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Basic Microwave Properties of Hot Magnetoplasmas*

J. E. DRUMMOND

Poulter Laboratories, Stanford Research Institute, Menlo Park, California

(Received September 9, 1957; revised manuscript received January 31, 1958)

The usual conductivity tensor of a uniform plasma in a uniform, static magnetic field (along the s axis)
is generalized to include four effects of random motion of plasma electrons. These effects are due to (1) the
shape of the radio-frequency electric field strength expressed by &X &XENO, (2) the partial spanning of
a wavelength by an electron cyclotron orbit, and (3) the possible variation of the radio-frequency electric
field lines along the s axis of electron drift. The effects resulting cause diffusion damping, the existence of
nonzero (x,s), (y,s'), (s,z), and (s,y) elements in the conductivity tensor, large changes of the effective plasma
density, and phase changes in the conduction current density. These results are applied to evaluation of the
index of refraction of microwave signals propagating normal to the magnetic field. The existence of unusual
transmission bands is predicted for very dense, hot plasmas.

1. INTRODUCTION

1.1 Objective

~ 'HK purpose of this paper is to present a theoretical
study of the conductivity tensor of a high-tem-

perature ionized gas in a uniform, static magnetic field.
Such a study is of importance in providing the basis for
predictions of microwave transmission and absorption
in electric arcs' as well as in the atmosphere of the sun'
and the ionosphere of the earth. ' The areas of technical

* This work was done under a Signal Corps Contract while the
author was with Sylvania Electronic Defense Laboratory,
Mountain View, California and accepted in partial fulfillment of
the requirements for the degree of Doctor of Philosophy,
Stanford University, 1956. The present writing and extension of
the work was done under a research fellowship appointment with
Poulter Laboratories.' A. Guthrie and B. K. Wakerling, Characteristics of Electrical
Discharges in 3fagnetic Fields (McGraw-Hill Book Company,
Inc. , New York, 1949); W. H. Bostick and M. A. Levine, Phys.
Rev. 97, 13 (1955);H. Gamo, J. Phys. Soc. Japan 8, 176 (1953);
A. A. Thm. and Van Trier, Appl. Sci. Research 83, 305 (1953);
P. S. Epstein, Revs. Modern Phys. 28, 3 (1956); Phys. Rev. 87,
227 (1952). Etter and Goldstein, "Guided Wave Propagation
through Gyromagnetic Gaseous Discharge Plasma, "University of
Illinois Electrical Engineering Research Laboratory Technical Re-
port No. 3 (unpublished); H. Suhl and L. R. Walker, Bell System
Tech. J. 33, 579, 939, 1133 (1954) and "Topics in Guided Wave
Propagation Through Gyromagnetic Media, " Bell Telephone
Laboratory Monograph No. 2322 (unpublished).

2 F. P. Wild, Australian J. Sci. Research A4, 36 (1951).' Appleton and Barnett, The Electrician 94, 398 (1925); H. B.
Keller, "Ionospheric Propagation of Plane Waves, " New York
University Mathematical Research Group Report EM-31 (un-
published); A. Russek, "Scattering Matrices for Ionospheric
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applications would include new electron stream4 and
gaseous breakdown' devices used to generate and
control high-frequency radio waves. A recent important
area of application is in connection with microwave
diagnostic studies in thermonuclear research. '

Although some temperature" eGects have been
included in previous analyses, ' these have not been as
complete as might be desired. The present analysis is
also incomplete in that the basis of the calculations is
the Boltzmann transport equation. This equation omits
certain statistical effects that might be of importance. '
However, within the limitations imposed by use of the
Boltzmann equation and a number of other approxi-
mations which will be listed shortly, it is the purpose

Models, " New York University Mathematical Research Group
Report EM-38 (unpublished).' D. A. Watkins and N. Ryan, J. Appl. Phys. 25, 1375 (1954).' H. Johnson and K. R. Deremer, Proc. Inst. Radio Engrs. 39,
908 (1951).

R. F. Post, Revs. Modern Phys. 29, 338 (1956).
D. Pines and D. Bohm, Phys, Rev. 85, 338 (1952); V. A.

Bailey, ibid 78, 428 (195.0); J. A. Roberts, ibid , 76, 340 (1949)..
D. Bohm and E. P. Gross, ibid 75, 1851, 1864. (1949); 79, 992
(1950). E. P. Gross, ibid. 82, 232 (1951);Bhatnagar, Gross, and
Krook, ibid. 94, 511 (1954); W, P. Allis, Bandblch der Physik
(Springer-Verlag, Berlin, 1957), Vol. 21; L, Spitzer and R.
Harm, Phys. Rev. 89, 9'l7 (1953); Hari K. Sen, ibid 88, 816.
(1952); E. P. Gross, ibid. 82, 232 ('1951),

Gasiorowicz, Neuman, and Riddell, Phys. Rev. 101, 922
(1956). Rudolph C. Hwa and L. Goldstein, "Electron Inter-
actions in Gaseous Discharge Plasmas and their Effect on Cyclo-
tron Resonance, "University of Illinois Electrical Engineering Re-
search Laboratory Scientific Report No. 3 (1957) (unpublished).
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of this paper to derive the four important basic kinds
of temperature e6ects on 'the microwave conductivity
tensor of magnetoplasmas.

The interaction potential between any two
particles depends only upon their relative
coordinates and momenta.
Three-body and higher correlations may be
neglected.

(1.2.1)

(1.2.2)

s H. L. Frisch, J. Chem. Phys. 22, 1713 (1954); H. Grad,
Comm. Pure Appl. Math. 2, 331 (1994);J. G. Kirkwood, J. Chem.
Phys. 14, 180 (1946).

1.2 Conditions and Assumytions of the Problem

Consider a plasma filling a bounded region of space.
Let the entire region be immersed in a uniform and
constant magnetic held. The plasma will be taken as
consisting of an equal number density of free electrons
and positive ions as well as some neutral gas molecules.
The boundary surface of the region is defined as the
limiting surface within which this condition is fulfilled
and outside of which it is not fulfilled. The boundary
may be made up of solid material or the plasma side
of an electron or ion sheath. Within the plasma the
charged particles spiral around the magnetic lines of
force. Occasionally, close-encounter collisions may occur
between electrons and ions and neutral molecules. Near
the surface the particles will have distorted orbits
either because of collisions with a solid part of the
boundary or because of entering the electric fields of a
sheath. A boundary layer is defined as a subregion of
the plasma containing all the electrons of the plasma
whose orbits will intersect the boundary surface before
close-encounter collision with other plasma particles. It
is the purpose of the present paper to present the results
of a theoretical study of some radio-frequency proper-
ties of the complementary subregion which is assumed
to be simply connected. This is made up of the plasma
minus its boundary layer. Initially, there are to be no
macroscopic electric fieMs or currents.

