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Thermal Fluctuations in a Nonlinear System

N. G. vAN KAMPEN
Columbia University, Eem F'ork, Sew F'ork*

(Received December 30, 1957l

As an example of a nonlinear system, an electric circuit containing a voltage-dependent resistance E(Vl
is studied. The resistance is in contact with a heat bath and generates current fluctuations. A general method
is given to find the spectral density of these fIuctuations. For tv o special forms of R(V), explicit results are
obtained by means of a perturbation calculation. The result divers from the Nyquist formula mainly in that
new terms appear, corresponding to relaxation times 2ROC, 3ROC, etc.

I. INTRODUCTION
' 'N spite of the vast amount of work on Brownian
~ - movement and statistical fluctuations in general, '
very little attention has been devoted to fluctuations in
nonlinear systems. Take the case of an electric circuit
with a resistor in equilibrium with a heat bath. It is
always supposed that the resistance may be considered
constant in a range of the size of the current fiuc-
tuations. Undoubtedly it is not easy to find an experi-
mental situation in which this is not true. From a
theoretical point of view, however, it is unsatisfactory
that the usual treatments are so essentially confined
to this linear case. In fact, the Langevin approach,
using a random force obeying the relations of Einstein
and Nyquist, does not seem to lend itself to a generali-
zation to the nonlinear case. On the other hand, it can
be concluded from statistical mechanics that the
Fokker-Planck equation is of very general validity for
the description of the macroscopic behavior of systems
with many degrees of freedom. ' ' Once this equation is
adopted, the remaining task is twofold. Firstly, the two
functions occurring in the general Fokker-Planck
equation must be determined; this is done in Secs. 2
and 3. Secondly, the relevant properties of the Quc-
tuations, namely the spectral density, must be found.
This is done by an approximation method in Sec. 5,
after some general relations have been derived in Sec. 4.
FinalIy the results are applied to a few simple cases in
Sec. 6.

It should be emphasized that our present problem is
diferent from the problem of noise passing through a
nonlinear device. 4 In that case the statistical properties
of the input noise are given, and the problem to find

the properties of the output noise is a mathematical one.
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(1944); 25, 46 (1945).Also: A. van der Ziel, Poise (Prentice Hall,
Inc. , New York, 1954); R. Becker, Theoric der 8'arme (Springer-
Verlag, Berlin, 1955).

2 N. G. van Kampen, Physica 20, 603 (1954); Fortschr. Physik
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Our problem, however, is to find the spectral density
of the noise that is generated inside a nonlinear re-
sistor. This cannot be done by purely mathematical
arguments; the physics enters through the use of the
fundamental equation (3).

2. FORMULATION OF THE PROBLEM

For simplicity we shall confine ourselves in this paper
to the following simple system, previously discussed by
MacDonald. ' An electric circuit consists of a condenser
C and a resistance E, in contact with a heat bath. It
will be supposed that E is not constant but depends on
the potential difference V, so that the current depends
on V in a nonlinear way. Let the probability for the
charge on C have a value between q and q+dq be
denoted by P(q, t)dq The time .dependence of P(q, 1)

obeys a Fokker-Planck equation of the general form

where $(q) and ri(q) are two as yet undetermined func-
tions, which characterize the properties of the irre-
versible process that takes place in the resistance. Let
G(q) be the equilibrium distribution,

G(q) = (2mkTC) l exp( —q'/2kTC), (2)

where T is the temperature of the heat bath and k is
Boltzmann's constant. It can then be derived from the
principle of detailed balance' that $(q) and ti(q) are
related by

i
n(q) = — —Lk(q)G(q) 3

G(q) dq

(In case $ is a constant, this equation reduces to the
Einstein relation for Brownian movement. ) With the
aid of this relation ri can be eliminated from (1), with
the result

BI' ci ci I' )
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This equation determines both the large scale phe-
nomenological behavior of the system and the small

s D. K. C. MacDonald, Phil. Mag. 45, 63 (1954).
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scale fluctuations. In principle the function g(q) is
determined by the physical mechanism that is respon-
sible for the dissipation of energy, in this case the
scattering of electrons in the resistor. On the other hand,
by extracting the large scale features of (3), the con-
nection between $(q) and the phenomenological
function R(V) can be found. This is done in the next
section.

3. PHENOMENOLOGICAL EQUATION

The average charge on the condenser is

,P(, ~)dq

The rate of change is, according to (3) and (2),

d IPd—
(q&

= —(EG—)dq
~ Gdq

Eq. (5), it is tacitly assumed that the fluctuations are
small. If the voltage Quctuations are large, owing to a
small C, then (3) and (4) are still true, but (7) is
incorrect while (5) becomes meaningless. Again, even
if the fluctuations are small, (5) and (7) only describe
the large scale behavior correctly, but cannot be used
to describe the Quctuations themselves. Instead one
will have to use (3); this will be done in the next
sections. We only needed the large-scale behavior to
find the identity (6).

