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Excited-State Wave Functions, Excitation Energies, and Oscillator
Strengths for Argon (3p'4s)f

ROBERT S. KNOX+
Institute of Optics, University of Rocheste~, Rochester, Kern& York

(Received December 20, 1957)

Solutions of the Hartree-Fock equations for the 'P and 'P terms of argon (3p'4s) have been obtained.
Wave functions are tabulated and results of computations of excitation energies and oscillator strengths
are presented. The former fall within 4% of experimental values. Predicted oscillator strengths for absorption
at 1049 A and 1067 A are 0.20 and 0.05, respectively, with an estimated error of 10 to 20/z.

1. INTRODUCTION

' 'N the course of an investigation into the electronic
~ ~ properties of the solid state of argon, it has been
found necessary to compute numerical wave functions
for the low-lying excited electronic states of the free
argon atom. Since there has been a recent surge of
interest in various properties of the solid rare gases, ' it
was thought advisable to make these intermediate
results available at once. In addition, relatively few
calculations of excitation energies have been performed'
and the problem of computing wave functions and
splittings for strongly spin-orbit coupled terms is of
independent interest, for reasons which will now be
discussed briefly.

One of the simplest problems in theoretical spectros-
copy is that of an electronic sp configuration, or its
p's counterpart, outside closed shells. The Russell-
Saunders terms which arise are 'P and 'P, and even if
the spin-orbit interaction of the p electron or hole is
sizable, simple secular equations for the exact energies
within the configuration obtain. The resulting wave
functions will have lost their definite multiplicity,
however, and it becomes difficult to obtain simple
Hartree-Fock equations by using the variational prin-
ciple on radial wave functions. In the low-lying p's
configurations of the excited rare gas atoms, the spin-
orbit interaction, which is set equal to zero in writing
the Fock equations for terms of definite multiplicity,
is of the order of magnitude of the purely electrostatic
splitting of the 'P' and 'P terms. Although the actual
magnitude of the spin-orbit interaction is suKciently
small that relativistic equations need not be used, it is
of interest to determine whether the spin-orbit inter-
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' See, for example, the review by E. R. Dobbs and G. O. Jones,
Reports on Progress in Physics (The Physics Society, London,
1957},Vol. 20, p. 516.

'For a listing of available computations of atomic functions,
see R. S. Knox, author in Solid State P1zysics, edited by F. Seitz
and D. Turnbull (Academic Press, Inc. , New York, 1957), Vol. 4,
p. 4i3.
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action may be calculated accurately by the use of per-
turbation theory using wave functions computed for
pure I.S terms. It is possible to use a "center of gravity"
wave function, which is exact with regard to the spin-
orbit energy in its Hamiltonian (the center-of-gravity
of a configuration's term values contains no spin-orbit
interaction), but then a separate description of the
electronic charge densities of the singlet and triplet
states of the atom is lost, however well the spin-orbit
interaction and the center of gravity of the levels are
predicted. Such a separate description is especially
important if the wave functions are needed as trial
functions to compute interactions of the excited atom
with other systems. In the present calculation it is
found that the spin-orbit interaction is predicted, by
using pure- I' trial functions, to be within I'%%uo of the
observed value, and it is thus concluded that pure-I, S
wave functions are good descriptions of the actual wave
functions even near the nucleus where spin-orbit effects
are largest.

In part 2(a) the Fock equations are written for
3p'4s ('P, 'P) argon, and in part 2(b) their numerical
solution is discussed and tables of wave functions are
given. Part 3 is devoted to the computation of excita-
tion energies and term splittings, including comparisons
with other work and estimates of errors; and in part 4,
oscillator strengths, polarizability, and decay times are
treated.

2. HARTREE-FOCK EQUATIONS FOR A(3P'4s)

(a) Formulation

A concise method of writing the Hartree-Fock
equations' for configurations involving unfilled shells
was given by Shortley. ' His method was used in the
present calculation and the resulting equations for
argon (3p'4s), transcribed into atomic units, 4 are a, s
follows:

' G. H. Shortley, Phys. Rev. 50, 1072 (1936).
4 D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928); V.

Fock, Z. Physik 61, 126 (1930). For recent developments and
standard notation, see D. R. Hartree, The Calculation of Atoznjc
5Auetgres (John Wiley and Sons, Inc., New York, 1952).

