformation given by

(3.68)

The ground-state intrinsic energy, expanded about the
equilibrium deformation, is

EL(P) = —-'G'Tp'(1+x ')+-'y —P )'(1—* '). (3.69)

Thus, as x increases, the equilibrium deformation
increases toward the limiting value GTp, and the energy
minimum becomes sharper. The energy difference
between adjacent intrinsic states, evaluated at P,p is
given by

(3.70)e=G2T p.

In this case, the deformation can oscillate about its
equilibrium value, and we also have collective rotations
about the s axis, The characteristic vibrational energy
1s

A(uv;b=G'Tp(1 —x ')& (3.71)

while the characteristic rotational energy is given by

e2 Q2

2g SP ' 8 (1—x')
(3.72)

Thus, as the coupling becomes stronger (e.g. , if G and
Tp remain constant, while c decreases), the vibrational
energies increase again, while the rotational energies
continue to decrease, in agreement with the experi-
mental evidence. With the help of (3.46), we can make
the following rough estimate:

particles, i.e., if the collective motion occurs adiabati-
cally. If the equilibrium shape is spherical, this occurs
when the ratio

(3.67)

(3.73)

FIG. 3. Ground-state intrinsic energy EI, as function of de-
formation P for several values of the coupling parameter x. (Not
to scale. ) x=1+yTp *, (3.74)

If the ratio (3.73) is small compared to 1, the rotational
and vibrational degrees of freedom are uncoupled from
each other. One would then expect to And relatively
little perturbation of the rotational bands. Thus if Tp
is large, the energies in a rotational band should exhibit
only slight deviations from the law, unless x is close to
unity.

The transition between vibrational and rotational
spectra is expected to occur when the effect of the non-
spherical equilibrium shape is just "washed-out" by
the zero-point oscillations. According to (3.73) this
requires that
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To 20
0

C
UI

will essentially agree with the results just calculated
by means of the unified model ~

En the weak-coupling case (x«1), it is convenient
to use the independent-particle wave functions (char-
acterized by )i+, X—) as a basis set. The spin-orbit
interaction is diagonal in this representation. Its matrix
elements are given by

( II8o )x. +. 'x ', x+x——
= —-', cL(~+)—(~—)$4+, ~+4—,x— (3 76)

00 0.2 0.6 0.8 I.O 0.8 0.6
T~ Te ~ A*2 I

0
I

0.4 O.R 0
~x

The matrix elements of the quadrupole-quadrupole
interaction may be obtained with the help of (3.14),
(3.16), and (3.18). The diagonal elements are

FIG. 4. Energy spectrum for two-dimensional intermediate-
coupling problem according to unified model. Each particle is
assumed to be subject to a spin-orbit interaction of strength c,
and the particles interact by attractive quadrupole-quadrupole
forces of strength G', The total intrinsic spin Z is assumed to
vanish. The quantity To, which is half of the largest possible value
of total orbital angular momentum h. , is taken equal to 20, a
rather large value. This corresponds to the problem of two
particles in the harmonic oscillator shell of principal quantum
number N=20 Lsee Eq. (3.55)j.However, it also corresponds to a
variety of problems involving a larger number of particles in
shells of smaller principal quantum number. It is convenient to
define a coupling parameter x= TDG'/c For x&1 .(spherical
equilibrium shape), the excitation energies, in units of c, are
plotted against x. Below x=0.8, the spectrum is assumed to be
of the vibrational form (3.64). For x)1, (nonspherical equi-
librium shape) the excitation energies are expressed in units of
TON and plotted against 1/x. Above x=1.25, the spectrum is
assumed to be of the rotational form (see Eqs. (3.71) and (3.72)g.
The dotted lines in the transition region represent qualitative
interpolations. Each level is characterized by the oscillator
quantum number v and by its orbital angular momentum A. in
the limit x ~ 0, and by the quantum numbers T and A in the
limit x ~ ~. Only states corresponding to values of v up to 3 are
shown. The states which correspond to v =4 become the following
in the limit of x ~ ~:T= T, 4=8' T= To —1, 4=4' T= Tp —2,
A=O. Also plotted for comparison is the energy spacing e between
intrinsic levels as function of x. (See 3.52, 3.70.)

where p denotes a constant of order unity. In the
transition region, the collective energies are small
compared to the intrinsic excitation energy; in par-
ticular, using Eqs. (3.70—3.72), we find that

(IIo 0) ~+), , ),+~
= sG'I:—To(To+2)+s (~+)'+-'() —)'j (3 77)

This interaction also couples pairs of states with the X

of each particle differing by two units (but with the
same total A). These off-diagonal elements are given by

(IIq-0) ~+ ~-, ~+~-= —sG'(LTo —() +)&)
x LTo+ ("+)&3LTo—()I )&3LTo+ (" )&3)

'*

X4+', ixylg24 —', o,—)ps' (3 78)

where (X+)& means the smaller of X+ and X+', and
similarly for the other symbols. The quantum numbers
X+, )I,—are related to v and A as follows:

(P,+)+(X—) =A,

(X+)—()I,—) =2(Ts—v).

(3.79a)

(3.79b)

E,s—Esp ( x x) 1 x( Ap
=I 1——I+—-I "+—

I

c I 2 8) Ts 4( 4)

+—(3v'+2I —-',A') . (3.80)
16

The energy spectrum, up to second order in the x and
erst order in 1/Ts, is

(Eo,II/e) = const X Ts '. (3.75)

Of course in this region the collective motion does not
separate into rotations and harmonic vibrations. On
the other hand, in the strong-coupling case (x))1) the
adiabatic condition holds for the rotational motion,
but not for the vibrational motion.

Figure 4 shows a sketch of the energy spectrum as
function of the coupling parameter for a rather large
value of To, namely 20. Note that the energy of the
first excited A=O vibrational state has a minimum in
the transition region. This is expected since the mini-
mum of the intrinsic energy curve is fattest in this
region (as shown in Fig. 3).

