
PH YSI CAL REVIEW VO LUM E 110, NUMBER 1 APRIL 1, 1958

Energy Shifts in the Feynman Foriaalism

LEONARD S. RODBERG
MAS, Incor porated, J3alAmore, Maryland
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The relation between the S matrix and the energy-level shift is demonstrated in a form which permits
the use of the Feynman methods of calculation. It is also shown that vacuum fluctuations and "unlinked
clusters" do not contribute to the energy of a physical system.

''T is often convenient to use a time-dependent
~ ~ formalism to compute the energy shift due to a
time-independent interaction. This is especially advan-
tageous when both particles and antiparticles are
treated, since a symmetrical treatment using the time-
dependent formalism of Feynman' ' can often simplify
such problems. Examples are relativistic theories such
as quantum electrodynamics, and some many-body
problems in which the particle-hole idea is useful.

The fundamental quantity of this time-dependent
formalism is the S matrix, which describes the propa-
gation of the state vector from 1=—eo to t=+eo.
The 5 matrix has been used in the past to compute
energy shifts, although often in a modified form.
Although the relation between the S matrix and the
energy shift has been stated in the literature, ' ' a
rigorous proof was not given until recently. ' However,
this result is not in a form which can be directly
applied in the Feynman formalism; it is the purpose
of this article to supply this connection.

Our proof shows that unconnected Feynman graphs
representing, for instance, vacuum Quctuations in field
theory or "unlinked clusters'" ~ in the many-body
problem, make no contribution to the energy of a real
system.

Ke start with an unperturbed state q, an eigenstate
of Bo with eigenvalue Eo. The energy-level shift which
arises when the interaction gal is "turned on" adia-
batically can be shown' to be

Q 8
AE=limi —

g
—1n(q tS t p).

0,'~ 2 gg

Here S = V (eo, —ao) is the adiabatic S matrix
oned by

V.(~, — )=1—s u'e=~ '~ga, (f)V.(~', — )J
in the limit t~.

In the Feynman method it is customary to int
change the order of integration and limiting process
(1) and (2) so that the convergence factor e
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becomes unity and does not appear explicitly. We wish
to show that one can do this and obtain a simple
prescription for computing the level shift.

Let us denote by M the contribution to (p~S ~ y)
arising from all terms represented by only one connected
diagram. Then, in terms of 3f,

3f '
(@AS i q)=1+M + (3)+. . .—esr~

7

where we use the fact that e disconnected loops are
counted in e! ways while performing the integrations
involved in M ".LThis argument is due to Feynman. '
%e assume here that the sum of the perturbation series
has a meaning, and, consequently, that this series can
be reordered. In any case, (3) is formally correct. jThus
in(@~ S

~
q)=M and contains only connected diagrams.

Let M, =Q„M t"', where M t"l is the nth-order
contribution to M . It contains space-time integrals
over various combinations of wave functions and
propagators. If each of these is expanded in the energy
representation, the resulting expression has the form'

( n

M. .=g. d1, "d1„dE, "dE, exp~ —~PJ„" &;= ')
Xexp~ s P E;1;

~

f(E1'''E 1). (4)
E. ~=1

Here f(Et ~ E„ t) contains the Fourier transforms of
the appropriate wave functions and propagators. In
terms of diagrams, E; is the algebraic sum of the
energies of all lines which meet at the jth vertex
(positive if they enter, negative if they leave). The set

'As an example, the second-order contribution to the electro-
magnetic self-energy of a charged particle has the form

00 2

M &= ' &d& d&&dgll *p —Z, ~
&';()'

00 j'=1

Xexp(i (pP 9 k') (ti ——t&) j—h(p, k').
The spatial integrals and the integrals over the three-momenta
are included in h(q, ko); pP is the initial (and 6nal) energy of
the charged particle; q and k are the energies of the intermediate
particle and photon. If we change integration variables to El
=pp —9 —ks and k', and let E2= E&,then—

00 2 2

v, && «' u d da &&
—&Z&I&;l =*&& 'ZZA)f&E1

00 j 1 I

The P-integral, which depends on the dynamics of the electro-
magnetic interaction and is not related to the time integrals, has
been absorbed into f(Ei) 1dkoh(Ei, ko).
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E; is related by P; &" E;=0 arising from over-all
energy conservation.