5



ROBE RT S. KNOX

s Functions (n=1, Z, 3)

ds 2 4—+— 18— Q rt .r Y'(nT)+ F'(ns) P, (r)
y n'l'=is

2
+—[Y'(ns, 1s)Pr, (r)+Y'(ns, 2s) Ps, (r)

+Y' (ns, 2p) P» (r)+Y'(ns, 3s)Ps, (r)

+ p Y'(ns, 3p)Ps@(r)+-', F'(ns, 4s)P4, (r)

—YP(ns)P„, (r)]= Q e „.",P„-,(r).

4s Function (M =1 for 'P, M =3for 'P)

2—+— 18— P tt. ( Y'(n T) P4, (r)

2
+-[Yo(4s,1s)P„(r)+F'(4s, 2s)P„(r)

+Y'(4s, 2p) P» (r)+ Y'(4s,3s)Ps, (r)

+ -', M Y'(4s,3p)Ps„(r))
3

= e„4,P„(r)+2 P e„-„4,P„",(r)

Zp Function

2 1 4s—+— 18———Q rt„ t Y'(n T)+Y'(2p)
y mrt'=is

2
+s Y'(2p) Ps~(r)+ (Y'(2p, 1—s)Pr, (r)

3y

+Y'(2p, 2s)Ps, (r)+ Y'(2p, 3s)Ps, (r)+[—,
' Y'(3p, 2p)

+Y'(3p, 2p)3' ( )+'Y'(2p 4s)P ( )-r

= e»»P»(r)+ e»»P»(r)

3p Function (M=1 for 'P, M=3 for 'P)

(P 2 ~ 4—+—18——— Q rt„ t Y'(n T)+Y'(3p)
n'l'=Is

+(8/») Y'(3p) P.(r)+—{Y'(3p,1 )P .()1

3y

+F'(3p, 2s)Ps, (r)+ Y'(3p, 3s)Ps, (r)+[3F'(3p,2p)

+ (6/5) Y'(3p, 2p) jP»(r)+-,'M Y'(3p, 4s)P4, (r) )

E» pyP3y (r)+ (6/5) e»syPsy (r) .

ln these equations P„t(r) is the square root of the
radial charge density of one nt electron, i.e., rE„&(r)

where E t(r) is the radial part of the total wave
function. Each I'„& is normalized to unity. The V
functions are defined by

Y"(nl, n't'; r) = (r "/r "+')P„t(r')P„( (r')dr',

where y~ and r2 are the smaller and larger of y and r',
respectively. We write Y"(nl,nl) = Y"(nl) and drop the
argument, r, for simplicity. The I"'s and ~'s, which are
now standard in the literature on atomic function
calculations, 4 are related to Shortley's cgs quantities A.

and T" as follows:

) „,„,= —g„,(e /ap) e.t, .t,t' 2/

rT"(nl, nT) = (e'/ap) Y"(nl nT)

where g„~ is the number of electrons in the el shell and
e'/ap ——27.21 electron volts.

(b) Numerical Results

An IBM Type 650 Magnetic Drum Data Processing
Machine was employed to solve the equations of part
(a) with the use of a program written by Piper. The
program has been used by him in connection with a
number of atoms and ions, ' and since the main features
of the program are given elsewhere, ' the present section
will be devoted to particular aspects of the argon
calculations.

Existing ground state [3PP('Sp)] wave functions,
computed by Hartree and Hartree with exchange, ' were
taken as initial estimates for the excited-state functions
1s' . 3p'. A 4s function was computed without
exchange and used as a trial function for the 4s('P)
calculation with exchange. After a dozen iterations the
4s function became reasonably self-consistent, i.e.,
there was no greater than s% difference between the
values of the quantity 1—Zp(r) computed from the
input and output radial functions in the final iteration
at all values of r. Here 1—Zp(r) is the amount of charge
lying outside a sphere of radius y. ' The core was then
allowed to relax and it was found that only the 3s and
3p functions were changed sensibly from their ground
state forms. After several more iterations including
orthogonalization of the 3s and 4s functions to each
other and to the other s functions and of the 3p to the
2p, computation was stopped with the (1—Zp)-in and
(1—Zp)-out consistent to within 0.1% for all shells.

P Mn4+: W. W. Piper and J. S. Prener Phys. Rev. 100, 1250(A)
(1955); Ge('P): W. W. Piper, Bull. Am. Phys. Soc. Ser. II, 2,
265 (1957); Cu+ through Kr'+, isoelectronic sequence: W. W.
Piper, Bull. Am. Phys. Soc. Ser. II, 2, 132 (1957), and paper to be
published.' W. W. Piper, Trans. Arn. Inst. Elec. Engrs. 75, Part I, 152
(1956).

r D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1938).