We now treat the intermediate-coupling problem
(3.55) by explicit consideration of all the interactions.
&e expect to find that &hq ca,lcula, ted energy spectra

In the limit To~ ~, this gives the same vibrational

spectrum as calculated previously (at least up to second
order in x, but presumably to higher order as well).
The levels in a vibrational multiplet are split by an
amount proportional to 1/Ts, and arranged in order of
increasing A'.

It is of interest to compare these results with the
ordering of levels in even-even nuclei exhibiting vi-
brational spectra. "In particular, consider the so-called
"two-phonon states" (I=O, 2, 4). The experimental
evidence on their level ordering is still very incon-
clusive. " However, it appears that the 2+ state is

"G. Scharff-Goldhaber and J. Weneser, Phys. Rev. 98, 212
(1955), see also M. Nagasaki and T. Tamura, Progr. Theoret.
Phys. Japan 12, 248 (1954).' I . A, . Mallmann (to be published).
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frequently below the 4+ state, "' while the 0+ state
seems to be higher in energy.

The same effects which split the levels in a multiplet
must lead to deviations from the uniform level spacing.
Thus the v=2 states occur at energies slightly larger
than twice the energy of the v= 1 state:

E2o—Eoo =2+—(-,'x'),
TpE12 Eop

(3.81a)

E24 Epp

E12 Epp

1=2+ (x+-,'x').
Tp

(3.81b)

G'
l

1 10(Tp—T)+1=—1+—1+
Sl x

(3.86)

When the coupling parameter exceeds unity, it is
convenient to use the strong-coupling wave function
(characterized by T, A) as a basis set. The quadrupole-
quadrupole force is diagonal in this representation:

(&q—q)r x, ri.= sG l
—T(T+1)+4k ]or r. (3.82)

For the present case, the strong-coupling wave func-
tions are symmetric or antisymmetric in the spatial
coordinates of the two particles, depending on whether
Tp —T is even or odd. Using this fact, it can be readily
verified that the matrix elements of the spin-orbit
interaction satisfy the relation:

(K.p.)r x, ra= —&Li —(—1)
' ][4(+)]rii, r~ (3 83)

In particular, the spin-orbit interaction has no diagonal
elements. Since the spin-orbit operator is a vector, it
can only connect pairs of states with T differing by
unity. By using the standard techniques of Racah
algebra, it can be shown that

P,(+)]r i ~, r~= (—1)'(2T+1)'*
)& (T1 —,'h 0

l
T1 T 1-,'il.)—

X W(lT p l Tp T T—1; 1 l Tp) (-:To
I 111 I sTp), (3 84)

where the quantities on the right-hand side denote
Clebsch-Gordan coefhcient, Racah coe%cient, and
reduced one-particle matrix elements, respectively. "
Evaluation of these quantities gives

(H. .o,)r i x, rz= cDTo+1+T) (To+1——T)
X (T'——'A')/(4T' —1)]&. (3.85) .

Since the spin-orbit coupling has no diagonal elements,
there is no first order effect on the energy levels. In
second order, the spin-orbit interaction alters both the
rotational and vibrational level spacings.

The effective moments of inertia of the rotational
bands are given by

where the subscript 0 refers to the state in question in
absence of perturbation (H'=0), and the other sub-
scripts represent the other unperturbed states. In the
present case, the spin-orbit perturbation term H, ,
couples only states whose T differs by 1; thus each state
in the ground-state band (To) is coupled only to the
state of the same ii in the next band (Tp —1).Denoting
the states by their values of Tp

—T, we obtain

E=Ep—
Ei—Eo+L l

&io'l'/(Ei —Eo)]

(3.88)
(Eo—Ep) (Ei—Eo)'

for the energy up to fourth order in the spin-orbit
coupling. We can pick out of (3.88) the term propor-
tional to A.4:

O' A4 ( 21
(~E)4——— —

l 1+
8 4x4Tps E STp

(3.89)

These terms lead to deviations of the rotational energy
spectrum from the A2 law. In the language of the unihed
model, these deviations are due to rotation-vibration
interaction, i.e., an increase of 3 with A, due to
centrifugal forces. It is then easy to show that

Eros Erpo A'A' ——4 t' 21.
(3.90)

Eros Erpo 4 4x—'Tp' ( STp )

to fourth order in x '. If Tp is large, the deviations from
the A.2 law become significant only when x is close to
unity.

Consider next the eGect of the spin-orbit interaction
on vibrational energies. In particular, we may regard
the excitation energy of the state with T= Tp —1 and
4= 0 as the first excited vibrational state. Using second
order perturbation theory, it can be shown that:

Acorn jb ETp —1,0—ET0,0

to second order in 1/x. ln the limit of infinitely large
Tp, this result agrees with the unified model result
(3.72). The effect of finite Tp is to further increase the
energy spacings, especially within the higher bands.

Deviations from the A2 law appear only in fourth
order of the spin-orbit strength. To study this eGect,
say for the lowest rotational band, we may start from
the general perturbation equation:

H,.'H„,'
E=Eo+&oo'+ 2

H()„'H„'H 0'

+2 2 (3.87)
~co mao(E —E„)(E—E )

"F.Raz (to be published). See however, L. Wilets and M.
Jean, Phys. Rev. 102, 788 (1956).