Now it is supposed that this condition becomes
slightly disturbed. A small oscillating electromagnetic
field is assumed to come into existence within the
plasma. Somehow the effects of electromagnetic con-
ditions on the boundary must be characterized in the
interior region of the plasma. This can be accomplished
by expanding the electric field in terms of a complete
set of functions. The boundary conditions then restrict
the coefficients in the expansion. The properties of the
medium are then represented by the relation between
the Fourier time components of the current density,
J„,and the electric field strength, E„, for each of these
modes. It is the purpose of this paper to determine these
relations.

The Boltzmann equation for the statistical distri-
bution of particles in configuration-velocity space can
be derived' from Liouville's theorem by use of the fol-
lowing assumptions:

(1.2.4)

where cv„ is the angular plasma frequency given by

cu„=—(4m me'/nz) l (1.2.5)

in cgs electrostatic units with e, e, and m, respectively,
the electron number density, charge (e= —~e~), and
mass. The Debye length A,D is given by"

(1.2.6)

where (e')s, is the mean square electron speed. Conse-
quently, the assumption that the mean fractional vari-
ation be small is

nza&p. s ( +1 l»1.
es 44s.kg/

(1.2.7)

For many cases of interest, it is undesirable for the
microwave signal to be rapidly attenuated except for
special frequencies. Hence the frequency of momentum-
transfer collisions between electrons and neutral par-
ticles, ~, must be kept much smaller than the frequency
of the microwave signal. This condition will be
assumed:

Vm~~+ (1.2.8)

This means that collisions are to be relatively unim-
portant and hence that the form of the collision integrals
can be very grossly approximated. The frequencies of
interest will also be assumed to be so high that the
motions of positive ions can be neglected":

ro')&Arne'/M,

where M is the mass of a positive ion.

(1.2.9)

I P. Debye and E. Hiickel, Physik. Z. 24, 185, 305 {1923).
D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952); J. E.

Drummond, Electronic Defence Laboratory Report No. E-14,
1956 (unpublished)."L.Spitzer, Physics of Fully Ionised Gases (Interscience Pub-
lishers, Inc. , New York, 1956); Thomas H. Stix, Phys. Rev. 106,
1146 (1957);A. B.Bernstein, Phys. Rev. 109, 10 (1958).

The distribution function and the time-de-
pendent forces remain nearly constant dur-
ing the period required for a "collision. " (1.2.3)

The range of the screened Coulomb interaction' is
such that the period required for an electron-electron
or electron-ion "collision" is approximately the charac-
teristic plasma-electron period. Thus, in order to
justify the use of the Boltzmann equation for high-
frequency oscillations, the main effects of electron-
electron and electron-ion collisions should be replaced
by a self-consistent electromagnetic field. Then only the
statistical fluctuation in these collision times within a
significant volume must be kept small compared to the
oscillation periods.

It can be shown" that this statistical fluctuation for
a volume V is
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It will be assumed that classical kinematics and
mechanics is applicable. This imposes double bounds on
the mean kinetic energy of plasma electrons. On the
one hand the mean kinetic energy must be much
greater than the energy of a plasma quantum, and on
the other hand the mean kinetic energy must be much
smaller than the electronic rest energy. This is expressed
by the following inequalities:

density J(r, t) in Eq. (1.2.16)

J—= e vfd'v. (1.2.18)

The quiescent plasma is represented by fo which will

be assumed to be constant in time, uniform in space,
and symmetric in velocity:

Aa&„«-', m(v')A„((mc', (1.2.10)
such that

0 0 (1.2.19)

where A is Planck's constant divided by 2m and c is the
speed of light. This still leaves a wide range of practical
values for the density and energy parameters.

With these restrictions, the equation for the distri-
bution function, f(r,v, t) of electrons in position (r),
velocity (v) space at time t is assumed to be

Bf
+v —Vf+(S+vxki.) V f= v„(f f—o). (1—.2.11)

M 0

v'fo(v') v'dv & ~, (1.2.20)

in order to insure a bounded kinetic energy density.
In all problems of practical interest, the field variables

E and J are of bounded magnitude and may be assumed
to vanish outside a finite interval of time. The assump-
tion may be expressed as follows:

The left-hand side of the Boltzmann equation (1.2.11)
represents the total time rate of change of the distri-
bution function f along an electron trajectory in (r,v)
space as defined by Lagrange's system of characteristic
equations":

po0

)E(r,t) ('dt& ~, (1.2.21)

(1.2.22)

dr/dt= v,

dv/dt= 8+v X~„

(1.2.12)
Thus the conditions for the existence of Fourier time

(1 2 13) transforms are realized. The transforms are written as
follows:

a(r, t) =—(e/m) E(r,t), (1.2.14)

where 8 is the electric acceleration field strength defined

by
00

E„(r)=— I E(r, t)e&'"'dt,
(2~)~~ „ (1.2.23)

with E the electric held strength, and u, the cyclotron
frequency given by

~.=eH/mc, (1.2.15)

where II is the magnetic field strength.
The right-hand side of Eq. (1.2.11) is a gross ap-

proximation to the collision integrals. It represents a
relaxation term to a steady state distribution, fo The.
solution will be assumed to depend analytically upon v .