8 The choice of this quantity as a measure of self-consistency is
discussed in Hartree's book, reference 4, Chap. 5.
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TABLE I. Normalized radial wave functions P„&(r), calculated with exchange for the terms 'P and 'P of the 3p'4s configuration
of neutral argon. Unit of length: a0=0.5292)(10 cm. The is, 2s, and 2p functions are identical to those of the ground-state
configuration (see text for eigenvalues).

0.000
0.0075
0.0150
0.0225
0,0300

3s (gP, lP)

13.57
11.87
10.31
8.902
7.639

gp(gP iP)

Values of P«(r)/r'+'
52.72
49.68
46.77
44.08
41.50

4s (3P)

2.866
2.498
2.168
1.872
1.606

4s (lP)

2.537
2.205
1.911
1.649
1.414

1.02
1.14
1.26
1.38

3s (gP, 'P)

0.907
0.9415
0,932
0.892

3p (gP, 'P)

Values of P„~(r)
—0.788—0.837—0.853—0.844

4s (gP)

0.1735
0.165
0.144
0.114

4s(fP)

0.153
0.146
0.129
0.104

0.000
0.0075
0.0150
0.0225
0.0300

0.0375
0.0450
0.0525
0.0600

0.0750
0.0900
0.105
0.120

0.135
0.150
0.165
0.18

0.21
0.24
0.27
0.30

0.33
0.36
0.39
0.42

0.48
0.54
0.60
0.66

0.72
0.78
0.84
0.90

0.000
0.089
0.155
0.200
0.229

0.244
0.247
0.2405
0.226

0.179
0.117
0.046—0.027

—0.099—0.168—0.2305—0.286

—0.374—0.429—0.454—0.452

—0.427—0.383—0.325—0.2565

—0.0985
0.070
0.236
0.389

0.525
0.641
0.7365
0.8115

Values of P ~(r)

0.000
0.003
0.0105
0.022
0.037

0.0545
0.0735
0.094
0.115

0.158
0.200
0.240
0.276

0.307
0.334
0.356
0.372

0.391
0.391
0.375
0.346

0.306
0.2575
0.2025
0.143

0.016—0.114—0.239—0.3555

—0.460—0.552—0.630—0.695

0.000
0.019
0.0325
0.042
0,048

0.051
0.052
0.0505
0,047

0.037
0,024
0.0095—0.006

—0,021—0.036—0.049—0.060

—0.079—0.090—0.095—0.094

—0.088—0.078—0,065—0.049

—0.015
0.022
0,057
0.089

0.116
0.138
0.1545
0.166

0.000
0.0165
0.029
0.037
0.0425

0.045
0.046
0.044
0.042

0.033
0.021
0.008—0.005

—0.019—0.031—0.043—0.053

—0.069—0.079—0.083—0.082

—0.077—0.068—0.057—0.044

—0.01.3
0.019
0.050
0.078

0.1015
0.121
0.135
0.1455

1.50
1.62
1.74
1.86

2.10
2.34
2.58
2.82

3.06
3.30
3.54
3.78

4.26
4,74
5.22
5.70

6.18
6.66
7.14
7.62

8.58
9 54

10.50
11.46

12.42
13.38
14.34
15.30

17.22
19.14

e('P)
e('P)

0.834
0.765
0.692
0.618

0.4815
0.365
0,272
0.200

0.145
0.1045
0,075
0.053

0.026
0.013
0.006
0.003

0.0015
0.0005
0.000

3.007
3.023

—0.816—0.776—0.729—0.6775

—0.572—0.471—0.382
—0.306

—0.243—0.191—0.1495—0.117

—0.070—0.042—0.025—0.015

—0.009—0.0055—0.0035—0.002

—0.001
0.000

1.676
1,689

0.079
0.040—0.001—0.042

—0.122—0.194—0.2585—0.313

—0.3585—0.395—0.423—0.444

—0.466—0.467—0.453—0.428

—0.397—0.362—0.326—0.290

—0.223
—0.166—0.121—0.086

—0.060—0.041—0.0275
—0.0185

—0.0085—0.004

0.285

0.0735
0.040
0.005—0.031

—0.102—0.169—0.230—0.283

—0.3285—0.367—0.3975—0.421

—0.451—0.460—0.4525—0.434

—0.407—0.376—0.342—0.307

—0.241—0,184—0.1365—0.100

—0.072—0,052—0,037—0.027

—0.015—0.0085

~ ~ ~

0.273

The resulting 3s, 3p, and 4s functions for 'I' are given
in Table I. Values of e for 'P functions not included in
the tables are e~, =237.5, e2, =25.25, and 62@=19.74.