A. R. Edmonds, ArIgulur 3fomeetum in Quaetues Mechegjcg
(Princeton University Press, Princeton, 1957).

2

I
1+—" (3.91)
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0 0.2 0.4 0.6 0.8 I.O 0.8 0.6 0.4 0.2 0
X= T,G/c

I/x
00

I I I I I I I

o.2 o.4 o.e o.e I.o o.e o.e o.4 o.2 o0
X = Te G /c I/X

(c)

0
0

!
0.2

I I

0.4 0, 6
Xs T, Gs/c

I

0.8

T=T, h*2

I I I I

0.8 0.6 0.4 0.2 0
I/X

0 I 00 0.2 0.4 0.6 0.8 I.o 0.8 0.6 0.4 0.2 0
x ~ Te 8 /c I/X

Fro. 5. Energy spectrum for intermediate-coupling problem calculated by diagonalization of energy matrix of (3.55) as function of
the coupling parameter, (Z =0 states only). The energies are plotted on the same scale as in Fig. 4. For explanation of the symbols,
see the caption to Fig. 4. Part (a)—for To 1. Part (b)—fo——r TO=2, on the lowest states (up to y=3 are shown). In the limit z ~ ~,
we obtain the spectrum shown in Fig. 10(b). Part (c) for Ts 4. Part (d)—for To ————8.

to second order in 1/x and first order in 1/Ts. In the
limit of large Ts, this agrees with (3.71) (at least up
to second order in 1/x, but presumably to all orders).
It might be thought that the spin-orbit interaction
should increase the vibrational energies, since it has
no diagonal elements and interacting levels tend to
repel. This argument is indeed valid for the case Tp= 1,
in which case there are only two interacting levels with
A=O (i.e., T=O, 1). However, when Ts is larger, the
situation is diferent. True, the energy of the ground
state is pushed down, energetically, but the coupling
to the lowest state in the erst excited band. This
coupling by itself, would push the Tp —1 state up by
the same amount. However, the Tp —1 state is also
pushed dover by its coupling to the Tp —2 state. Explicit
calculations show that the latter coupling is con-
siderably stronger than the coupling to the ground
state, in fact the Tp —1 state is actually lowered even
more than the ground state. Consequently, the relative
energy difference between the two states, i.e., the
vibrational energy, is decreased by the spin-orbit
interaction.

The energy spectra in the intermediate coupling
region were also obtained by explicit diagonalizations"
of the energy matrices for Tp=1, 2, 4, and 8, each for
several values of x. The TA. representation was used
even in the region of weak coupling. The resulting
energy spectra of the lowest states as function of the
coupling parameter are plotted in Fig. 5 for Tp= 1, 2, 4,
and 8, respectively. For Tp=1 there are only three
states, not enough to exhibit any appreciable collective
effects. As Tp increases, more states are added, and the
spe'ctrum acquires form expected on the basis of the
unified model. Detailed calculations were not made for
values of Tp larger than 8, but there seems little doubt
that the energy spectra will look very similar to the
one sketched in Fig. 6 for To=20. As expected )see
(3.74)g, the transition between weak coupling and
strong coupling occurs for values of x slightly larger
than unity. As Tp increases, the transition occurs more
suddenly. This is also illustrated by plots of the ratios

"These diagonalizations were performed on the Johnniac at
RAND Corporation. The author is indebted to the RAND Cor-
poration for making time available for the matrix diagonalizations.
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Fio. 6. Ratio (E4—Ep)/(Ep —Ep) of excitation energies plotted
as function of x for various values of To. The subscripts 0, 2, 4
denote the lowest states with A. =O, 2, 4, respectively.

of excitation energies shown in Figs. 6 and 1, respec-
tively.

Q=P, r,s cos2p, . (4.1)

Each particle is assumed to have unit charge. For the
sake of convenience, we will express the quadrupole
operator in units of the quantity (5/2nroip) and restrict
ourselves to transitions involving no change in the
principal quantum number E of any particle. Using
(3.8, 3.1'7, and 3.19) we then find

(4.2)

Note that this operator only connects pairs of states
whose orbital angular momenta A differ by two units.
Thus it has no diagonal matrix elements; i.e., the
density distribution, averaged over time, is independent
of direction (although the instantaneous density dis-
tribution may not be). In this respect, the two-dimen-
sional problem is simpler than the three-dimensional
one, since in the latter, each state usually has a static
quadrupole moment. However, even in the two-
dimensional problem, certain quadrupole matrix ele-
ments exhibit pronounced collective behavior.

Let us first consider the strong-coupling limit (only
quadrupole-quadrupole interactions present). For this
case, the spectrum separates into a series of rotational
bands, each of which is characterized by a definite
value of the quantum number T. Since the operator
T, only connects states with the same value of T, it
follows that quadrupole transitions can only occur
between states of the same rotational band. In par-

4. ELECTRIC QUADRUPOLE TRANSITION PROB-
ABILITIES ACCORDING TO THE

TWO-DIMENSIONAL MODEL

An important characteristic of nuclear spectra is the
frequent enhancement of electric quadrupole moments
and transition probabilities for electric quadrupole
radiation far above the values associated with single
protons. 4' In the present case, the quadrupole operator
is given by

I

0.2
I I

0.4 0.6
X*TsGa/C

I

0.8
I

0.$
I

0.e
I/X

I
0.4

I

0.2 0

Fio. 7. Ratio (Ep —Ep)/(Ep —Ep) of excitation energies plotted
as function of x for various values of To. The subscript 0' denotes
the 6rst excited (vibrational) state with A=O. The other sub-
scripts have the same meaning as in Fig. 6.

for the evaluation of matrix elements. Let us use this
form to calculate the matrix elements of the quadrupole
operator. Now each of the z corresponds to a unique
value of T, and, the quadrupole operator connects only
intrinsic states of the same T. Furthermore the total
wave function has the same T as the intrinsic wave
function which generates it. It follows that all matrix
elements between states of different T must vanish.
This result was already derived above.

To evaluate the matrix elements between states in
the same rotational band, we express the quadrupole
operator in the body reference frame as follows:

Q = T,= T,' cos28. (4.6)

ticular, the matrix element between the ground state
(T= Tp, A. =0) and the first excited state (T= Tp, A = 2)
for an even-n configuration is given by:

Quips, rpp=-,'$Tp(Tp+1) j'*. (4.3)

The corresponding single-particle value of the matrix
element is —,'To' as will be shown later. Thus if To is
large, the quadrupole matrix elements are larger than
the single-particle values.