Maxwell's equations governing E(r, t) and H(r, t) will

be assumed:

e
J„(r)= — e'"'dt

~
vf(r,v, t)d'v. (1.2.24)

(2v-)'* ~

The electric Geld E will be assumed to be so small
that the distribution function, f, will be only slightly
perturbed away from fo, or that the orbit of an indi-
vidual electron will be only slightly noncircular. The
condition that the perturbation be small is

((8+VX6)c ) ' Vwf0)Av

))((&+vX ~.') v» (f fo) )A„.(1.2.25—)

1 BK kr
vXH= — +

C Bt C

(1.2.16)
where the angular brackets mean velocity average with
any continuous weighting factor and where

h—= (mc/e) aa,
' (1.2.26)

(1.2.17)

A second connection between the field variables E and
H and the distribution function f is provided by iden-
tifying the first velocity moment of f as the current

~' Lyman M. Kells, E/ementary DigerentM/ Equations I'McGraw-
IIQ Book Company, Inc. , ¹wYork, 1947), pp. g2$—ggP,

is the radio-frequency magnetic 6eld strength.
It will be found that with these assumptions the

current density within one small volume element will

be determined by the electric field strengths throughout
many other volume elements. The question as to the
existence of a conductivity tensor is "Is it possible to
find a proportionality constant (tensor) between the cu

frequency component of the electric held strength at a
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O H FIELD DRIFT: CE/H

E F IELD

FIG. 1. Drift and expansion of orbits for ~X~ )& E&0.

point and the co frequency component of the current
density at the same pointP" In general the answer has
to be "No." For some possible electric field configura-
tions the transconductance property just noted makes
E„(r) not proportional to the current density, J(r). If
the useful concept of conductivity is to be retained, it
must be generalized a little. The question of conduc-
tivity may be reformulated as follows: "For what
possible electric field configurations, E„(r) is the
current density, J„(r), proportional to E„(r) and its
second order derivatives only, and what are the propor-
tionality constants in these cases P" This extended
concept will be useful only if all the tensors can be
given by a few formulas and all possible electric fields
can be composed out of the particular fields that satisfy
the condition stated above. In what follows, it will be
shown that both of these requirements can be met for
homogeneous plasmas in a uniform static magnetic
field directed along the s axis.

In the next subsection the four basic kinds of tem-
perature eRects on the conductivity tensor are exam-
ined qualitatively, and in Sec. 2 a quantitative analysis
is given. In Sec. 3 various consequences are considered.

DR IFT DRIF T

O H FIELD

+E ds around the orbits. Where the circles touch, the
radial expansion of the left-hand orbit augments the
current due to the orbital drift and the expansion of
the right-hand orbit reduces the current resulting from
orbital drift. Because of this cancellation, the &&( K has
in itself no net effect on the current response of the
plasma electrons. However, because c' @OD, ~&( && R
Ao. Hence there is a spatial dependence of &)& E so
that the cancellation noted above is not complete. This
is shown in the figure by the shorter radial arrows on
the left-hand orbit compared to those on the right-hand
orbit. Thus the character of the electric field form due
to a finite speed of light has given rise to an extra con-
tribution to the conduction current in a magnetoplasma.
This effect has usually been neglected. For the case
illustrated it reduces the conduction current making the
plasma seem less dense as measured by a probing
electromagnetic wave. In the following sections this as
well as the other three thermal effects will be computed
quantitatively. It will be shown that for high-density,
high-temperature plasma these effects can be of major
importance to the basic microwave properties.

In Fig. 2 a second thermal effect is illustrated again
for an orbit frequency large compared to the oscillation
frequency. This shows the canceling effect of electric
fields on an electron orbit which spans half a wave-
length. This too reduces the apparent density of the
plasma. This effect is sometimes included but not
always systematically or completely in the conductivity
tensor.

Figure 3 illustrates an effect evidently not previously
realized in the literature. This is the production of
radio-frequency currents along the axis of the static
magnetic field as a result of electric fields directed in the
plane transverse to the static magnetic 6.eld. At the top
of the drawing is shown converging arrows indicating
electron bunching due to the transverse electric fields

1.3 Qualitative Examination of the Problem

The qualitative aspects of the thermal motion of
electrons in an oscillating plasma can be seen by super-
posing typical electron orbits upon some special radio-
frequency electric field configurations. This is done in
Figs. 1—3.

Figure 1 illustrates the thermal orbits of t,wo electrons
(circles) and the over-all orbital drift (boldface arrow)
due to the electric field strength (vertical arrows) of
frequency small compared to the orbital frequency. The
small arrows pointing radially outward from the center
of the orbits indicate the expansion of the orbits due to

E FIELD
FIG. 2. Canceling drifts of large orbit.
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in that plane. At the bottom of the drawing is shown
diverging arrows indicating the opposite effect of
transverse electric fields 180' out of phase with the top
fields. Midway between these planes is shown a plane
receiving bunched thermal electrons from the top and
fewer than average thermal electrons from the rarefied
region below. Thus when these groups of electrons
reach the central plane due to their thermal motion,
they will produce radio-frequency current pulses which
will not completely cancel. Consequently, there must
exist (s,x) and (s,y) elements in the conductivity tensor.
Furthermore these elements must contain differential
operators with respect to s and x or y in order to describe
the dependence upon s-axis phase and (x,y)-plane
bunching. Of course, like the other eGects described
above, they must vanish in the limit of zero tem-
perature. These conclusions are made quantitative in
the next section. The eGects of these new elements of
the conductivity tensor make desirable the re-evalua-
tion of propagation theories which have sometimes
depended heavily upon these elements being zero. '

In addition to the production of an axial component
of radio-frequency current density, the thermal drift of
electrons along the magnetic field carries them into re-
gions where the local bunching or current is out of phase
with that carried by the drifting electrons. This mixing
increases entropy and results in an effective damping
of the Landau type. This will also be shown in the
analysis that follows.

It might be thought that there are other kinetic
effects due to the term (vXro, ) V f in the Boltzmann
equation (1.2.11). However, because of the symmetry
of the unperturbed distribution (1.2.19) these effects
cancel to second order in the perturbing field strength,
E, as is shown in the next section.

