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Effects of Electron-Electron Interactions on Cyclotron Resonances
in Gaseous Plasmas*
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The effect of mutual interactions between electrons on the cyclotron resonance of a gaseous discharge
plasma has been studied, From the Boltzmann-Fokker-Planck equation in cylindrical coordinates, a set of
simultaneous integro-differential equations is obtained and solved numerically on a digital computer
for various values of magnetic 6eld and electron density. The results indicate that the real part of the
electrical conductivity of the plasma, and hence its power absorption, are reduced by the electron-
electron interactions at the peak of the resonance, and that the width of the resonance is increased. The
broadening of the resonance width becomes increasingly pronounced at higher charge concentrations.
It is also found that, with the magnetic field equal to zero, the high-frequency conductivity of the plasma is
practically unaltered by the electron-electron interactions. Thus the usual expression for the electrical con-
ductivity of a Lorentzian gas cannot be used without discretion for high-density plasmas, where mutual
electronic encounters cannot be ignored.

I. INTRODUCTION

HEN the charge density of a gaseous plasma is
high, the eGects of the interactions that take

place between the charges cannot be ignored. The
inQuence of the electron-ion collisions on the electrical
conductivity of a plasma has been studied by previous
investigators, ' and has been measured experimentally
by using microwave techniques. ' ' Little attention was
given to the electron-electron encounters, since, due
to momentum conservation in the electron system, such
interactions were considered to have little effect on the
electrical conductivity, which is dependent upon the
momentum transfer collision frequency of the electrons.
Spitzer and Harm4 have found, however, that the dc
conductivity of a completely ionized gas is considerably
reduced when the electron-electron interactions are
taken into account. It is, therefore, of interest to
ascertain whether the high-frequency conductivity,
which is measurable by microwave methods, is also
affected to the same extent. In the case where a steady
magnetic field is applied perpendicularly to the oscil-
lating electric Geld, a cyclotron resonance may occur in
the system. Since the width of the resonance is deter-
mined by the collisional processes in the plasma, it is

certainly also of great interest to examine the effect of
electron-electron interactions on the shape of the
cyclotron resonance. Inasmuch as the former problem
is a special case of the latter with the magnetic field

equal to zero, our investigation will be formulated at
the outset in the form suitable for treating cyclotron
resonances.

* Supported by the Air Force Cambridge Research Center.
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Bohm and Pines' ' have shown that there are two
types of electron interactions: the long-range and the
short-range. The long-range part of the interactions
exhibits an organized phenomenon, and is the chief
agent that brings about the collective behavior of the
system, e.g. , the plasma oscillations. On the other hand,
the short-range part of the Coulomb interactions is
random in nature and is associated with the thermal
Quctuations of the electrons in the plasma. To be com-
plete in our study, we must consider both of these types
of electron interactions. Upon writing the Boltzmann
equation in the collective coordinates of the electron
system obtained by a canonical transformation similar
to that employed by Bohm and Pines, it was found,
however, that for most gaseous discharge plasmas the
eftect of the long-range electron interactions on the
velocity distribution function of the electrons is rela-

tively unimportant. ' Thus, a detailed description of
the treatment of the long-range interactions will not
be attempted here. YVe shall therefore turn our attention
in this paper exclusively to the short-range interactions.

Since the cuto8 distance which separates the long-
and the short-range forces is generally set to be the
Debye length AD, or in certain instances, even longer
than )D, the short-range interactions are actually still

quite long compared to the close encounters where

large-angle scatterings occur. Since the short-range
forces are random in nature, and produce only small-

angle deRections on the electron paths, the theory of
Brownian motion may be adopted, and the usual
Fokker-Planck equation' may therefore be used. The
Fokker-Planck (F-P) equation for particles interacting
through shielded Coulomb force has been studied

s D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951).
6 D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

See R. C. Hwa, Ph.D. thesis, University of Illinois, 1957
(unpublished).' S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).
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before by previous investigators. ' " The work pre-
sented here is an extension to the high-frequency case
and to the case where a steady magnetic field may be
applied so that a cyclotron resonance may occur in the
plasma. Ke shall assume that the plasma is uniform
and that the applied oscillating electric field is very
weak so that the temperature of the electrons is not
altered appreciably even at the peak of the cyclotron
resonance. These restrictions are essential, since we are
interested in the eGect on the resonance shape due to
electron-electron interactions, instead of that due to
the diamagnetism of the plasma arising from non-
uniform spatial distribution, or due to the increase in
electron temperature caused by strong external fields.