The matrix elements may also be calculated by
expressing the wave functions in the form (3.40). As
an illustration, suppose we have rs particles, each in the
lowest intrinsic state of the %=1 shell. It is easily
shown that the overlap integral is given by

/I/r 1,(8,8') =cos"(8—8'). (4 4)

For N&1, the overlap integral is expected to fall off
even faster as function of 0—O'. Thus, if the number of
particles is suKciently large, the overlap integral
behaves essentially like a 8-funct'ion of the argument
(8—8)." Ef this 8-function assumption is valid, the
wave function can be written in the form given by
Bohr and Mottelson':
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Ke define an intrinsic quadrupole moment by

p= T.'( ii. (4 7)

This is the instantaneous quadrupole moment of the
density distribution in the body frame of reference.

The quadrupole matrix element is a product of Qp

(which equals Tp for the lowest intrinsic state) and an
integral over the 0. Thus we obtain

QTps, rpo=-', Tp. (4.8)

QT,~, ro~ s=-', To(1——,'x ') (4.10)

up to terms of order x '. On the other hand, the tran-
sition strengths between states in diferent rotational
bands (which can be regarded as vibrational transi-

This approaches the exact result (4.3) if Tp))1.
Next we study the weak coupling limit (i.e., only

spin-orbit coupling present), using the two-dimensional
model of Sec. 3. In this case we have an independent-
particle spectrum. Since the quadrupole operator can
act only on one particle at a time, it is evident that
transitions are allowed only between states di6ering
with respect to the wave function of a single particle.
The orbital angular momentum X of this particle must
change by two units. It can be seen from (3.79) that
this is equivalent to the selection rule As= 1. Thus, for
example, the transition between the u =0, A =0 ground
state and the v =3, 3= 2 excited state is forbidden,
since it would require a change in the X of both particles.
The matrix element for the transition between ground
state and first excited state (r = 1, A = 2) is given by

Qn, pp= p&p'* (4.9)

In the language of the unified model, the collective wave
functions are the eigenfunctions of a two-dimensional
isotropic oscillator problem (3.53). The quadrupole
operator is evidently proportional to the collective
variable e&, and thus it permits only "one-phonon"
transitions, ' in agreement with the above result.

Now suppose that we turn on the two-body inter-
actions. This has the eGect of increasing the amplitude
Ap of quadrupole vibration t Eq. (3.65)) but without
significantly changing the form of the energy spectrum
(provided the quantity T is large, and the coupling
strength x is less than unity). The quadrupole matrix
elements between states with Av=1 are therefore
expected to increase with x. In fact explicit calculations
show that they are proportional to 1 —4x up to first
order in x. On the other hand, transitions involving
De=1 remain forbidden. In any case, all ratios of
transition probabilities, like ratios of excitation energies,
are essentially independent of x, provided x(1 and
To))1.

Finally, consider the case of nonspherical equilibrium
shapes. The quadrupole matrix elements between states
within a rotational band will increase with x, since they
are proportional to pE, . LEq. (3.68)$. For example, it
can be shown that in the limit of large To we have

tions") depend on the oscillations of p about its equi-
librium value. Thus, according to (3.73) we would
expect that vibrational transitions are weak compared
to rotational transitions, at least if To is large. To take
a specific example, it can be verified that

1
QTp —1 2, Tpo —

p Tp'g (4.11)

up to first order in x ' and assuming To))1. In the
strong-coupling limit, x —+ ~, the vibrational tran-
sitions cannot occur at all, as was already discussed at
the beginning of this section.

"They can also be regarded as particle transitions involving
a change of the intrinsic structure.

"Such configuration mixing must, however, be taken inta
account for some applications. See reference 2.

~2 D. R. Inglis, Revs. Modern Phys. 25, 390 (1953).
33 D. Kurath, Phys. Rev. 101, 216 (1956).

S. NUCLEAR 1P SHELL

The most striking evidence for collective behavior
in nuclei is found in heavy nuclei far removed from
magic numbers. However, the connection between the
shell model and unified model is perhaps most simply
illustrated near the other end of the nuclear periodic
table, in the 1p shell. Consider a system of ninterac, ting
nucleons in 1p orbits. We assume at the outset that all
configurations mixing with other states, i.e., virtual
1p—2p excitations, etc., can be neglected. This is
expected to be a fairly good approximation since the
1p shell is well separated from other shells. '- Suppose
that there are two kinds of interactions, (a) one-body
spin-orbit interactions, and (b) two-body central,
charge-independent, and velocity-independent inter-
actions, i.e., linear combination of the four well-known

types: Wigner, Heisenberg, Majorana, and Bartlett
interactions. The nuclear coupling scheme in the 1p-
shell is determined by the competition between these
two kinds of interactions. '" If the spin-orbit forces
dominate, the particles move essentially independently
and the j of each nucleon remains a good quantum
number, i.e., we have jj coupling. If the two-body
interactions dominate, the motions of the particles will

be correlated, but the total orbital angular momentum
L and total spin S will be constants of the motion, i.e.,
we have 1.5 coupling. In actual 1p nuclei we have an
intermediate situation. At the beginning of the shell

(A up to 9) the coupling scheme is fairly close to the
LS limit, but for heavier nuclei, the strength of the
effective spin-orbit coupling is larger, "and jj coupling
provides a better approximation. Of course, for any
detailed fits to the experimental data, it is necessary
to treat both spin-orbit and two-body interactions. '

Let us first consider the LS coupling scheme, and
restrict ourselves to'states which are completely sym-
metric with respect to the spatial coordinates of all
nucleons. These completely space-symmetric states
will be lowest in energy, since the mutual interactions
are predominantly attractive. The energy levels of
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such states of the p" configuration can be expressed in
terms of the energy levels of the space-symmetric
two-particle states. " Two p nucleons may form a
space-symmetric state of orbital angular momentum
0 or 2. We can always fit the energies of these two states
by expressing the interaction between the nucleons in
the form

IP-
2 ~ 2

20

t))7) = ++f)1) ' L) (5.1)
"D)», "D,

where a and b are constants, which depend on the
details of the effective two-body interaction. The
interaction Hamiltonian for the p" configuration may
then be written as g g,&st);s, i.e., excluding self
interaction terms, and the energy levels are given by

ls S sl S
) ) 0 P)22

2, 2
"So

E(p")r, ,')s——()s—1)u—+t:,'L(L+1)—)s$b. (5.2)