2. DERIVATION OF CONDUCTIVITY TENSOR

2.1 Plan of Derivation

The purpose of this section is to carry through a
rigorous derivation of the current density resulting from
the existence of an electric field strength within a
plasma under the conditions specified in Sec. 1.2. This
general kind of problem has been done many times in
various ways and for various specific cases. '4 However,

' Feodore Berz, Ph, D, thesis, Imperial College, London, 1955
(unpublished); L. Landau, J. Phys. U, S.S.R. 10, 25 (1946);
M. Bayet, J. phys. radium 15, 258 (1954); H. R. Mimno, Revs.
Modern Phys. 9, 1 (1937); W. R. Smythe, Static and Dynamic
Electricity (McGraw-Hill Book Company, Inc. , New York, 1950),
second edition, pp. 445—446; C. H. M. Turner, Can. J. Phys. 32,
16 (1954);H. B.Keller, "On the Electromagnetic Field Equations
in the Ionosphere, "New York University Mathematical Research
Group Report KM-57 (unpublished); J. A. Stratton, Electro-
magnetic Theory (McGraw-Hill Book Company, Inc. , New York,
1941),p. 327; W. P. Allis, JIandbuch der Physik (Springer Verlag,
Berlin, 1957), Vol. 21; R. Jancel and T. Kahan, Nuovo cimento
12, 575 (1955);J. phys. radium 16, 136 (1955); "The Physics of
the Ionosphere, " Proceedings of the 1954 Cambridge Conference
(The Physical Society, London, 1954), pp. 365—384; J.G. Huxley,
Proc. Phys. Soc. (London) 864, 844 (1951).
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FIG. 3. II axis current from transverse E fields.

it is believed that it has not been done before in quite
the present manner nor for quite as wide a range of
important physical parameters. What is required, then,
is to remove the unknown distribution function f from
the Fourier components of Eq. (W1.2.18) in favor of the
Iiourier components of the electric field strength E„(r)
and a given unperturbed distribution function fs
Perhaps the most direct approach would be to solve
the Boltzmann equation (1.2.11) and Maxwell's equa-
tions (1.2.16) and (1.2.17) simultaneously for f How-.
ever, this is in general rather complicated and unneces-
sary since it is equivalent to computing an infinite
number of velocity moments of f whereas only one is
required by Eq. (1.2.18). This suggests that the first
velocity moment of the Boltzmann equation (1.2.11)
be taken as it stands, and that the resulting equation be
solved for J.However, this equation involves the second
velocity moment. Q'hen an equation for this second
moment is sought, it is found to involve the third
moment and so on. The most frequent solution to this
dilemma is to assume what some higher moment is
equal to and proceed from there. This is the magneto-
hydrodynamic approach. Since it is desirable to avoid
this uncertainty, a middle course is taken here in which
the Boltzmann equation (1.2.11) is formally solved by
itself for f(r,v, t) in terms of a functional dependence on
the perturbation, E(r,t). This is then substituted into
Eq. (1.2.18) and the integration for each I'ourier com-
ponent performed. The result shows that J (r) depends
linearly and homogeneously upon E„(r) and VXV
X E (r). But Maxwell's equations (1.2.16) and (1.2.17)
can be combined to give a second linear, homogeneous
equation for J„(r) in terms of E„(r) and V XV XE„(r)
from which VXVXE (r) can be eliminated to yield
the desired relation between J„(r) and E„(r). This is
rigorously done without finding a simultaneous solution
of Eqs. (1.2.11) and (1.2.16) to (1.2.18) or guessing at
higher moments of Eq. (1.2.11).At the same time it is
shown that without further restrictions (such as
boundary conditions) on the problem, a dispersion rela-
tion does not exist. This is because there were only two
homogeneous equations in three unknowns which yield
an infinite number of solutions.

In the next subsection the perturbation approxi-
mation (1.2.25) is introduced into the Boltzmann
equation. In the following subsection the formal solu-
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tion or integral representation of the Boltzmann equa-
tion is obtained. This is used in subsection 2.4 to obtain
the current density.

2.2 Linearized Boltzmann Equation

The purpose of this subsection is to simplify the
Boltzmann equation by use of the linearization condi-
tion (1.2.25) and the symmetry condition (1.2.19).This
is facilitated by introducing a small perturbation func-
tion, fi(r,v, t), which is to be the difference between the
actual distribution function, f(r,v, t), and the unper-
turbed function, fp(v'):

fr(r, v, t) =f(r,—v, t) fp(v—') . (2.2.1)

Upon substituting this form into the Boltzmann equa-
tion (1.2.11), the following Boltzmann type equation
for fi, is obtained:

+v~fr+v vfr+(vXpo. o) v~fr

dfp= —28 v , (2.2.2)
ds

where
~.o= eHo/nsc. — (2.2.3)

The radio-frequency magnetic field disappeared from
this equation because the term, (vX n~, ') V fp, in which
it appeared is zero by virtue of the symmetry, Eq.
(1.2.19), of fp

The linearization condition (1.2.25) means that the
second order terms, (8+vX po, ') V fi, can always be
dropped compared to the first order term 28 v(df p/de')
even at extrema of fp(e') because the velocity averages
in (1.2.25) will make such exceptional points unimport-
ant for all except delta function distributions fp

This linearization procedure is equivalent to Nelson's"
where the electrical forces acting on an electron are
taken as those that would be experienced by an electron
exploring the field along the unperturbed circular orbit,
these forces then being used to derive a 6rst order cor-
rection to the orbit.

2.3 Integral Form of Linearized
Boltzmann Equation

The purpose of this section is to obtain an integral
representation of the solution of the linearized Boltz-
mann equation (2.2.2). This can be done formally by
means of the Lagrangian system of characteristic
equations or by appealing to the definition of the
Boltzmann operator, the left-hand side of Eq. (2.2.2),
as indicated under Eq. (1.2.11). In either case the
result can be put into the form"

~00

fr = —2 e "™$8v)'ds, (2.3.1)
de' ~,

where the prime denotes that the path of integration is
such that t is to be replaced by t'= t —s—, v by v'= R—(s)v,
and r by r'—=r—Jp" R(o)vdo. where R(s) stands for a
rotation operator which rotates a vector operand
through an angle co,s. The path of integration de6ned
above is such that

dr'/ds = —v',

dv'/ds = po.oXv',

r'(0) = r,

v'(0) =v.