In computing 'P functions, the 'P solutions were
used as trial functions and, as expected, self-consistency
to within the 0.1'%%uq criterion was reached quite rapidly.
It was found that only the 4s function changed appre-
ciably, and so it is the only one given in Table I. Note
that it moved away from the core. For all practical
purposes, the 3ppI') function is identical to the one

listed in Table I, but one may make the following

changes if he wishes: add —0.001 to all values of Es„(r)
for r =0.72 through 1.86; add 0.002 for r= 2.82 through
5.70; add 0.0005 for r=6 18 through 8.5. 8. Thus the 3p
function actually contracted a very small amount when

the 4s expanded. This is to be expected because the
shielding of the nucleus by the 4s electron decreased
slightly. Values of the 'P eigenvalues not shown in
Table I are e~, =237.5, e2, ——25.26, and e~„——19.76.

It should be remarked that the great spatial extent
of the 4s electrons taxed the ability of the program
(limited only by the memory of the IBM 650) to retain
accuracy near the origin in all shells while covering a
large range in r. The present form of the program
requires that rs4 ——2040rt, where rs4 is the largest (i.e.,
the 64th) value of r, a point at which "boundary condi-
tions at infinity" are imposed, and r~ is the first value
of r used in outward integrations from the origin, which

must be kept as small as possible for accuracy in the
inner nodes. With a choice of r~=0.0075ao, which is
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already fairly large, it was found that the 4s functions
were not vanishingly small at r64=15.30ao. Hence an
"exponential" boundary condition was employed. As
the iterations progressed, the boundary value of P4, (r)
was adjusted so that the values of the function on the
tail (r ~&10as) tended to remain stationary around an
exponential curve, i.e., the last few functional values
were allowed to "pull the boundary value around" until
both self-consistency and an exponential form were
obtained. Only an estimated 0.05% of the charge of the
4s electron lies outside this boundary, so no corrections
to the standard normalizing routines and potential cal-
culations were necessary. The values of P4, (r) at
r=17.22ao and 19.14@0, included in Table I for con-
venience, are simply extensions of the exponential tails
and do not represent computed points. In the asymp-
totic equation (d'/dr'+2/r e)P=—O, it is not possible
to neglect 2/r in the case of the 4s functions because e4,

is small. Therefore the exponential dependence is not
exp( —sir) but is reasonably close to it.

From experience in watching the values of e as the
iterations progressed, we estimate that an optimistic
statement of accuracy in the final results for e is &0.1%%u~.

For example, the Hartree's ground-state wave functions
were recomputed for testing purposes. An excellently
self-consistent 3p wave function was obtained from the
first iteration but with &=1.183 as compared to the
Hartrees' value 1.181. The values of e obtained from
our recomputation were used in obtaining energy dif-
ferences: es =1.183 and es, =2.554 (previously 2.555).

3. EXCITATION ENERGIES AND TERM SPLITTING

(a) Numerical Results

Since the 1s, 2s, and 2p radial functions did not
change from their values in the ground state, it was
possible to use an invariant 1s'2s'2p' core for the argon
(3p'4s —3p') energy difference E=—E('P) —E('5). In
units of e'/as, this quantity is given. by' ' "
E= {e3p esp) (se3p 3esp) se48

—[F'(3s,3s) —F'(3s,3s)]—{[10F'(3s,3p)
—(5/3) 6'(3s,3p)]—[12F'(3s,3p) —2G' (3s,3p)])
—{L10F'(3P,3P) —5F'(3P 3P)]—L15F'(3P,3P)
—(6l5)F'(3P,3P)])—[2F'(»,4~) —G'(», 4~)]

[5F'(3P,4s) 6'—(3p,4s)], —

where the e are standard Hartree eigenvalues and the
Ii and G are Slater Coulomb and exchange integrals
{defined in reference 9). A dash over F or G means com-

' E.U. Condon and G. H. Shortley, The Theory of Atomic Spectra
(Cambridge University Press, New York, 1935), Chaps. 6 and 13.