4. FLUCTUATIONS

Let P(qol q, /) denote the solution of (3) that reduces
to 8(q—

qo) for t —+ 0; it may be regarded as the proba-
bility of a transition from qp to q in time t. The average
charge at time t under the condition that the charge at

0 was gp ls

(q(&)&.= P(qolq~)qdq.

dt R(V) CR(Q/C)
(5)

Of course, Q is to be identified with (q&.
' If R were a

constant, Eqs. (4) and (5) could be identified by putting

where the prime denotes the derivative with respect to
the argument. This is to be compared with the equation
for the macroscopic charge Q,

U

The correlation between the values of the charge at
two diferent instants with interval t is, in the equi-
libriurn state,

(q(0)q(~)&.,= t G(qo)qodqo P(qolq, t)qdq.

This is the autocorrelation function of the stochastic
variable q. The spectral density of the charge Quc-
tuations is obtained from this by using the Wiener-
Khintchin theorem'

$/kT = 1/R. (6)

S(oi) = (2/ir) (q(0) q(t)),o cosoitdt, .
p

We shall show that this relation remains true if R, and
hence (, are not constant.

If $ is not constant, it is tempting to write for (4) It is more customary to express results in terms of the
(7) spectral density Wr of current fluctuations in the fre-

quency scale (f=oi/2m); one has.(d/«)(q) = —(q&k((q&)/»C+ e((q&).

This approximation assumes that the fluctuations are
small compared to an interval in which $ varies ap-
preciably. In order to assess the validity of this as-
sumption, first note that the function P is characteristic
of the properties of the resistor. Hence P will depend on
V=q/C, rather than on q and C separately. Now the
fluctuations of V are of the order (kT/C)', and can
therefore be made arbitrarily small by taking C large.
Hence (7) is certainly valid for suKciently large C.
Moreover,

IVr = 22ro12$(oi).

Of course, it is not possible to solve (3) for arbitrary
P; in fact, it seems that only for P= constant an explicit
solution can be found. It is therefore useful to reduce
the equation to an eigenvalue problem to make it
amenable to standard perturbation methods.

Write (3) in the form

(10)BP/Bt =~P,
~ (q)

=dg/dq= C (dP/d V)-
where ™is a differential operator, acting in the space of
real functions P(q). Let 1/G(q) be used as a weight
function in this space, so that the scalar product is
defined by

is of order 1/C, so that the last term in in (7) should be
dropped. Comparing the result with (5), one sees that
(6) remains true, even if P and R depend on V. For
further discussion see Appendix I.

Of course, whenever one uses the phenomenological
(P1,P2) =

J tP1(q)P (q)/G2(q)]dq= (P2,P1).
'Although the definition of the phenoinenological quantity Q

is not precise enough to distinguish between (g) and, for instance,
(q')'*. It can then easily be checked that is self-adjoint:
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(Pi, Ps) = (Ps, Pi). In addition is negative definite: From this one finds, for example,

(»=P) = —"kGL(~/dq) (P/G) 7'dq«

Moreover P), (q) must vanish suKciently fast for
q
—) &~, so that the norm (Pq, P),) is Rnite.
One solution is of course X=O, Ps(q) =G(q). If one

has found a complete set of normalized eigenfunctions
I'q, the completeness relation

Z~ Pi(q)P~(q') =G(q)~(q —q')

holds. Consequently

P( ol, t) =2 "'P ( o)P ( )/G( o). (12)

The value 0 obtains only for the equilibrium distribution
P=G. Now put in (10)

P(q, t) =e "'P), (q)

so that P~ is to be solved from the eigenfunction
equation

Pg= —)Pg.

(q(t)).=qoe ',

which is the regression equation for this linear case.
Furthermore, one has

(q(o) q(t))"=(q(o)')..
This autocorrelation function gives for the spectrum

s(~) = (2/~) (1+~') ',

4kT (RCo))'
H/'f =

1j(RCo))'

which is usually derived as a corollary of the Nyquist
formula. '

Next put $(q) =1+)")(q), and accordingly
+ o). Equation (11) becomes

(v(s)+ ~ it)+ti+g 0)+. . .) (h +p ii)+. . .) =0

The standard formulas of perturbation theory then give
for the shift of the eth eigenvalue, to first order,

The autocorrelation (8) becomes

(q(o)q(t)) =r, e " »(q)qdq

-2

(13)

d 2

= (2s.)
—i I Po) exp( ——,'q') —(h„/G) dq

and the spectrum of charge Quctuations

2 X -2

S(o))=—Q — P&, (q) qdq
m ) X'+o)s ~

5. PERTURBATION CALCULATION

We put $(q)=$(0)+$t')(q) and assume $&'&(q) small.
First the unperturbed problem with (=$(0) =constant
has to be solved. It is convenient to choose the unit of
charge such that kTC= 1, and the unit of time such
that $(0) =1. Then the eigenfunction equation (11)
takes the form

P),"+P)'+ ()i+1)P),=o.
This is the diGerential equation for Hermite functions.
The eigenvalues are X =e (e= 0, 1, 2, ) and the nor-
malized eigenfunctions

h-(q) =((2~)'~ 7 ' exp( —lq')H-(q).