II. F-P EQUATION IN CYLINDRICAL COORDINATES

The Fokker-Planck equation describing the time rate
of change of the distribution function f(v, i) due to
encounters resulting in small-angle deRections is usually
expressed in Cartesian coordinates as

82

(f(»'))+ l 2 (f(»'» )), (1)
O' OV, BV,.

where the indices i and j designate the components in
the rectangular system. (»,) is the average change per
unit time of the i component of the velocity of the test
particle; the average is to be taken over all collisional
parameters. In order that the Fokker-Planck method
may be used, Av; must be very small so that the higher
order moments of hv; may be neglected. It may be
shown" that if r represents a time interval, long com-
pared to the mean period of the fluctuating forces, but
short compared to the average time for an appreciable
change of the particle momentum, then to the first
power of v-, only the first two moments of Av, should be
retained. The averages (Av,) and (»;Av;) are to be
calculated as usual on the basis of binary collisions,
using the Coulomb force, cut off at an appropriate
distance, for charge interactions in plasmas. "Hence

r

(gv;) = Av, F(V)go(8e, g) sin8ed8edge. ds V,
J

(2)

(Av;Av;) = l " Av;Av, F(V)go (8„g) sin8, d8,dg, dsV,Jg
where F (V) is the velocity distribution function of the
field particles, g is the relative velocity between the
colliding particles, o.(8„g) is the differential scattering
cross section, and 8, and P, are the scattering angles in
the center-of-gravity system.

' Cohen, Spitser, and Routly, Phys. Rev. 80, 230 (1950).
"W. P. Allis, Hgvdbaejs der Physek (Springer-Verlag, Berlin,

1956), Vol. 21, p. 429.
"Gasiorowicz, Neuman, and Riddell, Phys. Rev. 101, 922

(1956)."Rosenbluth, MacDonald, and Judd, Phys. Rev. 107, 1 (1957).
's H. C. Brinkman, Physica 23, 82 (1957).
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where only the first and second power terms have been
retained. Writing y for (Av, ) and y s for (» Avv)
'where o. and P may each be $, s), or f, and. making use
of (4), the right side of Eq. (3) may be expanded into
nine terms, that is,
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For problems where cyclotron resonances may occur,
the F-P equation must be written in cylindrical coordi-
nates. With v„v~~, and p denoting the radial velocity,
the axial velocity, and the azimuthal angle, respectively,
the equation becomes

bf 1 8
(fv.(»s))

St I V& BVI,

1
+lZ — (f"(~"~ )), (3)

k l Vg QVpgV~

where v& and v~ may each be v, , v~~& or p. To facilitate
later calculations, it is advantageous to express the
velocity change Av in a rectangular coordinate system
$, tl, f', where $ is in the direction of v, while g and l
are in the directions of increasing 8 and p, respectively
(8 being the polar angle of v). In terms of changes along
the $, ti, i axes, vr's , Avt. , »„,Avr, one may show that
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To evaluate y and y p we shall adopt the procedure
used by Allis. "Av is first averaged over the scattering
angles in the center-of-gravity system, the result being
used to generate the corresponding vector and tensor
components in the $, q, g coordinates. The averages
over the velocity distribution function F(V) of the
field particles are then performed, yielding p and p p

as functions of integrals involving F(V). For plasmas
at cyclotron resonance, the test arid field particle distri-
bution functions shall be expanded respectively in the
forms

f(v) =fo(v)+f, (n) sin8 cosP+ f~(~) sin8 sing, (7)
and

F( I) =F0(V)+Fi(V) slnO~ cos(@—C')

+F2(V) sinO sin(g —4). (8)

In both cases, the perturbing parts of the distribution
functions are very small compared to the isotropic
parts, since the applied electric field has been assumed
to be very weak. Second and higher order terms are
entirely negligible. To the same order of approximation
we may assume that fo(n) and Fo(V) are Maxwellian.
In Eq. (8), 0 is the polar angle of V measured from the
s axis, and C is the azimuthal angle of V measured
negatively from the v —s plane (see Fig. 1). Since v is
considered fixed in the integrals of (2), the integrations
over V can be performed straightforwardly, if F(V) is
expressed in terms of the spherical angles having v as
the polar axis. Thus, introducing