For attractive interactions, the constant b is positive,
so that a characteristic rotational spectrum is obtained.
We may express (5.2) in the form

+L +&0 (&'/23) LL(L+1)—Ls(Lo+ 1)g, (5.3)

where the subscript 0 refers to the ground state and
the effective moment of inertia is given by

(5'/2~~) =-'f) (5.4)

&)7) G +s(cos)i))7)). (5.5)

The energies of the two-particle S and D states may
then be readily evaluated by standard shell-model
techniques. It is found that

&(p') o= —sG' (5.6a)

&(p') = —(1/25) G'. (5.6b)

The spacing between these two levels gives the moment
of inertia:

fi'/2Q = (3/50) G'. (5.7)

In order to interpret the above energy spectra on the
basis of the rotational model, we proceed by essentially
the same method as in Sec. 3.The particles are regarded
as moving independently, but in a variable non-
spherical potential. '4 For the present case, we assume
that the surfaces of constant potential are spheroids.

'4 S. G. Nilsson, Kgl. Da~ske Videnskab. Selskab, Mat. -fys.
Medd 29, No. 16 (1955).

independent of the number of particles. Because of
symmetry requirements, the allowed values of I. are
restricted to the following: )s, n —2, (1 or 0), i.e. all
even or odd values up to e occur according to whether
e is even or odd. Figure 8 shows the level schemes
(completely space-symmetric states only) for p', p',
and p' configurations in LS coupling.

If self-interaction terms are included, each energy
level is displaced by a constant, but there is no change
in the relative spacing, e.g., the moment of inertia.

To be more specific, let us suppose that the two-body
interactions are spin-independent and of the form:

The well is characterized by a deformation ~ which is
proportional to the fractional elongation of the sym-
metry (3) axis, and by three Euler angles collectively
denoted by 0, which specify the orientation of the system
with respect to a Axed reference frame. The part of the
intrinsic Hamiltonian which describes the nonspherical
part of the potential is

h= —Gn P;Ps(cosy )+-,'n' (5.8)

analogous to (3.28), where y denotes the angular
coordinate of particle i with respect to the 3-axis. The
single-particle states have components of orbital
angular momentum (denoted by A;) along the sym-
metry axis equal to 0 or &1. (Note that the quantity
i1 now has a different meaning than in Sec. 3.) The
intrinsic single-particle energies are given by

E~i =o— 5~a,'2 (5.9a)

(5.9b)

to first order in the deformation e.
Clearly it is energetically most favorable to put all

the particles into the h.;=0 orbit. Then the total corn-
ponent of orbital angular momentum A. along the
symmetry axis vanishes. The spatial part of the re-
sulting intrinsic function, being a product of identical
single-particle functions, is of course symmetric in the
spatial coordinates of all the particles. The equilibrium
deformation, i.e., the value of 0,":which, minimum in-
trinsic energy, is given by

nn~= G P; LPs(cosio )$1.z, =st, (5.10)

where the subscripts 1-1. denote the diagonal element
with respect to lowest intrinsic state Xl,. The spacing

FIG. 8. Level schemes for p', p', and p4 con6gurations in LS
coupling. Only states which are completely symmetric in the
spatial coordiates of all nucleons are shown. Since the total
nuclear wave function must be antisymmetric with respect to
interchange of any two particles, it must also be antisymmetric
with respect to spin and isotopic spin variables. Such states cannot
be constructed for more than 4 particles in the p shell. Each level
is characterized by 2 + ~+~I.z and its excitation energy in units
of f)'/2Q. Note that while all states shown follow the rotational
L(L+1) law, only the states with S=O also follow an I(I+1) law.



S. A. MOSZ KOKS KI

between adjacent intrinsic levels is given by

e= (3/5) Gnm, ——(6/25)»G'. (5.11)

where Qs, the intrinsic quadrupole moment (its in-
stantaneous value in the body system) is

II= ——', P, Pi G'Ps(cosy;t), (5.12)

by the method of Sec. 2. The procedure is very similar
to that followed for the derivation of (3.38).

In the present case, there are two collective degrees
of freedom; vis. , rotations of the system about the 1 and
2 axes, the directions perpendicular to the symmetry
axis. Rotation about the symmetry axis does not
constitute collective motion, since the intrinsic structure
is entirely unaffected by such a rotation. The diRerential
equation for the collective motion (2.40) is of the form:

The uniform spacing of intrinsic levels is a consequence
of the fact that there are only two separate single-
particle levels. Also it is readily shown that the col-
lective rotation operators connect only states separated
by e in energy. Finally the intrinsic energy is inde-
pendent of the orientation angles. Consequently, we
may obtain an exact solution of this particular many-
body problem (including self interaction terms):

Qo= 2'(3s'' r'—')~i = (4»/5)(~'), (5.19)

QI i 2»+3

(Q...)I., I. 2»
(5.20)

As e becomes larger, the rotational model comes closer
to reproducing the exact result.

These quadrupole moments increase essentially
linearly with the number of particles. The quadrupole
matrix elements are also nearly proportional to the
number of particles and they obey the relation

QL+2, L

(Qrot)I+2, I

(»—I.) (»+L+3)——:

e2
(5.21)

and (r') denotes the average value of r' for any p-shell
nucleon. The coe%cient of Qs in (5.18) is the well-known
projection factor. ' Explicit calculations show that the
"exact" value of the quadrupole moment [calculated
using (5.15)j is related to the approximate value (5.18)
as follows:

where

y, =3n,~' = (12/25)»'G'. (5.14)

The eigensolutions of (5.13) are the well-known D
functions. "Thus the eigenfunctions of H are of the
form

4I,I,sr(r) = ~XI.(rp)D,i' (&)d&, (5.15)

where d8 denotes integration over all orientation angles.
The effective moment of inertia is given by

(ls'/23) = (e'/2yr), (5.16)

which equals the result (5.7) obtained previously by
explicit treatment of the interactions.