Here H„(q) is the eth Hermite polynomial. ' Sub-
stitution in (12) yields

=[(2~)*e!7 ') g&" exp( —-', q')(eH„ t)'dq.

To And P„&", let it be expanded in the unperturbed
eigenfunctions h

P„"'(q)=Q c„h (q).

One then has, for m/m,

()s—m)c„„=—(h, &')h„)

= (2s.e!m!): I P&" exp( —-'q')ttH. ,

X~H~ 1dg.

We shall also need c„„,although it is of the second order
in the perturbation. c „is determined by the condition
that h„+P„o) should be normalized:

(1+c„„)'=1—P c„'.
mgn

Finally we need the second-order shift of the eigenvalue,

lt t"= P (n —m) '(h ~t"h )'=Q()s—m)c

P(qi)
~ q, t) =exp( ——',q') P $(2~):)s!7 'H„(qs)H„(q)e

n=P

n+1

Using these results, one finds for the autocorrelation
t We use the medi&ed definition, denoted by He„ in W. Magnus funCtion (13)

and F. Oberhettinger, Formulas and Theorems for the Special
J nnctions of Mathematical Physics (Chelsea Publishing Com- (q(0)q(t)).,= (1+cii)'e ""+Q c ise ""'
pany, New York, 1949), p. 80.
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which yields the spectrum

(Because ci„———c„i, and c„0=0.)

6. APPLICATION TO TWO SPECIAL CASES

Usually the resistance is symmetrical with respect
to the direction of the current; the simplest non-
linearity of this type is R (V) =Ro+R2V . This amounts
to putting $(q) = 1+yq', where y= —(kTRD/R2C).
The equations of the previous section yield for this case

cz, y= 0 unless

e3, i= ($)'V,

(1+cii) '= 1——,'y',

Xi ——1+y—3y'.

m=3 or 1,

Hence we find for the spectral density of the current
fluctuations

iver =4 (1—lv') — +le'
Xi2+co' 1+(-'a&)'

(16)

A second example is obtained by putting R(V)
=Ro+RiV, which amounts to ((q) = 1+Pq with
P= —(Ri/Ro) (kT/C) l. As an even function of V, this
case may be regarded as a simple rectifier. The equa-
tions of the previous section yield

c„,~=0 unless m=2 or 1,

e2, ,——pv2,

(1+cii)'= 1—2P',

Xi——1—2P'

Hence the spectral density of the current fluctuation is

(1 2P2)2~2 P2~2
TV ~=4 +

(1 2p2)~+„~ 1+(i„)~I

This is the modified spectral density to second order.
The only first-order modification arises from the first-
order shift of X». The interesting feature, however, is
the P term, which is of second order. Obviously in this
sum the A, „may be replaced with X„&')=e. Each of the
terms in the sum has the same shape as the unper-
turbed spectrum (15), but for the fact that the re-
laxation time ROC is replaced in the successive terms by
/ROC 3ROC, . These terms in the spectrum will show
up as low broad wings on both sides. In addition, the
original peak is modified (broadened or narrowed
according as Xi)hi'" or Xi(lii&'&). The integral of the
total spectrum is of course not altered, because it is the
mean square Quctuation of q in equilibrium; indeed,

CO

S(co)des= (1+cii)'+ P e,„i2=1.

Wg =4 (1—2'r) +-', 'r
1+co' 1+(-',co)'

(17)

The remarkable resemblance with our formula (16) is
deceptive, as (17) contains the first power of y where
(16) has y'. The first order terms in (16) do not at all
correspond to (17).
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APPENDIX I
Since the derivation of the relation (6) connecting $

and R is a very crucial step, we want to discuss it more
fully. Essentially three arguments enter into it.

(i) The same Fokker Planck equation (3)-describes
both small scale and large scale phenomena. The idea, is
that these phenomena are merely diferent aspects of
one and the same diffusion-like process in the space of
observable quantities ("a space, " see reference 3).

(ii) The function g(q) must not vary too rapidly.
Firstly, for q

—+ & ~ it must not increase very strongly,
certainly not like 1/G(q) exp(-,'q'). Secondly, $(q)
must not oscillate rapidly about some average trend,
$(q) say. Then the large-scale phenomena would be
determined by ( rather than by (, whereas the fluctua-
tions are determined by $. Actually both these condi-
tions will be satisfied for sufficiently large C.