Fi(V,P) =Fi(V) cosP+F2(V) sing,

Fu(V,p)
—=Fi(V) sing —F2(V) cosp,

FIG. j.. A diagram showing the test particle velocity v, the 6eld
particle velocity V, and the related angles.
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one may show that
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where p= M/(m+M). y„r and yr„are the only vanishing
elements. In the above expressions, L, being a loga-
rithmic term, has been treated as a constant. Since the
Fokker-Planck method is valid only when there are
many particles in the interaction sphere of radius X„

'4 X, is ordinarily set to be the Debye length Xz. But in certain
cases, e.g., T—300'K, e—10"cm ', XL is less than the interionic
separation, which suggests that setting ) ~ to be the cutoG distance
would be an overestimation of the effectiveness of screening. Thus
), may be somewhat larger than XD when the latter approaches
interionic distance-.

we have, after some trigonometric manipulations,

F(V) =Fo+Pi(cosf sin8 —sing cos8 costa)
+F2 sing singo, (10)

where P is the angle between v and V, and po is the
angle between v —V and v —s planes. The integrations,
although tedious, are essentially similar to those of
Allis. "Using his notation

E=4e'/nz' (Z = 1),
I.= in[1+ (3kTX./2e') ']*',

where m is the electron mass, e its numerical charge,
k the Boltzmann constant, T the temperature, and X,
the cutoff distance of the screened Coulomb field, '4 and
writing the indefinite integrals in the form

kr
I'(m) =— 7"V&' +d V
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the magnitude of L should not be too small. The tensor
terms in (14) actually also contain terms which do not
depend on L, but they are neglected not only because
they are small, but also because their inclusion would
prevent the resultant F-P equation from satisfying the
momentum conservation law. It is expected that they
must be cancelled by the higher order terms of the
F-P equation.

IIL REDUCTION OF THE F-P EQUATION

Substituting the Eqs. (13}and (14) into (S) and (6),
one obtains a long integro-di6erential equation for the
Fokker-Planck equation. It may, however, be simplified
considerably. The p derivatives can first be removed by
noting that (9) gives

BPo/8$= Pi, BFi/BP= —Fo.

Hence, in view of (12), we have

which are all dependent on ~ only, we find, after some
manipulations, that Eq. (S) may be expressed as

8f v,—= ——{vF' —2v'Q ——',R'+S'+2T'},
~4

where the primes indicate diGerentiations with re-
spect to v.

For electron-electron collisions the field particles are
the same as the test particles, so Fo=fo, Fi=fi, and
Fo=fo. Comparing Eqs. (9) and (16), we further find
that Fi ——x. The distribution fp, being Maxwellian at
temperature T, varies as exp( —Pv'), where P=m/2kT.
Using the relations

—(vmI, ') = (m —j)vm 'I,'+4irv~+'
O'V

8+8 'V

8
(vmJ i) —(m . j )vm 1J4—4 , vm+2

O'V

i=0

82

(furr) = f~rr—
8 2

f(v) =fp(v)+—x(v,y), (1S)

x(v,y) =fi(v) costi+ fo(v) sing,

we see from (12) and (13) that

+EL
L3Io'x+fo(2Ii' —j o')],

3p,va

(16)

which is a function of s only, "independent of ~& or v~ ~.

The other 7 terms may be treated in like manner.
Thus, if we define five functions

Since p„r=0, the use of the above relations in (6)
removes all differentiations with respect to p; further-
more, the equations become dependent upon five

y terms only, vis. , y~, y„, y~~, y» and yp„. These terms
will be collected in groups and treated separately as
such. In the course of reduction we shall encounter
products of f(v} and F(V) throughout all the equations
in (6). Inasmuch as fp(v)Fp(V) has no contribution to
the electrical conductivity of the plasma (because of its
isotropy in velocity), we shall consider only the first
order terms. If we write Eq. (7) in the form

and making the appropriate substitutions and differ-
entiations in (18), one obtains finally

tif v EI.vi
{Sv'x"(Ioo+I io)

8t „15v4
+Svx'(3Ip' —Ioo+2J io)

—Sx(3Io —Io +2J—i 24irvofo)

—10Pvofo(Iii+ J—oi)+12Pov4fo(Io'+ J—oi) ) (19)

This is the rate of change of f due to collisions between
electrons.