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

Thus the dummy variable s may be thought of as time
measured backward along the unperturbed trajectory.
The damping factor e ""' and the infinite extent of the
integration have removed any initial transient terms
and properly weighted the past inQuences of the electric
field on the orbit. (See appendix for a derivation. ) It is,
of course, evident that any accelerations, 8(t —s),
produced in the past wouM only perturb the present
distribution function if fp(P) actually varied with p"
in the neighborhood of ~"=~'; hence the dependence of

fi, on the gradient of fp(&') in Kq. (2.3.1.). Thus Kq.
(2.3.1) has a form that can be intuitively understood
as well as the original Boltzmann equation itself.

r"
J„(r)=—2e e"" ""'(ft(——',s)ds

dp

with

2
(ii( ——',s)8„~ r——$ sin(-', co.s) —vlls [

rpg )
' ((+vl t) (K+vl l)fo (8 +"l I )d kd"

l l (2 4 1)

(= (R(-', s)v, = lR(——',s)v, ', (2.4.2)

where v& and v» are, respectively, the projections of v
onto the plane transverse to the static magnetic 6eld
and along the static magnetic 6eld. It can be seen from
(2.4.1) that in general J„(r) depends functionally on
E„(r') for all r'. Thus J„(r) depends generally upon
E„(r) and all its spatial derivatives. In addition, J„(r)
must fit into Maxwell's equations, (1.2.16) and (1.2.17).
Furthermore, particular forms for the electric field
strength, E„(r), are to be sought such that

2.4 Current Density

The purpose of this subsection is to calculate the
conduction current density from Eqs. (1.2.18) and
(2.3.1). Substituting Eq. (2.3.1) into Eq. (1.2.18), and
taking Fourier transforms on time (conjugate co), one
6nds that the Fourier components of the current
density are given by

' Donald Nelson, Ph.D. thesis, Oregon State College, 1954
(unpublished).

"For mathematical details see Drummond, reference 11, or
differentiate Eq. (2.3.1) to reobtain Eq. (2.2.2).

0 ax

J„(r)= o.„.
0'zz

o „, E„(r).
Ozz

(2.4.3)
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&r E„(r)=
J

K(r—g) E„(y)d'p, (2.4.4)

Setting Eq. (2.4.3) into Eq. (2.4.1), one obtains the
following homogeneous integral equation for E„(r):

( gs g2 )+ IE-( )+&.'E-( )=0
(Bx' By'

g2

E.(r)+k~~'E„(r) =0.
Bs

(2.4.5)

(2.4.6)

where K(r—g) is a symmetric difference kernel obtained
by changing the integration variable in Eq. (2.4.1) and
then integrating on s. It is not necessary to write K
out explicitly, but only to note its form as just stated.
Since it is symmetric, its eigenfunctions should form
a complete orthogonal set; and since it is a difference
kernel, these eigenfunctions should be relatively easy
to 6nd. ' For one-dimensional integral equations with
di6erence kernels, the eigenfunctions are e'~ . H in
addition, the kernel is symmetric, the eigenvalues will

be doubly degenerate, either sign of k yielding the same
eigenvalue. These results can be readily extended to
the present case by the use of Weber's integrals. " In
this case the eigenfunctions satisfy the following
Helmholtz equations: with

'C«/C —Cs/C o„'
&r(&o) = Cs/C C&&/C

0zz 0zy 0 zzi

(2.4.8)

Using these equations, the integrations indicated in

Eq. (2.4.1) can be carried out explicitly, with results of
the following form:

&r E„(r)= constr E (r)+consts &o,XE„(r)
+consts VX~X E„(r). (2.4.7)

Between this and Maxwell's equations, the VXV
XE„(r) term can be eliminated to give a single, self-
consistent relationship between E„(r) and J„(r). This
determines every element of the conductivity tensor in
terms of k&, kit, and cv as well as the parameters of the
plasma:

16' 2'LC08

C(co) = 1+ e&'" ""'F,L1—cos(&o,s)7ds,
me~

(2.4.9)

Cii(&o) =
—4sre'

t

" F,($)
&

&o' —k[['c' k,' &o
—h( ('c'

Js co'

k,'
cos(&o,s)+—cos(2&o,s)

~
f,(s) co—s(&o,s) e&'" ""~'ds, (2.4.10)

4

C.(~) =
—4n-e2

~ (io)—vm) 8

J,
F,(s) k,'—)sin(&o,s) —-', sin(2&o, s)7+f.(s) sin(&o, s) ds,

- a)c 2
(2.4.11)

2sre ~ e&'" "~&' —
~

——k ~s'F, (s) —2f, (s) ds
&e

8' SIC f
m 1+ e&'~ ""&'s'F (s)ds

mC2 ~ 0

(2.4.12)

+2sre'jt e&'" "m's/1 —cos(&o.s)7F,(s)ds
0

871 SMe f'
m&o, 1+ e&'"—"&'s sin(&o,s)F,(s)ds

m&occ s
2

(2.4.13)

—2sre' e&'" ""'sL1—cos(&o,s)7F,(s)ds
40

gzy=
Sm2iCOe2

m&o. 1+
~

e&'"-"&'s sin (&o.s)F,(s)ds
mes, c ~ 0

2

fTz~ = 0 sz)

0'zy = 0yz)

(2.4.14)

(2.4.15)

(2.4.16)

'7P. Morse and H. Feshbach, iVethods of Theoretical Physics (McGraw-Hill Book Company, Inc. , New York, 1953), pp. 907 8;
W. V. I ovitt, Linear Integra/Equations (Dover Publications, New York, 1950), pp. 116 ff.

"G. N. Watson, Theory of Besse/ FNnctsoms lCambridge University Press, New York, 1952l, pp. 450—453.
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where f, (s) and F,(s) are combined Fourier-Hankel transforms:

f.(s)=— fo(v )vino( 2 sin(2co&s) [dvi cos(k~~v~~s)dv~~,
&o 4p ( oi, j (2.4.17)

f' 0}ufo(v ) ( kivi
Fc(s)= vi Jl( 2 sin('2cp, s) ~dv, cos(k((v((s)dv((.

& p I}p ki sin(Cols/2) ( ipv ) (2.4.18)

In the limit ~,~0, the off-diagonal elements approach zero and the diagonal elements approach a common
value, 0-.

2+8'

m "0
("c"" "")' 2f(s) —s'i ——k' iP(s) ds
(c' )

where

87i 'LG78 f

1+ e"" ""'s'F(s)ds
mc'

(2.4.19)

2
S(s) —=

(ks)' p

1
v cos(kvs) ——sin(kvs) vf, (v')dv,

ks
(2.4.20)

1
f (s)=—— v sin(kvs) fo(v') dv.

ks&,
(2.4.21)

2IM~
0zz 0 /

(v~}x.- ~ 0 (v2)Av ~ 0 42r(pi+ jp )
(2.4.22)

This result could also have been derived directly for a
plasma without magnetic field by use of the same
methods developed here. Of course k' is the sum of k&'

and k, &
. The eigenfunctions belonging with the eigen-

value 0 given by Eq. (2.4.19) are solutions of a single
three-dimensional Helmholtz equation with parameter
k'. The eigenvalue (2.4.19) is infinitely degenerate
because the ratios of k, and k„ to k, are completely
unspecified in Eq. (2.4.19). Likewise the eigenvalue e
given by Eq. (2.4.8) is infinitely degenerate because
the ratio of k to k„ is completely unspecified in it and
in Eq. (2.4.5);

Any realizable electric field can be expanded through-
out all space in terms of solutions of Eqs. (2.4.5) and
(2.4.6) for various ki2's and k~P's. No particular bound-
ary conditions on E„(r) have to be specified to make
this statement true in general. Whatever boundary
conditions may apply to the actual function being
expanded will determine the issue; whether periodic or
radiation or other boundary conditions. Often only a
single term in the expansion will be required. Two such
cases such are illustrated in the following section.