' H. A. Kramers, Physica 7, 284 (1940).
. 0, Polder, Phil. Mag. 45, 69 (1954),

7. DISCUSSION OF EARLIER LITERATURE

Kramers' studied Brownian movement in a field of
force. This is different from our problem, because his
nonlinearity is due to the external, nonrandom force,
whereas the random force is still the same as in the
linear Brownian movement. Our problem, on the other
hand, amounts to finding the statistical properties of
the randoni force in case the friction of the moving
particle is no longer proportional to the velocity. How-
ever, Polder' has .noticed that, if in Kramers' problem
the friction coefficient is allowed to depend on the
position of the particle, the resulting Fokker-Planck
equation is also valid for the current Quctuations in a
nonlinear electric circuit. The position of the particle
is then the charge q on the condenser, the external force
corresponds to a dependence of C on q, and the mass of
the particle corresponds to a self-induction.

MacDonald' formulated the problem of finding the
spectral density of the fluctuations in an electric circuit
of the type treated here. He introduced the hypothesis
that (7) (without the last term) not only describes the
large scale behavior, but also describes correctly the
regression of small scale fluctuations. On the basis of
this assumption he found for the spectral density, in
the first case of our Sec. 6,
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(iii) The system can be decomPosed inIo Imo Parts, the
condenser determining the function G, and the re-
sistance determining g. This made it possible to stipu-
late that P is a function of V=q/C only talthough
a priori ( refers to the system as a whole, and may
therefore be an arbitrary function g(q, C) of two
variables). Subsequently it is possible to go the limit
of large C, in order to compare g with R.

APPENDIX II

Recently MacDonald" studied the same problem
again. He now also gives the Fokker-Planck equation
"D. K. C. MacDonald, Phys. Rev. 108, 540 (1957).

(1), but considers $(q) and rI(q) as two mutually un-
related functions. Actually there is a relation (Sec. 2),
which in MacDonald's notation takes the form

G(q) =F(q) kT—CF'(q)/q.

The equilibrium distribution (7) of MacDonald then
reduces to the ordinary Gauss distribution. MacDonald
proved on thermodynamic grounds that (q'),~ must be
independent of the function E(V), but in fact the whole
distribution function of q turns out to be independent
of the resistance. It seems to me that this fact can be
generally postulated on statistical grounds. This
postulate would then conversely lead to (18).
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Optical Properties of Hexagonal ZnS Single Crystals
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The optical transmission of hexagonal zinc su16.de crystals has been measured in the spectral range from
0.32 to 15 p, . From the spacing of interference maxima, the dependence of index of refraction on wavelength
has been determined. Measurements of the effects of temperature from 20'C to 120'C and of pressure up
to 1700 atmos on the width of the forbidden energy band indicate an increase in band gap of 9&(10 6 ev/
atmos with pressure and a decrease of 7)&10 4 ev jC' with temperature for both ordinary and extraordinary
rays. Approximately one-fifth of the shift with temperature is the result of dilatation of the lattice. The
origin of the larger portion of the shift is discussed.

INTRODUCTION

S TUDIES of hexagonal ZnS single crystals have
included the eGect of temperature on the wave-

length of the absorption edge' and determination of the
energy of the band gap by optical absorption and
electrical conductivity measurements. ' In this paper
we report further measurements of the optical properties
of hexagonal ZnS crystals grown from the vapor phase.
The eGect of pressure up to 1700 atmospheres on the
absorption edge is used to determine what fraction of
the temperature shift of the absorption edge is due to
lattice dilatation. These measurements were made for
both the ordinary and the extraordinary rays in the
crystal.

The well-defined interference fringes observed in the
transmission measurements make possible the deter-
mination of the dependence of the index of refraction on
wavelength in the spectral range 0.34 to 2.0 p. A thick
crystal was used to check the index of refraction in the
range from 2 to 15 p.

EXPERIMENTAL

The optical system employed for the transmission
measurements is shown in Fig. 1. A Beckman hydrogen

C. Z. Van Doom, Physica 20, 1155 (1954).
2 W. %. Piper, Phys. Rev. 92, 23 (1953).
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FIG. 1. Optical arrangement for transmission measurements.

3 D. T. F. Marple, I. Opt. Soc. Am. 46, 490 (1956).

discharge or a tungsten incandescent source was focused
on the sample by a spherical mirror which acts as the
limiting aperture of the apparatus. This arrangement
minimized loss of radiation by scattering or refraction
through small angles. The light-collecting optics have
been described in a previous publication. ' The clear
areas of the crystals used were not less than 2 mm
square and the beam entering the monochormator