A check on Eq. (19) can be made if we let the mass
of the field particles approach infinity, and see whether
(19) leads to the corresponding result for electron-ion
collisions. Since the temperature of the ions is essen-
tially the same as that of the electrons, the velocity
distribution function of the field particles can be
approximated by a delta function at the origin of the
velocity space. Thus, from Eq. (12), we see that only
Ip equals S, the number density of the field particles
(ions); all other integrals yield zeros. Recognizing this
fact and remembering that p, =M/(m+M) 1 for
electron-ion collisions, one may simplify Eqs. (13) and
(14) considerably, and obtains

(20)

~ (v) =v'f&„„/v„T(v)—=v'fyt. „/v(b-
"The dependence on @ may be ignored temporarily.

where v„=tVvrEI. /v' is the momentum transfer collision
frequency between electrons and ions. ' Equation (20)
is, indeed, the correct expression of Sf/pt for electron-ion
collisions.

Since collisions between electrons should entail no
net change of momentum in the electron system, we
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must have

(21)

numerically. Thus, if we define

x=—P-:v; r =—roIr/ro,

where v& is the electron velocity in an arbitrary direc-
tion k. Using Eq. (19), one finds that the above relation
is indeed satisfied. This provides another check on
Eq. (19).

s—= 1/roPll i, /(o

t= nrr—KLP~/2(o u„/oi,

S 00

H, '(x) —=
J

f;x&dx; G (x)
—=

J f,x&dx,
0

IV. BOLTZMANN EQUATION

C'(x) —=2rr l " exp( —x')dx, error function,

in which P, and f„are the effective electron-molecule
and electron-ion collision frequencies, we obtainBf rif bf

(22)
a(*)fi"(x)+&(x)fi'(x)+c(x)fi(*)+di(x)

a'

where

The Boltzmann equation for the distribution function
of the electrons in a uniform, partially ionized gas is
given by

6t 6t ,

where the cyclotron frequency rorr eH/rnc T——he appro. -

priate expansion for f(v) is

f(v) =fs(s)+—X(v)e'"', (23)

where )t(v) is as shown in Eq. (16).The collisional terms
for electron-ion and electron-electron have already been
obtained, and are given by Eqs. (20) and (19), respec-
tively. For electron-molecule collisions, we have"

with the subscripts enz, ei, ee indicating the eGects of
electron-molecule, electron-ion, and electron-electron
collisions, respectively. 8/civ is the gradient operator in
the velocity space. Assuming that a steady magnetic
field II is in the s direction and that an oscillatory
electric field E is in the y direction oscillating at a fre-
quency co, we have

(eE
a= —io~Hs, sing —j ~

—e'"—rorrv, cosQ ~,

=-fs(x),
t

a(x)fs" (x)+&(x)f,'(x)+c(x)f, (x)+d, (x)

where

a(x) = (e —xC')/x',

b(x) = P(2xs —1)C+~'7/x4,

2 ( 1
c(x)= ——1+( 1— inc'

~3

r h(x)fi(x)+--
t t

1 & (s 1y
+ i

—4x' i4' —
i
x+i-

&2x

n,eP'E
h(x) = —xC'.

8C'
d;(x) = $—5a, '+6+, '+ (—5+6xs)xsG, 7

15x'

(25)

(24)

where / is the mean free path of the electrons associated
with the momentum transfer collisions with the mole-
cules. Substituting these into Eq. (22) and separating
according to sin@ and cos@ result in two simultaneous
integro-differential equations, from which we can solve
for fi and f& By changing th.e independent variable and
some parameters into dimensionless quantities, the
equations can be put into a form more readily solvable

This is the set of equations we have to solve in order to
determine the velocity distribution function of the
electrons at cyclotron resonance, taking into account
the electron-molecule, electron-ion, and electron-elec-
tron collisions. From the distribution function we can
determine the electrical conductivity, and, consequently,
the shape of resonance absorption. lt is of interest to
note that Eq. (25) reduces to Eq. (8) of Spitzer and
Harm4 if we let the magnetic field, the signal frequency,
and the electron-molecule collision frequency approach
zero.