' When the wave functions of a particular shell are the same
for two different atomic states, the e of that shell may be difterent
in the two states. However, it may be shown quite easily that
this change is cancelled identically by the Slater integrals in-
volving that shell, The use of an "invariant core" is especially
essential when changes in e are so small, relative to e, as to be
incapable of computation within the accuracy of the Hartree-Pock
solutions.

TABLE II. Slater integrals computed from the wave functions
of Table I. Units: e'/a0=27, 21 ev. The designation 'S refers to
3p argon and 'P and 'P refer to I.S terms of the 3p 4s con-
figuration.

P'(3s,3s)
P'(3s,3p)
J (3p,3p)
~(3p,3p)
P (3s,4s)
J (3p,4s)
GI(3S,'3p)
6 (3s,4$)
G'(3p, 4s)

1S

0.6353
0.5865
0.5467
0.2719

0.3855

3P

0.6529
0.6121
0.5778
0.2911
0.2158
0.2144
0.4066
0.00616
0.01008

1P

0.6529
0.6121
0.5789
0.2920
0,2054
0.2043
0.4066
0.00492
0.00808

"For singlet quantities a tilde is used, e.g. , &»=—&»(ip).
"Reference 9, p. 120.

putation is to be carried out with radial functions
belonging to the triplet term, the remaining ones to be
done with ground state functions. A similar convention
is used for e. The computed value of E is 0.411 e'/as
=11.18 ev. The over-all computational error, estimated
to be twice that incurred by the e's, is &0.02 e'/as
= &0.54 ev. The experimental value is 11.70 ev. (See
below. ) Thus the computed value is correct to within
4-,'%, which is about equal to the estimated cornpu-
tational error.

If one takes an invariant core of 1s' 3p' in the
computation of the electrostatic splitting parameter
6=—E('P) —E('P), the result is simply" ', (—e4,—e4,—)
=0.17 ev. If, on the other hand, an invariant core of
1s' 3s' is assumed and the very slight difference of
the 'P and 'P 3p radial functions is taken into account,
one obtains, with

s (esp esr) s (e4 e4 ) {[15F(3P 3P)
—(6l5) F'(3P 3P)]—L15F'(3P 3P)

—(6/5) F'(3P 3P)]}—f L5F'(3P 4&) —l G'(3P 4&)]
[5F'(3P—,4s) —G'(3P, 4s)]),

the value 3 =0.0054 e'/ae ——0.15 ev. It is to be noted,
however, that this "improvement" of —0.02 ev in the
computed value of 6 is actually a small difference
between two larger quantities, i.e. ,

—ss (es„—es„) and the
Slater integrals, each of which is again a small difference
between still larger quantities. The last quantities, even
if correct to within 0.1/o, cannot help producing a large
uncertainty in the correction to 6, and this uncertainty
is in fact much larger than the correction itself in this
case. Therefore, the best computed value of 6 is taken
to be 0.17 ev, best in the sense that large unavoidable
errors have been eliminated. If the computational error
is taken to be that incurred by the e's, we obtain
6= (0.17&0.01) ev. This result is in agreement with
the observed value 6=0.18 ev. (See below. ) Table II
shows the values of the F and G used in computing E
and A.

Matrix elements of the spin-orbit interaction"
contain certain integrals involving the singlet and
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triplet functions and charge distributions. Hence the
parameters 1„and ), defined as follows, were evaluated:

1 y
——(h'e'/2BP c) r 'Z(r) )Ps/(r) 1'dr)

' 0

TAsx.z III. Energy parameters of the lowest 'I' and 'I' terms
of four of the rare gases. Notation: E, 6, f„, and ) are the pure-'P
excitation energy, electrostatic splitting factor, spin-orbit inter-
action, and King-Van Vleck parameter, respectively. E('Pr) and
E('P&) are actual term energies in the argon atom [see Eqs. (1)j
and 5 is their difference. All energies are measured in ev. 5 indicates
derivation from the spectrum, and C, direct computation using
Hartree-Pock wave functions.

Xf~= (I't'e'/2m'c') r 'Z'(r)Ps„(r)Ps„(r)dr
Atom Z Z ('P1) B(gP1) 8 Source

Again a dash signifies associati. on of a quantity with the
triplet term and a tilde the singlet. Z(r) is the total
charge inside a sphere of radius r excluding the 3p
electron, and Z'(r) is essentially the same as Z(r) but
the contribution of each electron to the radial charge
density is of the form I'P instead of P'. The quantity
r 'Z(r) is the usual r '(r)V/Br) appearing in the
Thomas-Frenkel expression" for the spin-orbit inter-
action. Numerical results were f „=0.1157 ev and
X=1.001, the latter computed with Z'(r) =Z(r) since
the principal contribution to f „and Xl~ was from the
region r=0.1as, where Z(r) was of the order of 16 and
uriaffected by slight changes in 3p and 4s wave func-
tions.