It can be seen from Eqs. (2.4.8) to (2.4.11) and
(2.4.17) to (2.4.19) that in the limit of an unperturbed
distribution, fo, representing very low kinetic energies,
the elements C&~/C and C,/C approach the standard
low-temperature forms7:

roe'
any )

(vm)xv ~ 0 m (pi+2& )2 ~ 2
(2.4.24)

where eo is the number density of electrons in the un-
perturbed distribution,

22o—=)t fo(v')d'v. (2.4.25)

k)(=0,

ki2KT/moo, 2 &0.1,

KT/mc' &0.01,

ki2KT v (ki2KT ) '

m~.' ~ ) m~.') '

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

3. APPLICATIONS

3.1 Special Cases

As an illustration of the applications of the foregoing
results, the conductivity tensor will be specialized by
restricting the unperturbed distribution function to be
Maxwellian and it will then be applied to the study of
propagation of microwave signals normal to the mag-
netic field. Only first order temperature effects will be
retained. These assumptions are summarized below.

fp
——22p(m/22rKT)' exp( —mv2/2KT), (3.1.1)

ieoe2 Gi+Zvm
Os~ )

m (0~+2v„)'—op.'
(2.4.23)

where E is Boltzmann's constant.
As shown elsewhere, "Eqs. (3.1.3) and (3.1.5) permit

"See Drummond, reference 11.
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the retention of only first order terms in kcsET/mce„'
without significant loss of physical content. After the
conductivity tensor is obtained for these conditions,
the indices of refraction will be plotted using this
result but dropping the collision frequency, v . This
would be expected only to remove the "rounding-off"
effects of the collisions on resonances.

units):

co (ce +8vzcecrzz —167I 0'zz —16lr cr~ )
(3.3.1)' E. ce+47ri a„

Substituting cr„and cr,„from Eqs. (3.2.4) and (3.2.5)
into Eq. (3.3.1) yields for the index of refraction:

Ip
f,(s) =—exp—

4

ET (4kcs
!

2m( co

sin'(-', ce,s)+k)~'s'
1 ) (3.2.1)

3.2 Specialized Conductivity Tensor

With the help of Eq. (3.1.1), the integrations indi-
cated in Eqs. (2.4.17) and (2.4.18) can be carried out
explicitly. The results are

t'kcce 'q ' b+ —(b' —4ac)'*

Ec—') 2a

—3v"X(1+3v"X)

1—4Goc

(3.3.2)

(3.3.3)

F,(s) =
2' m

exp —
1

sin'(-', cd,s)+k~ ~'s'
1

(3.2.2) c—= —1+2X—X'+co."X' (3.3.5)

b= 1—X+— (1—X+2Xce ") (3 3 4)
1—4'."

C(ce) —= n(ce,) =1—
2coM„'ET

(3.2.3)
mc'(ce+iv„) L(cd+iv )'—ce,']

3k''ET
(ice v)cev—s 1+

m[(co+i v„)' 4cd,s]—

Now upon applying conditions (3.1.2)—(3.1.5), the
elements of the conductivity tensor become

i'2
CO&

X=-
j. co 2v

/
CO~ =M~ M&

/
Nc =wc CO)

v'=—(1/c) (ET/m) &.

(3.3.6)

(3.3.7)

(3.3.8)

(3.3.9)

4ir S)(ce.)L(co+iv„)'—ce,s]
(3.2.4)

6k,'ET
1—ceces 1+

mp(cd+iv )' 4ce,']1—
, (3.2.5)

4m(ce, )t (co+iv„)'—ce,']

&yz= Ozy=0y

ET 3k' 2 kc ceP/ce
ce„'i 1+ — +

8$ M2 C2 GO $v 2 ~ 2

(3.2.6)

(3.2.7)

Ozz=
4v. (ce+iv„)n(0)

(3.2.8)

%aves traveling normal to the magnetic field break

up into two independent plane polarized waves traveling
with different velocities. The two succeeding subsections
treat the indices of refraction for these two polarizations.

' Lyman Mower, "Propagation of Plane Wave in an Elec-
trically Anisotropic Medium, " Sylvania Report MP1-1, 1956
(unpublished).

3.3 Polarization Normal to Magnetic Field

For polarization normal to the magnetic field, the
square of the propagation constant is" (in Gaussian

Equation (3.3.2) is an explicit expression for the
square of the index of refraction in terms of the three
independent variables co„", cv.', and ~". It is readily
tabulated on a digital computer. The sign of the radical
must be chosen to be the same as the sign of b in order
to insure convergence to the proper limit as T —+0.
Graphical representations of the results are given in
Pigs. 4 and 5.

Figure 4 shows the index of refraction for a 500-volt
plasma. A region of abnormal transmission is seen to
occur for ~cd,/ce~ between s and 1. Within this region
the curves for various densities hug a single curve. The
individual curves jump back to the extinguishing region
at various frequencies determined by both density and
temperature of the electron distribution. Notice that
in the region just to the right of

~
ce./ce

~

=1, the indices
have both real and imaginary parts. This is a region of
power exchange between the plasma and the radiation
field.

Figure 5 shows the same thing for 5000-volt plasmas.
The smaller vertical scale here shows that the index of
refraction in the abnormal transmission band depends
almost entirely upon electron temperature. Again,
however, the frequency of crossover between trans-
mission and extinction bands depends upon both elec-
tron temperature and density.