V. RESULTS
' S. Chapman and T. G. Cowling, The Mathematical Theory ~ ~

of tvonnniforrn Gases (Cambridge University press, New itorir, It is obv us th t to s lve the equations in (25)
1953}. analytically would be extremely diKcult, if at all
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constant in the integrals that led to the expressions in
(13) and (14).Thus, the electron density may be calcu-
lated from the parameter t using the approximate for-
mula e 300~t. It should be noted that the Fokker-
Planck method may not apply when m exceeds 10"cm '
(for T=300'K), since the screening of the Coulomb
field would be so effective that the interaction sphere
no longer contains many particles.

From the solutions of the ILLIAC, we can readily
calculate the real and imaginary parts of the electrical
conductivity tensor, which has the form

.9 .95 I,O LOS
where

og2 0
o2g 0
0 o»

ao„Cyclotron Frequency
f 0

SIgnal Frequency

FIo. 2. Cyclotron resonances at t=0.1 (a—3&(10" cm ') and
&= &em/~ =0.01. The dashed curve is for the case where electron-
electron interactions are not considered. The solid curve is ob-
tained when they are taken into account.

4~re
o 11 o 22 fsx dx)

3P'E p

4m-ee
&ls= o st= ~~ ftx dx,

3P'E ~p

possible. To solve them numerically by the usual
integration method would also be unfeasible since the
coefficients in the equations diverge at both ends; the
evaluation of ft" and fp" would involve subtractions
of very large but nearly equal quantities, thus drasti-
cally impairing the accuracy of the results in the initial
stages of the numerical integration and leading to
propagation and accumulation of errors in successive
steps. In view of this, the numerical method of finite
differences was chosen.

Since the coe%cient c(x) is a complex quantity, the
two equations in (25) may be separated into four
equations relating the real and imaginary parts of ft
and f&. Thirty-fIve nodal points along the axis of the
independent variable x were used so that, with four
difference equations for each point, there was a total
of 140 linear algebraic simultaneous equations to be
solved for each problem. The range of values of x was
from 0 to 3. For x&3 we assumed that the solutions
take on asymptotic variations. The solution of the
simultaneous equations was performed on the ILLIAC,
the University of Illinois digital computer.

The parameter r is the ratio of cyclotron frequency to
signal frequency, and was varied from 0.9 to 1.1. For
the case of no magnetic field, r was set equal to zero.
The parameter s is roughly the ratio of electron-
molecule collision frequency to signal frequency, and
was given a value of 0.01. The parameter t is approxi-
mately the ratio of electron-ion collision frequency to
signal frequency; for a known electron temperature T,
it gives a measure of the charge concentration m of the
plasma. Since the cutoG distance X, of the short-range
forces is a rather loosely defined quantity, we may let I.
have an average value of 7 for T=300'K and e varying
between 10" to 10" crn '. This approximation is of
the same order as that used when I was considered

and o-» is the high-frequency conductivity of the plasma
in the absence of any magnetic field, and is therefore
the limit of o» or o» as B approaches zero. Thus, by
solving Eqs. (25) for various values of r and t, we
obtained resonance curves at different charge densities,
taking into account all types of electron encounters,
vis. , e-nz, e-~, and e-e. We also excluded the con-
sideration of the electron-electron encounters by putting
equal to zero in (25) the coefficients a(x), b(x), d, (x),
and

—------- em eI
em, ei, ee

O~

4l
CJ
C

D

.OI-
O

V
aX

.OPI
Io'

I I I

IP IPIO IPI I

Electron Density n (cm ~)
IP"

FIG. 3. Effects of charge interactions on cyclotron
resonance widths.

of c(x). A comparison of the results so obtained for
the two cases should reveal the effect of electron-
electron interactions on the electrical conductivity of
the plasma at cyclotron resonance.

A typical set of resonance curves is shown in Fig. 2,
where the real part of &rtt (or o.ps) is plotted versus. r for



ELECTRON —ELECTRON INTERACTIONS IN PLASMAS 313

both with and without e-e interactions. The value of 3

is 0.1, which, for co=10" sec ', corresponds to n 3
X 10"cm '. It is evident that the effects of the electron-
electron interactions are to reduce the absorption of
the microwave power by the plasma at the peak of the
cyclotron resonance and to increase its half-width. This
suggests that the electron-electron interactions increase
the scatterings of the electrons.