Next consider the calculation of electric quadrupole
moments and transition probabilities. According to the
remarks in Sec. 2, the calculation of physical quantities
may be greatly simplified by not integrating the wave
function over the collective variables, and instead re-
garding the latter as extra variables. The resulting
error is small, provided the number of particles involved
is large. For the present case, this procedure implies
that we write the wave functions in the well-known
form,

t(r,e) =XI.(r,g)DItrs (8). (5.17)

According to this version of the rotational model, the
quadrupole moment of any state in the lowest rotational.
band is given by

—c e (5.23)

Thus there is no effect on S=O states. For e odd and

Again, in the limit of many particles, transition proba-
bilities between states of small I. are given correctly
by the rotational model, if the number of particles is
suKciently large. Incidentally, since Q is a symmetric
operator, it can only connect a state of complete spatial
symmetry to another of the same kind, i.e., no E2
transitions can occur between the lowest rotational
band and any other. This is similar to the selection rule
on the quantum number T discussed in Sec. 4.

While all the above spectra follow the rotational law,
they are truly collective, i.e., rotational bands extending
to large values of I., and quadrupole matrix elements
large compared to the single-particle values, only if e
is large. However, this cannot occur in the p shell, since
the Pauli principle limits e to a maximum value of 4.
In particular, at most two protons can act coherently
in producing an electric quadrupole moment (neglecting
configuration mixing to orbits other than 1p, which
can further increase the quadrupole moment). It is for
this reason that collective effects have not been strik-
ingly evident in the nuclear 1p shell. "

While the nuclei at the beginning of the p shell are
rather close to JS coupling, the effect of the spin-orbit
interaction is appreciable. In first order, the spin-orbit
interaction

—c Q;1,"s; (5.22)

has the same effect on the energies of the completely
space-symmetric levels as the interaction

3X'—L(L+1)

(L+1)(2L+3)
Qo, (5 18)

2L+3
3' See however, R. A. Ferrell and V. M. Visscher, Phys. Rev.

104, 475 (1956), and D. Kurath, Phys. Rev. 106, 975 (1957).
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S=-,' the energy levels up to first order in the spin-orbit
interaction, are given by:

3 c —L
Eir —Es =—G'LL (L+1)—2]+—X

50 2e L+1

for I=L
(5.24a)

1

(5.24b)

where E, is the energy of the ground state (L=1) in
absence of spin-orbit coupling.

The L value corresponding to each I is given by

L=I '( 1)'—+l-. — (5.25)

C9
K

LLI

Substitution of this result into (5.24) makes it possible
to express the energy spectrum as function of I. We
obtain

c~o c&0

Ei.—Es= (@'/23) Ll(I+1)+~(—1)'+'(~+s)j
—(&'/23) L(11/4)+&j (5 2~)

where the moment of inertia is given y,b ~5.7~ and the
quantity a is the following:

a= —1—(25/3) (c/eG'). (5.27)

Apart from the last term, which is independent of I,
the spectrum is precisely that of a rotational spectrum

d pling parameter a.' The calculated energy spec-ecoup ing
trum o ef the completely space-symmetnc states o e
p' configuratiori as function of the spin-orbit streng
and the decoupling parameter is shown in Fig. 9. c-
cording to the rotational model, the lowest intrinsic
state of the p' configuration has no net orbital angu ar
momentum along the symmetry axis. The component
E of the total angular momentum equals -'„since it is
d t' l t the spin of the last odd nucleon. Thusue en irey o

26the level spectrum is expected to be of the form ~ .
The decoupling parameter is given by'

~=& (—1)' 'I'I'(i+l) = I".I'—2lc-:-I' (5 2g)

where c; denotes the probability amplitude for finding
th 1 t particle with total angular momentum j. oe as

tlllsfirst order in the spin-orbit coupling strengt», is
reduces to the value (5.27) obtained previously.

We have seen that the rotational model yields both
the correct moment of inertia and decoupling parameter,
at least in the 1p shell near the LS limit. In second
order, the spin-orbit interaction leads to a decrease o
the moment of inertia, i.e., an increase of the energy
spacing between states, but without altering the
characteristic rotational energy ratios. However, in
third and higher order, the spin-orbit interaction tends
to destroy the rotational structure. This occurs in the

d h lf of the 1p shell where the spin-orbit inter-
f theaction is much stronger than in the first part o t e

shell.

DECOUPLING PARAMETER a

iG. . mrs -orP . 9 F' t- der eGect of spin-orbit coupling on the energy
levels of the p' con6guration. Only states of complet p

mmetr are shown. The energies are plotted as a function of the

b (5.27l. The value a=0 corresponds to a
ure rotational spectrum in absence of decoup ing e e

h ve the LS coupling limit. The effect of the nuclear
spin-orbit coupling is to make u more negative.
have g —1.2.

6. CONCLUDING REMARKS

It appears from the treatment of the previous
examples that the shell-model approach (the explicit
treatment of the effective two-body interactions) and
the unified-model approach (replacement of the inter-
actions by a variable potential) are rather comple-
mentary. The shell-model method is, in principle,
exact, if the Hamiltonian is known, while the unified
model gives, in general, only approximate answers.
On the other hand, the unified model provides con-
siderably more insight into the physics of the nuc ear
coupling scheme than does the shell model, and also
it is often easier to apply.