In the next subsection the same things are done for
polarization parallel to the static magnetic field.
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FIG. 4. Index of refraction
for microwave signal propa-
gating across magnetic field
and polarized normal to the
magnetic field in a plasma.
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3.4 Polarization Parallel to Magnetic Field
For polarization parallel to the magnetic 6eld, the

square of the propagation constant is" (in Gaussian
units):

(3.4.1)

Substituting o.„from Eq. (3.2.8) into Eq. (3.4.1)
yields the following equation for the index of refraction:

e'=(1—co ") 1+v"(u„"f 1+
f

. (3.4.2)
( ~ 2

1—(a ")
I2

Graphical representation of the results are given in
Figs. 6 and 7.

Figure 6 shows the index of refraction for a 500-volt
plasma. A region of abnormal transmission is seen to
occur for fee, /&of slightly greater than 1. The index of
refraction within this band as well as the width of the
band depend upon both electron density and tem-
perature.

Figure 7 shows the index of refraction for 5000-volt

plasmas. The values of the indices within this band are
smaller and the widths of the band are greater than in

the corresponding case for the 500-volt plasmas.

IQ ——

0
0

4|4—
&6—

z.of
f

FxG. 5. Index of refraction
for microwave signal propa-
gating across magnetic field and
polarized normal to the mag-
netic field in a plasma.
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FxG. 6. Index of refraction for microwave signal propagating at right angles to the magnetic field
and polarized parallel to the magnetic Beld.

4. CONCLUSIONS

4.1 Basic Electromagnetic EBects

The purpose of this subsection is to point out the
significance of terms in the conductivity tensor which
are found to depend upon c the speed of light. The
factor (n')„„/c' occurs in three places in the conductivity
tensor. First it appears in under the integral sign in
C~&(~), Eq. (2.4.10). Usually this integration is such
that (w')A„/c' is subtracted from terms of order
kP(wP)A„/&o' and 1. Thus it may usually be neglected
for the present nonrelativistic treatment, Eq. (1.2.10).

Second, (v')A„/c' appears in the denominators of the
transverse elements of the conductivity tensor. There,
as shown by Eq. (2.4.9) for C(~), it is multiplied by
the average electron number density, and added to a
term not containing e. Consequently, for high-density
plasmas, this term can become very important even
though (v')A„/c'((1. It can completely change the micro-
wave properties of a plasma from predominantly non-
dissipative to dissipative at certain frequencies; and at
other frequencies, it can change a plasma from a non-
propagating to a propagating medium for microwaves.
This is illustrated by the special cases worked out in
Sec. 3. However, the basic eGects can be seen by noting
the way in which this (m')A„/c' term enters into the con-

ductivity tensor. It can be shown from Eqs. (2.4.9) and
(2.4.8) that if co,2»oP and k, p(viP)A, /co, 2&(1, then the
term reduces the response current of the plasma and
hence the apparent density of the plasma as measured
by its eGect on a microwave signal. This is what was
predicted on the basis of the qualitative argument in
Sec. 1.3. The present result goes beyond this, however,
to show that the opposite happens if co'))co.' provided
k~p(v&p)A, /a&, 2(&1. In addition, certain power-transfer
resonances are found to occur for those frequencies for
which the real part of C(~) =0."

Third, (v')A„/c' appears in the denominators of Eqs.
(2.4.13) and (2.4.14) for a„and 0.„,. Here again it is
multiplied by the density e and added to a term not
containing e. Thus it can very significantly modify the
effects of these newly derived nonzero elements of the
conductivity tensor for high-density plasmas.

4.2 Orbital Effects

The ratio of orbit circumference, (2~/~, )(rP)&, to
transverse wave length, 2m/k, , appears in two functions,

f, and F„as given by Eqs. (2.4.17) and (2.4.18).These
two functions enter in every element of the conductivity
tensor. Their principle eGect is to modify the eGective
plasma density. For instance if cu.2)&co' and k&Pv&P/soP
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FIG. 7. Index of refraction for microwave signal propagating at right angles to the magnetic field
and polarized parallel to the magnetic 6eld.

((1, the elements 0. „0.,„, o.», and a„, will all become
smaller to first order terms in k,'(ni')A, /e&. '. This is as
predicted on the basis of a qualitative argument in
Sec. 1.3. The present result goes beyond this, however,
to show that the opposite happens if oP))co,' and
k, P(v, P)A„/cog«1. In addition, certain minor resonances
are predicted. "

4.3 Longitudinal Current Density

It was shown in Sec. 2.5 that if the charge density p„
has the same dependence upon x and y as does the s
component of radio-frequency magnetic Geld strength,
k„ then nonzero (s,x) and (s,y) components of the
conductivity tensor exist as differential operators. The
components vanish as (v')A, —+0. Thus for finite tem-
peratures and a s-dependent radio-frequency electric
field, transverse radio-frequency 6eld components
produce a longitudinal radio-frequency current density
just as shown in the qualitative argument in Sec. 1.3.
The conductivity elements 0. „O.„„and r~ are deter-
mined by reciprocal relations such as (2.4.15) and
(2.4.16) which become the Onsager or Callen-Greene
relations when fe is Maxwellian. "

si L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1932).
H. B. Callen and R. F. Greene, ibid 86, 702 (1952); 85, 13.78
(1952); Thomas A. Kaplan, ibid. 102, 1447 (1956); S. R. De
Groot, Thermodynamics of Irreversible Processes (Interscience
Publishers, Inc. , New York, 1952).

4.4 Diffusion Damying

The Fourier series expansion of Js[2(k,v,/e, )
&(sin(-', e~,s)j on s in f, and F, given in Eqs. (2.4.17) and
(2.4.18) contains all the integral multiples of the
cyclotron frequency, e&. . e'"""J '(k,v, /ei, ). Each of
these spectral components is symmetrically split by the
factor cos(k~~n~~c) = s[exp(ik, p„s)+exp( —ik, ~m~, ')j.The
relative intensity of the resulting spectrum is deter-
mined by the weighing factor fs(rjis+n, P)dv&~ in Eqs.
(2.4.1'/) and Eq. (2.4.18). Thus the integration over rt„
in these equations has the effect of smearing the spectral
lines symmetrically about the cyclotron multiples. This
is also the eGect of the momentum transfer collisions on
the resonance lines. Thus for some cases the Landau
term kiln, l may be simply regarded as increasing the
effective frequency of phase-disrupting collisions as
indicated in the qualitative argument in Sec. 1.3. The
width of the resulting lines will be small compared to
the cyclotron frequency if k, p(n»')A„/a&, '«1.