(b) Comparison with Experiment

Diagonalization of the complete Hamiltonian matrix
for p's terms" yields the following set of energies
[measured relative to 3Ps(tSs) J:

E and 6 are the electrostatic energy parameters of the
unperturbed (pure LS) states which were computed in
part (a). Here a slight generalization of the formulas of
reference 9 has been made" by the inclusion of X, which
multiplies 1'„in the 'Pi 'Pi off-diagonal —matrix element
only. If the 'I' and 'P radial functions of each electron
are identical, then ) =1. King and Van Vleck first
introduced X/1 as an adjustable parameter rather
than as a computed quantity. If one knows experi-
mental values of the four energies (1), he may obtain
unique values of E, 6, l~, and )i. This involves the
reasonable assumption that higher combining terms
do not appreciably upset the splitting of the low-lying
levels (an energy separation of combining terms of the
order of 2-,' ev exists in argon). The four parameters
have been computed from experimental term values"
for four rare gases and the results are given in Table III.
Lines 2 and 3 of the table give a comparison between
our computations of energy parameters and the values

"See reference 9, pp. 268, 271, 299, and 304.
'4 G. W. King and J. H. Van Vleck, Phys. Rev. 56, 464 (1939).
'5C. K. Moore, Atomic Energy Levels, National Bureau of

Standards Circular No. 467 (U. S. Government Printing Office,
Washington, D. C., 1948), Vol. 1, p. 212.

Ne 10
A 18
A 18
Kr 36
Xe 54

16.743
11.696
11.18
10.230
8.814

0.1844
0.1801
0.169
0.1984
0.2437

0.0642
0.1165
0.1157
0.4314
0.7546

0.9976
0.9962
1,001
1.0013
1.0545

16.848
11.828
11.39
10.643
9.569

16.695
11.601
11.19
10.032
8.436

0.153
0.227
0.20
0.611
1.133

derived from the spectrum. As we have already seen,
E and 6 are predicted within the estimated computa-
tional errors. The results for l„and )t are in excellent
agreement, both being predicted to within less than 1%.

Most calculations of term energies from Hartree-Fock
solutions have been concerned with absolute term
values, and since few atoms have as high a fundamental
excitation energy as argon, no direct comparisons are
possible. In two calculations on sp'P and 'P terms,
namely, those for the Be and Ca atoms, Hartree and
Hartree" obtained agreement in various energy dif-
ferences ranging from 3 to 50%%uo, these errors represent
the cumulative effect of discrepancies of 10%%uo or less
in absolute term energies. Similar remarks hold for the
term values and splittings in the 0+ and 0++ com-
putations by Hartree and Black." The argon 'I' —'S
term difference is several-fold larger than any in the
atoms just mentioned, so one might expect higher
accuracy in the computation, say, on the order of —,

' to
S%%uo. Thus our 4s%%uo error seems not to be unreasonable.

The good agreement between computed and observed
values of i~, the spin-orbit parameter, is encouraging
and justi6es the use of separate Hartree-Fock solutions
of the uncoupled I.S terms as trial functions, as dis-
cussed in the introduction. Other direct computations
of spin-orbit splittings with Hartree-Fock functions
have been in good agreement with experiment. "Both
experiment and computation indicate that X is prac-
tically unity in argon. This fact indicates that the wave
functions which are important in the determination of
f'„differ very little between the two terms and should
therefore be practically as good as a center-of-gravity
solution, which is "exact" with respect to spin-orbit
interactions in the wave equation.

"Be:D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
Aj.54, 588 (1936);Ca: D. R. Hartree and W. Hartree, Proc. Roy.
Soc. (London) A164, 167 (1938).