Thus, for example, consider the sudden transition
between vibrational and rotational spectra for the case
discussed in Sec. 3. This feature, which is found ex-
penmen a y, ct ll ""can be reproduced by the shell mode,
but is dificult to understand physically in terms of the
mutual interactions without reference to the unified
model. Also, even if the exact form of the effective
two-body interactions is known, the calculation o
energy levels and wave functions may be extremely
dificult in practice unless the number of partices

'd f ( r
'

sing from) closed shells is very smal .
er ~220For example, to study the nuclei of mass number ~

it would be necessary to consider the system of about
10 interacting particles outside the Pb"' core, assuming
that core excitation can be neglected. Even i t e
resu ting uge energyl

'
h rgy matrices could be diagonalized,

"G. Scharff-Goldhaber, Phys. Rev. 103, 837 (1956).
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we would still not understand the physics of the nuclear
coupling scheme. Experimentally, a few odd-A nuclei
in this region exhibit striking close-lying doublets, "
and other interesting features as well, which may
suggest that we have a number of nearly uncoupled
modes of collective oscillations. One has hopes that the
unified model will provide some insight into these
phenomena.

It may be of interest in this connection to mention
the model developed by Elliott. "The central potential
is assumed to be of the harmonic oscillator form and
the two-body interactions are quadrupole-quadrupole
interactions:

—Dr/——r~'P2(cos p;q), (6.1)

with the extra condition that all matrix elements
between pairs of states di6ering with respect to the
principal quantum number of any nucleon vanish.
This is the three-dimensional version of the model
discussed in Sec. 3. Elliott has investigated the re-
sulting coupling scheme in detail and finds that it is
equivalent to a simple version of the Nilsson rotating
anisotropic harmonic oscillator model. '4 The non-
spherical intrinsic Hamiltonian corresponding to the
interaction (6.1) is

h= —DarPP2(cosy )+-',cP. (6.2)

The intrinsic spectrum is quite similar in some respects
to that for IS coupling in the p shell (see Sec. 5). In
particular, the intrinsic levels are equally spaced, in
energy, a special property of the harmonic oscillator
potential. Thus as before, we obtain rotational spectra.
However, while in the p shell only at most 4 nucleons
can act coherently, in the present case a larger number
of nucleons can contribute to the deformation because
of the larger number of available orbits in each shell
(of principal quantum number )2). Thus the quad-
rupole-quadrupole force can generate large collective
eQ'ects, e.g., well developed rotational spectra going up
to large values of the angular momentum and large
quadrupole matrix elements. These features would also
be obtained in the p shell if an arbitrarily large number
of nucleons could be put into each orbit. Thus some of
the results of the previous section, but with e not
necessarily &4, are applicable, to the present case. For
example, Eqs. (5.20) and (5.21) still hold for the lowest
rotational band, provided we define e to be the maxi-
mum value of I. in this band, regardless of the actual
number of particles involved.

If we add one-body 1.s and 1 I terms to the above
Hamiltonian, we obtain essentially the Nilsson modeP4
in its most general form. This model, has had consider-
able success in explaining many properties of deformed
odd-A nuclei; e.g. ground-state spins, gyromagnetic
ratios, decoupling parameters, selection rules, all of
which depend mainly on the motion of the last odd

'VR. Pilger, University of California Radiation Laboratory
Report UCRL-3877, July, 1957 (unpublished).

unpaired nucleon. '8 However, in order to understand
other features, such as the pairing energy, or the
magnitude of moments of inertia, it is necessary to
take into account additional two-body interactions
involving multipole orders higher than 2, the so-called
"residual" interactions. 6' f

Returning to the Elliott model, the S=O states of
maximum spatial symmetry form a single rotational
band with angular momentum I.=O, 2, 4 . i.e., A. =O.
The S=O states of next lower spatial symmetry form
two bands, one with 1.=0, 2, 4 (A=0) and the other
with 1,=2, 3, 4 (A.=2). States of the same L in the
two bands are degenerate. It is tempting to suppose
that these bands are related to the so-called P and y
vibrational bands, which are believed to occur in heavy
nuclei. In the one nucleus, Pu"', where both bands
have been identified, they are nearly degenerate. "
However, to understand these features in more detail,
it is probably necessary to take the residual interactions
into account.

Finally, we wish to mention the possibility of
simulating the system of interacting particles by a
two-nucleon model, i.e., to replace the many-body
problem by an effective two-body problem. For the
simplified two-dimensional model discussed in Sec. 3,
it was possible to do this exactly, because of the par-
ticular form of the assumed interactions. In actual
nuclei, the situation is much more complicated. How-
ever, while any two-nucleon model can at best give
approximate results, it might provide some valuable
insight into the coupling schemes in heavy nuclei.

In closing, it is hoped that the approach outlined in
this paper may be helpful in the development of a
unified low-energy nuclear theory.
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APPENDIX A. ROTATIONAL COUPLING BETWEEN
CLOSE-LYING INTRINSIC STATES

Let us suppose that the intrinsic spectrum is some-
what more complicated than the kind considered in
Sec. 2, in particular consider the case illustrated in
part (b) of Fig. 1.

We shall restrict ourselves to a single collective angle
variable (rotations in two dimensions). This treatment
can be readily generalized to take into account several
collective variables. The intrinsic spectrum is assumed
to consist of groups of nearly degenerate levels. The
energy interval e between the lowest two groups is
taken to be large compared to the spacing within each

38 B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd (to be published); K. Gottfried, Phys.
Rev. 103, 1017 (1956).

'~ I. PerlInan and J. O. Rasmussen, in Hundbuch der I'hysik,
edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 42.
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group. Suppose that the collective rotation operator
connects pairs of states in the same group, as well as
states separated by e. The former gives rise to a rota-
tional coupling between the intrinsic states in each
group, in particular the group of lowest energy.

In view of the rotational coupling, we have, corre-
sponding to (2.26), the following equation:

Bh—X„=—g

80

where v and v' refer to any intrinsic state in the lowest
group and the sum is taken over all such states. We
have neglected the contribution of states within the
same group to the quantity [cjh/cI0]x„since the
relevant energy differences will be small compared to e.