Using (1), and the fact that g(B/Bg)M„=+„zzM &"&,

we Qnd that

cx 8 Scx
AE=limi —

g
—M =P limi —M &"&=P—d E'"& (.5)~o2 gg

Therefore

= (2zr)" '—ig" lim-,'I f(in, ,io.)

+f( && ' ' '~ zo')3

= (27r)" 'zg"f(0 0)

This result shows that

n(E E ) = (2~)"—' g b(E.) (10)

where
X &(R E.)f(E& E=i),

nu I'"
(Ey ' E~) = llm— df&02)

hE&"& =limi M—&"&=ig" dE&. . .dE On the other hand, suppose we let a—&0 before we
perform the time integrals. The resulting matrix ele-

(6) ment is
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(11)( " l |'. t where
xexpl —~ ~ I

&
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6'(E~ E„)=, Ch~ dt„e pxI i+E,t; I''i

=(2 )"IIb(E)=(2 )"b(0) II&(E;), (12)

since P;=&"E;=0. LThe expression 8(0) is not well-
de6ned, but this equation can serve to give it meaning.
Alternatively, we could let P; z" E,= a~,, the energy
diBerence between the initial and final states, so that
8(0) is replaced by 8(e&;), and then let ef,—&Oj. As a
result,

To evaluate 8(E~. .E„) it is simplest to perform all
the integrals involved in AE("), and then examine the
result. We assume that the orders of integration may
be freely interchanged, although one must still go to
the n-limit after the time-integration.

If we first perform the integrations over t~ . .t„~ in

(7), we find

8(E,. E )
rsu t" ~-~ ( 2u

=lim— d~ P I
e 's'" I~ I'"l. (g)~~2" ~ i=»Ez+nz

Combining all such energy integrals, we And

Se
hE'"& = (2~)"—'ig" lim— Ck e "~l™

=o2 J
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We do not integrate over t„at this stage so as to permit
each of the (e 1) energy integ—rais to be performed
independently.

The jth energy integral is

2n

J
dE e'~'"f(E&. -E" E. &).

—oa Ej +&

This integral can be performed by extending E; into
the complex plane and transforming to a contour
integral. For t &0 we close the contour in the lower
half-plane. In this case there will be contributions from
the simple pole at E;= —m and from the singularities
of f(Ez E; E~ &). We shall ignore the latter since
they lead to smaller inverse powers of e, and give no
contribution in the limit o.—+0. Then if we include the
results for both positive and negative t„, this integral is

~n
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6'(E& . E„)=2mb(0)8(Eg . E„),

Mo&"& = —2zrib (0)DE&"&.

If we sum the contributions of all orders, we 6nd

or
Mo= ln(p

I
So

I p) = —2zrib(0) DE,

(&IS I &) z z~gz&0&nz—
(15)

7 These include terms corresponding to the self-energy of the
vacuum as well as those yielding the energy shift of the system
under consideration. These occur additively, and the vacuum-
Quctuation terms can be separated from the real, physically-
interesting, energy shifts.

This result was anticipated in a heuristic argument of
Feynman. ' So is the operator which is considered in
the Feynman formulation; it is clearly more convenient,
for purposes of calculation, than S . If we expand the
exponential in (16), we arrive at the following pre-
scription: Compute, using the energy representation
for all time-dependent functions, those terms in

(q ISOI q) which contain only ozze energy-conserving
b-function (i.e., the connected diagrams). ' The sum of
these terms is —2zrz3 (0)hE
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