'r D. R. Hartree and M. Black, Proc. Roy. Soc. (London)
A139, 311 (1933). Their results are summarized in reference 9,
p. 364.' For example, 7% in the work of Hartree, Hartree, and
Manning on Si+++ [Phys. Rev. 60, 857 (1941)j, and 7% in a
computation on Fe by J. H. Wood and G. W. Pratt, Jr. [Phys.
Rev. 107, 995 (1957)] using wave functions computed with
exchange by M. F. Manning and L. Goldberg [Phys. Rev. 53, 662
(1938)j. These figures are the best of those reported b the
authors; agreement is not as good for higher states of Si++, and
Wood and Pratt found that "unrestricted" Hartree-Pock solutions
gave a result 30% too large.
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The excitation energies E('Pt) and E(sPr) have been
calculated by using Eqs. (1) and are compared with
experiment at the right side of Table III. The values
agree to within 4%.

and

= (1+/ '7 ') '(s)'EeRn,

where 2 ') 5'—=—,'6—si „+[(rzA rid„)'+—,'X'1 ']*'-R is the
radial factor Js"rPsv(r)P4, (r)dr of the dipole matrix
element, p ~ runs over all electrons in the atom, and E
is a correction factor which differs from unity because
the ground- and excited-state radial functions "over-

lap, " in the sense that the integral Js P E(r)P ~(r)dr
is not proportional to 8„„.Finally u is a unit vector
whose direction depends on which of the three P states
is chosen for the dipole matrix element. Numerical
values computed from the wave functions of part 2 are
E=0.939, R=0.699ae, and tv% '=0.53. The oscillator
strengths" for absorption to the three degenerate states
of the 'P~ and 'P~ terms are thus

Sz'mv('Pr, 'Sp) ( 2E'R.'

3h E1+l 'P ')
Sz'mv('Pt, 'Sp) f' 2E'R'

3h E 1+5'i

where v(B,A) is the transition freauency from state 3
to state B. H the transition energies Wi hv('Pi, Sp)——
and Ws ——hv('Pr, 'Ss) are expressed in electron volts and
R in units of ao, one obtains

'f=4W E'R'/[(27. 21)(1+i 'F ')j
'f= 4W E'R'/[(27. 21) (1+5'f '))

These oscillator strengths have been computed on both
an absolute basis (from wave functions alone) and on
a semiempirical basis, i.e., from energy parameters
obtained from the atomic spectrum in conjunction with

» See, e.g., I.Seitz, The 3IIodere Theory of Solids (McGraw-Hill
Book Company, Inc. , New York, 1940), p. 643.

4. OSCILLATOR STRENGTHS

Eigenfunctions corresponding to the '"P&" and '"P]"
terms of Eqs. (1) are really mixtures of pure 'Pi and 'P&

eigenfunctions. Therefore, each may be optically
excited, according to the extent to which the pure 'P'»

function is mixed into it. Dipole matrix elements con-
necting the ground state of the atom, 4('Ss), to any of
the three singlet or three triplet J= 1 states are readily
found to be, respectively.

TABLE IV. Absorption oscillator strengths (f), decay times (r),
and static polarizability (n) associated with argon (3p' —3p'4s).
Theoretical values: (1) based solely on wave functions; (2) semi-
empirical, based on experimental energies and a dipole matrix
element computed from wave functions. The prefixed superscripts
1 and 3 refer to the "singlet" and "triplet" levels which give rise
to lines at 1049 A and 1067 A, respectively.

Quantity Theory (1) Theory (2) Experiment

1f
'r (10 ' sec)
f'r (10 ' sec)
o, (due to'P, 'P)
n (total)

0.17
0.30
0.052
1,05
1.38gp'

0.200
0.25
0.049
1.02
1.3380' ~ ~ ~

11.04g0'

"D. S. Villars, J. Opt. Soc. Am. 42, 552 (1952).
2' The static polarizability was obtained by M. Born and W.

Heisenberg PZ. Physik 23, 388 (1924)j by extrapolation from
data of C. Cuthbertson and M. Cuthbertson )Proc. Roy. Soc.
(London) A84, 13 (1911)].

~ K. L. Wolf and K. F. Herzfeld, Handbech der Physr'h (Verlag-
Julius Springer, Berlin, 1928), Vol. 20, Chap. 10, pp. 490 and 626.

the value of ER computed from wave functions.
Results, along with predicted values of decay times, are
given for these two cases in columns 2 and 3 of Table IV.
To the author's knowledge, no experimental results are
available to enable comparisons to be made. Probable
errors of 20 and 40% have been estimated for the
absolute calculations of oscillator strengths for the
singlet and triplet terms, respectively. The latter figure
is larger because of a stronger dependence of 'f on the
square of f„P ', which depends largely on 6 for its
accuracy.