By the same techniques as were used in Sec. 2, we
obtain

Hx„= (Er, ', e)x, Ag—-.—

states, denoted by L and 3f, in the lowest group and
that the operator cj/88 couples these states to each other,
but has no diagonal matrix elements. The nonvanishing
matrix elements can be written as follows:

(A.7)

where X and y are real. We also assume that each of
the collective wave functions can be expressed in the
form

C',g=y„ae'ag (A.S)

where the p„q are constants. The collective equations
then become

[E& 2r e+A g(X—'+A') 34&&.
+2AgMe '"pgrg=~ra, (A.9a)

2A g7iAe'ger, a

+[Egg ', e+Ag(V—+-h')]Psrg ~. sra. (A.9b)

t'~'l
+El" & acr);„

Thus we obtain two coupled rotational bands. In the
absence of any coupling, the energy in each band

(A 2) depends quadratically on A'. In general, the two energy
eigenvalues of (A.9) are given by

corresponding to (2.37). The quantity Ag is given by

A g =e'/27g, (A.3)

and yg is defined by (2.32). The total wave functions
are of the form (2.46), i.e.,

Q„X„C„ado, (A.4)

where the sum v extends over all intrinsic states in the
lowest group, and h. refers to the state of collective
motion. From (2.45) and (2.47) it follows that the
collective wave functions obey the set of coupled
differential equations:

E= ,'(Er+E-gr —e)+Ag(X'+Jt')
a [gr, (Esr —Er)'/4A g9'A. ']'*. (A.10)

In case the states I and M are degenerate, the result is

E=Ez, ', e+A g(X'+A—'&—2XA). (.A.11)

The last term in (A.11) is essentially of the same form
as the well-known decoupling term which occurs for
rotational bands in some odd-A nuclei' (with &=-,').
In the latter, however, the symmetry requirements on
the wave function only permit one value of the sign
for each I (which corresponds to A in our case).

Now, consider the other limit, i.e., coupling energy
small compared to the energy difference

HC „g (Er, ', e)C',a Ag—— ———Q2 ( cj ) cj@„~g
C„g—2P( —

(

cue v' (jttp „.p Qtl

(A.12)

The energies may then be expanded as power series in
A. The result for the lower state of given 4, is

+Q( (
C, ~ . (A.5) E=Er,—rse+A p,s+(1—4Ag7%,se—&

" &ae') „.„"
+16Ags7%, 'A'e ')Agh. ' (A.13)

H=h —Ag[I —j]',
where h is the intrinsic Hamiltonian, j denotes the
intrinsic angular momentum operator (the latter
assumed to connect only close-lying intrinsic states)
and I is the total angular momentum operator which
acts on the collective wave function.

I et us now suppose that there are only two intrinsic

~A. K. Kerman, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd 30, No. 15 (1956).

The above equations are essentially of the form used
by Kerman4'.

(A.6)

A2 4A gX2

1+
2Ag

(A.14)

up to terms of order X2. This agrees with the value
calculated by time-dependent perturbation theory""

"G. Liiders, Z. Naturforsch. lla, 617 (1956).

in second order, the coupling merely increases the
moment of inertia in the lower of the two rotational
bands. ""We find that the effective moment of inertia
for this band is given by
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(the so-called "cranking model" ). The first term,
E/G~IAI

(A.15)
0 112

is just the value which we obtain when there is no
rotational coupling between close-lying states, while
the second term,

2 I 0—0

2 I

Q~~ = 2PPgs/e (A.16) 4 -I 04 0 0 —0

represents the extra contribution of the close-lying
states to P. Altogether the rotational kinetic energy
is given as follows:

2—-I

0 2 S
g

0 -5

T= To=2 T=O

(a) (b)where

(A.18)
Pro. 10. Energy level schemes for a system of two particles in

the X=2 shell interacting via attractive quadrupole-quadrupole
forces. In part (a), only the interactions between the particles is
considered, while in part (b) the self-interaction terms are also
included. Each state is labeled by the value of

~
A ( and its energy,

in units of the interaction strength G', is also indicated. In case
(b) each group forms a rotational band and its value of T is also
given. $1n case (a), T is not a good quantum number. j

Perturbations from the simple h.' law thus appear only
in higher order, and they are of opposite sign from the
perturbations caused by rotation-vibration interaction.
Note that if the energy difference e between the in-
trinsic states is large compared to the rotational kinetic
energy, but small compared to e, then there will be
relatively little departure from the A' law, even if the
effective value of ~ is increased considerably by the
coupling.

quite generally by

(B.1)

We may use (B.1) for the present problem if the related
quantities f are given by (3.9), i.e., if matrix elements
between states of different N vanish automatically.
On the other hand, if the f are given by (3.8), the
vanishing of the matrix elements between states of
diGerent N does not occur automatically, and must be
added as an extra condition. This can be accomplished
by expressing the matrix elements of the self-inter-
action for each particle in the form

APPENDIX B. EFFECT OF THE
SELF-INTERACTION TERMS

LH„it(i)]zr.————', P„+sr c, (g„*)x&s(g„)srl, (B.2).

between single-particle states E and I.. If Eq. (3.9) is
used for the f's, the sum extends only over single-
particle states in the same shell as E and I.In this way
we find that the self-interaction matrix is diagonal, at
least for the present problem. The diagonal element for
N=2, X=O is —G and for N=2p X &2 it is —~G
Adding this self-energy of each particle to the matrix
of the mutual interaction and diagonalizing, we obtain
the rotational energy spectrum shown in Fig. 10(b).

It may be of interest to consider more precisely the
role of the self-interaction terms which occur if the
Hamiltonian is expressed in the form (2.5). If these are
not taken into account, we do not, in general, obtain
the simple spectra described in Sec. 3. Thus, suppose
we have 2 particles in the N=2 shell of a two-dimen-
sional harmonic oscillator potential and consider only
a mutual quadrupole-quadrupole interaction (3.3)
between them. The resulting energy level spectrum is
shown in Fig. 10(a). The spectrum is not quite of the
rotational form. For example, the second excited state
(6=4) occurs at an energy (relative to the ground
state) of about 3.5 times that of the first excited state
(4=2), a somewhat smaller ratio than the value 4
characteristic of a rotational spectrum in two dimen-
sions.

The self-interaction term for each particle is given