Resonance curves such as those shown in Fig. 2 were
obtained for various values of t. In Fig. 3 is plotted
(Aa&)/2 against the electron densities, where ha& desig-
nates the half-widths of the resonance curves. The
ordinate of the plot corresponds to the effective collision
frequency of the electrons in a I.orentzian gas, since, in
such a gas, the cyclotron resonance width is very nearly
twice the electron collision frequency. Figure 3 clearly
depicts the importance of the effect of the electron-ion
encounters on the collision frequency of the electrons,
and therefore also on the resonance width, for charge
densities greater than 10" cm ', when the electron-
molecule collision frequency is of the order of 10' sec '.
This corresponds to plasmas in helium gas discharge at
1 mm Hg pressure with a degree of ionization of only
10 ' or higher. It is also evident from Fig. 3 that the
broadening of the cyclotron resonance width by elec-
tron-electron interactions, just as it is with the electron-
ion encounters, becomes more pronounced at higher
charge densities.

In the case of no magnetic field, i.e., r=0, the per-
turbing distribution function fi vanishes, and f, is
found to be relatively independent of the electron-
electron interactions. The real part of the electrical
conductivity at the highest charge density investigated
(e 3&&10"cm ', T=300'K) is increased by e—e inter-
actions by no more than 7%. The imaginary part is
practically unaffected. This therefore validates the use
of microwave techniques to obtain the correct scattering
cross section for electron-molecule or electron-ion col-
lisions.

VI. CONCLUSION

It was found in this investigation that the electron-
electron interactions do not appreciably acct the high-
frequency electrical conductivity of a plasma when
there is no magnetic field. But they do have an effect
when a magnetic field is applied, especially if a cyclotron
resonance occurs. The interactions reduce the resonance
peak and broaden the width, thus effectively increase
the electron scatterings. The reduction of the absorption
at the peak of the cyclotron resonance is consistent with
the result of Spitzer and Ha, rm, 4 who found that the
electron-electron interactions reduce the dc conduc-
tivity of a plasma. Some insight into the role played by
the electron-electron interactions in gaseous plasmas
may be gained if we examine the expressions for the
electrical conductivity of the plasma under various

conditions. For a Lorentzian gas, under cyclotron
resonance conditions, the conductivity (0» or 0») may
be shown to vary as

P+ZM
)

P ZGO GO~

(26)

where v is the effective electron collision frequency,
u the angular frequency of the applied electric field,
and co~ the cyclotron frequency. The above expression
would not be valid if electron-electron encounters are
also taken into consideration, because the term v

cannot adequately account for the interactions that
take place between electrons. This may be seen by
noting that Eq. (19) cannot be put in the form of
Eqs. (20) or (24), from which the effective momentum
transfer collision frequencies of the electrons with ions
and molecules, respectively, may be derived. In fact,
it is those derivative and integral terms in (19) that
distinguish the nature of mutual electronic encounters
from that of encounters between electrons and foreign
particles.

Results of the numerical computations indicate that
the electron-electron interactions reduce the real part
of the electrical conductivity when the plasma is at
cyclotron resonance, which is in line with the dc case
of Spitzer and Harm. Putting first co=co~, and then
co=co&=0 in (26), we find that the two cases actually
belong to the same category, namely, 0. 1/v. Thus,
a reduction in 0- by electron interactions implies an
eAective increase in v,. or, more appropriately, an
effective increase in scattering by such interactions
results in a reduction in conductivity under those con-
ditions. In the case of no magnetic field, the high-
frequency conductivity behaves quite differently, how-
ever. Putting &v~ ——0 and assuming a&&cd in (26), we get
cr v. One would then expect that the enhancement of
scattering due to electron interactions should increase
the conductivity in this case as much as it reduces the
latter in the previous cases. But the results indicate
that the increase is insigni6cant. In view of Eq. (21),
one may infer that this should not be totally unexpected,
but rather should be considered as a natural conse-
quence of the mutual electronic interactions for which
no net change of momentum results. Thus, the expres-
sion (26) for electrical conductivity of a plasma cannot
be used with much reliability when the charge density
is high, this being the anomaly of a non-I orentzian gas.
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