4.8 Prospectus

There are two basic limitations beside the use of
classical mechanics to the work reported here. First, it
is limited to small perturbations away from a homo-
geneous isotropic steady state; and second, statistical
correlations have been eliminated by using the Boltz-
mann equation. Correcting the 6rst deficiency appears
to be diKcult for general cases. Some of the ground
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work for correcting the latter has already been dones;
but needs extension.

However, in spite of its limitations, the present theory
is believed to extend the work on plasma properties in
two important respects; first, the usual nonzero elements
of the conductivity tensor are modified in a way that
can have significant effects on microwave propagation
in high-density, high-temperature plasmas; and second
the existence of four new nonzero elements has been
shown for some cases. The nature of these new elements
has not been fully investigated, but might be effectively
treated by Twersky's general methods. "

The modifications brought about by the new form
of the usual elements of the conductivity tensor was the
subject of Sec. 3 on transmission characteristics of hot
plasmas. More sensitive dependence of the index of
refraction on electron density and temperature is to
be expected for right-circularly polarized waves prop-
agating along the magnetic axis.

The present analysis could probably be extended to
cases for which the unperturbed steady state is specified
by a distribution function of the form fp(v', p„). The
kernel of the integral equation for the electric field
strength would still be a difference kernel (as well as
being symmetrical on its variables normal to the mag-
netic axis). When the unperturbed state is taken as
having gradients and currents, two difficulties arise;
the solutions to the characteristic equations become
rather involved, and the kernel of the integral equation
is no longer either symmetrical nor a difference kernel
(though it may have both of these properties in its
dependence on variables refering to the magnetic axis).

In summary, the present analysis has shown that a
high-temperature plasma is characterized by not one
but many different conductivity tensors corresponding
to certain eigenfunctions of the electromagnetic field
configuration, and representing the coupling and trans-
conductance properties of the plasma. An expansion of
the eigenvalues has been used to calculate the indices
of refraction for two cases of interest. Further work is
in progress to extend these calculations. In addition, it
would be desirable to have experimental tests of the
theory.

ACKNOWLEDGMENTS

The author is indebted to his thesis advisor, Professor
W. E. Lamb, formerly of Stanford University, to O. T.
Fundingsland, director of Sylvania Microwave Physics
Laboratory, and to Professor W. P. Allis and Professor
S. C. Brown of the Massachusetts Institute of Tech-
nology for guidance and physical insight in this work.
For penetrating questions and valuable suggestions, the
author would like to thank L. Wilcox, formerly of
Sylvania Electronic Defense Laboratory and Dr. L.
Mower, Dr. R. M. Hill, and Dr. A. L. Arden of Sylvania

Electric Products, Inc. , and Dr. S. Gartenhaus of
Stanford University. For important discussions on
mathematical method, the author would like to thank
Dr. C. S. Gardner and Professor J. B. Keller of New
York University. The author is indebted to Mary
Kierstead of Stanford Research Institute's Poulter
Laboratories for her excellent work on the machine
calculations which were included in Sec. 3.

APPENDIX

The purpose of this Appendix is to derive Eq. (2.3.1)
from Eq. (2.2.2). There are several ways in which this
can be done. The method chosen is believed to be
unique.

The general solution" of Eq. (2.2.2) is a differentiable
but otherwise arbitrary function connecting the
constants of integration of Eqs. (2.3.2) and (2.3.3) and

dfs dfp
28(—v, t) v v f,. —

d8
(A.1)

Solving this relationship formally for f&(r,v, t) gives

fg(r, v, t)

( 2
28l r——( sin(-,'~,s) —v(( st s l—

)
dfp

[vii+~R(s)v j
d'v

2
f&l r (sin(-,'cp,s) —

v~~s, t s
I
d—

l~cXV ppct

+4l r — — pp. v, IR( —t)v l, (A.2)
v' co,'

where C is a differentiable but otherwise arbitrary
function of its indicated arguments. This is not yet a
solution, but rather an integral equation for f, (r,v, t)
It can be solved by summing the Liouville-Neumann
series corresponding to it. This series is obtained by
successive substitutions of the solution f~(r,v, t) given
by the equation itself in place of f~ appearing in the
integrand of Eq. (A.2). In the present case this gives

where

fg(r, v, t) = lim Q I„"(g„+C),
y-+oo n=P

(A.3)

dfp t'" ( 2
g„=——2 Sl r——(sin(-', ~,s) —v~~s, t sl—

'2V. Twersky, private communication in which he studied
electromagnetic waves in a medium where J=e.K+e H. '[vii+5t(s)vg]ds, (A.4)
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and I„"is the nth iterat'e of the operator I„defined by

2
I„f(r,v,t) = ——u, p~ r——g sin(-', ru,s)

~p 4 o),

—vite, (R(s)v, f r—ids. (A.S)

%hen I„ is applied to 4, the particular combination of
arguments in C make it independent of s during the
integration. Hence

Thus for v y&1, the infinite series in I„"C can be
summed. The result is

1+y&m

which is an analytic function of v . Since this explicit
expression for the sum is analytic everywhere except
for v„=—1/y, it is the proper analytic continuation of
the sum for yv & 1. Since the solution (A.3) is to be an
analytic function of v as stated in subsection 1.2, the
expression (A.7) may be taken as the sum for all real
positive values of v y. In particular it applies in the

limit y —+ ~ where it gives the value zero provided
only that v /0.

The remaining sum may be evaluated by noting the
following property of the operator I„:

I e""'P(r,v, t)=e"~' Q I "f if P(r, v, —~)=0. (A.g)
n=l

This expansion is easily obtained by means of repeated
integration by parts. Applying this to Eq. (A.3) and,
noting that g = (2/v )(dfo/dv')I„S v gives the explicit
solution (2.3.1).

The form of the solution (2.3.1) is useful in itself. It
shows how physically realizable plasmas may be ap-
proximated: fo need not be independent of time, but
must change by only a small percentage during one
mean free time, 1/v . Similar considerations applied to
the velocity moments of fo, Eq. (2.4.1), show that it
need not be independent of position either, but only
vary by a small percentage in one mean free path along
the s axis and across one mean orbit diameter in the
transverse plane.

Equation (2.3.1) also provides an explicit first order
distribution function which could be used directly as
a basis for the calculation of second order perturbation
functions.