In view of the success" of the King-Van Vleck method
in predicting oscillator strength ratios, it is felt that in
the computation of strengths using spectral data, the
radial factor of the dipole matrix element is the principal
source of probable error. Although an exhaustive anal-
ysis of this error along the lines of that of Villars" will

not be attempted, it is pertinent to compute the con-
tributions of the 3Ps4s configuration to the static
polarizability, n, of the argon atom. The results of the
computation are shown in Table IV along with the
experimental value of o,."As in the case of oscillator
strengths both an absolute and a semi-empiricalcom-
putation were done. It is seen that the contribution to
n by the 3p'4s configuration is 13% of the total, which
is less than one-third of the fraction contributed by the
first excited configuration of the hydrogen atom to
its total polarizability. One might expect a result re-
sembling that of the case of hydrogen, since all states
of argon lying below the first ionization limit arise from
3p'rsl configurations and the distribution of configura-
tions resembles that of a one-electron system. '"On the
other hand, Wolf and Herzfeld" concluded, from an
analysis of the argon dispersion curve between 2400 A
and 5800 A, that the resonance transitions contribute
very little to dispersion, having a combined oscillator
strength of about 0.03. They found that an effective
transition of strength 4.6 to an energy slightly above
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the ionization limit gave a best fit to the dispersion
curve. The reason for the discrepancy between their
results and ours for the resonance oscillator strengths is
not immediately clear. However, the Wolf-Herzfeld
curve fitting covers only a relatively small region of the
spectrum, and some clarification might result from
an extension of their analysis toward the resonance
energies. "

One final independent check on the wave functions
used in this calculation should be mentioned. The
ground state functions were found by the Hartrees' to
give as accurate a prediction of the diamagnetic suscep-
tibility as could be checked by existing experiments,
i.e., to within 5 or 10%.

In view of the foregoing facts, the predicted absorp-
tion oscillator strengths as derived from a computed
dipole matrix element and spectral term values, i.e.,

"The region covered is such that the denominator of the
polarizability expression, v02 —v2, varies by only 10'p& from one end
of the region to the other, where v0 is the resonance frequency
used in the analysis

'f(1049 A)=0.20 and 'f(1067 A)=0.05, may be con-
sidered reliable probably to within 10 or 20%%u~.
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K Capture Positron Ratios for First-Forbidden Transitions: Sb'", Rb'4, P", As'4t
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The theory for the relative probabilities of E-electron capture and of positron emission is reinvestigated
in the cases of allowed and first-forbidden transitions. Effects of screening and of finite nuclear size are
discussed and calculated. Careful comparison is made between theory and available experimental results
for allowed and "unique" first-forbidden transitions; details and results of a new measurement for the
transition Sb"'~Sn"' (AJ=2, yes) are presented. Other types of first-forbidden transitions are analyzed
in terms of the relative contributions of the various matrix elements which appear in the interaction combi-
nations S, T, I' and V, A; and the experimental results for the AJ=O, yes transitions in As 4, Rb ', and
I"' are discussed. Simple formulas are presented for the evaluation of the coeKcients of the several matrix
elements.

INTRODUCTION

~ 'HE study of the shapes of beta spectra has been
used to gain insight into the nature of beta

decay. Another valuable tool of similar nature is the
study of the relative probabilities of E capture and
positron emission in effecting transitions between
characterized nuclear states. In this paper special
emphasis will be placed on the comparison between
theory and experiment for first-forbidden transitions.
New experimental data will be presented for a first-
forbidden transition with spin change two which occurs
in the decay of Sb'"

The compilations of theoretical beta-decay proba-
bilities for the well-known five types of interactions,
pure and mixed, ' provide a simple basis from which one

$ Research performed under the auspices of the U. S. Atomic
Energy Commission.' E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308
(1941);E. Greuling, ibid 61, 568 (1942); A. M.. Smith, ibid 82, .

may easily calculate the theoretical E-capture proba-
bilities. Using Pursey s notation for cross terms, the
probability of eth-forbidden positron decay is given by

Q GxGr-,'(1+&xr)
2@~ X,Y

(Wp
X) PW(Wo W)sIio(W, Z)C„(X,Y)dW—

1

Q GxGr —,'(1+bx y.) f' (X,I')
2~3 X,Y

X ~ PW(Wo W) sI'
o (WZ) I od W, (1)

1

955 (1951); D. Pursey, Phil. Mag. 42, 1193 (1951);M. E. Rose
and R. K. Osborne, Phys. Rev. 93, 1315 (1954).' S. R. De Groot and H. A. Tolhoek, Physica 16, 456 (1950).


