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Energy Shifts in the Feynman Formalism
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The relation between the S matrix and the energy-level shift is demonstrated in a form which permits
the use of the Feynman methods of calculation. It is also shown that vacuum fluctuations and ‘“‘unlinked
clusters” do not contribute to the energy of a physical system.

T is often convenient to use a time-dependent
formalism to compute the energy shift due to a
time-independent interaction. This is especially advan-
tageous when both particles and antiparticles are
treated, since a symmetrical treatment using the time-
dependent formalism of Feynman!:2 can often simplify
such problems. Examples are relativistic theories such
as quantum electrodynamics, and some many-body
problems in which the particle-hole idea is useful.?

The fundamental quantity of this time-dependent
formalism is the .S matrix, which describes the propa-
gation of the state vector from {=—o to (=4,
The .S matrix has been used in the past to compute
energy shifts, although often in a modified form.
Although the relation between the .S matrix and the
energy shift has been stated in the literature,? a
rigorous proof was not given until recently.* However,
this result is not in a form which can be directly
applied in the Feynman formalism; it is the purpose
of this article to supply this connection.

Our proof shows that unconnected Feynman graphs
representing, for instance, vacuum fluctuations in field
theory or “unlinked clusters’5 in the many-body
problem, make no contribution to the energy of a real
system.

We start with an unperturbed state ¢, an eigenstate
of Hy with eigenvalue Eo. The energy-level shift which
arises when the interaction gH; is “turned on” adia-
batically can be shown* to be

a 0
AE=limi—g— In{p|S.| ). (1)
i InelS.l

Here Sa=U,(®, — ) is the adiabatic S matrix de-
fined by

¢
Ualt, —0)=1—i f WG (UL, — o) (2)

in the limit >,

In the Feynman method it is customary to inter-
change the order of integration and limiting process in
(1) and (2) so that the convergence factor el
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becomes unity and does not appear explicitly. We wish
to show that one can do this and obtain a simple
prescription for computing the level shift.

Let us denote by M, the contribution to {¢|S.| ¢)
arising from all terms represented by only one connected
diagram. Then, in terms of M,

M2
(sols.,lsa>=1+Ma+?+...=eMa, 3)

where we use the fact that » disconnected loops are
counted in #! ways while performing the integrations
involved in M, [This argument is due to Feynman.!
We assume here that the sum of the perturbation series
has a meaning, and, consequently, that this series can
be reordered. In any case, (3) is formally correct.] Thus
In{¢|Se| ¢)=M . and contains only connected diagrams.
Let Mo=2.M.,™, where M, is the nth-order
contribution to M,. It contains space-time integrals
over various combinations of wave functions and
propagators. If each of these is expanded in the energy
representation, the resulting expression has the form$

Ma(")=g"f dty+ -dindEy: - -dE, 1 exp(-—az |tj|
—» =1

Xexp(i ,Z=1 Ejt,-) F(Ey+Eny). (&)

Here f(E;---E,_;) contains the Fourier transforms of
the appropriate wave functions and propagators. In
terms of diagrams, E; is the algebraic sum of the
energies of all lines which meet at the jth vertex
(positive if they enter, negative if they leave). The set

6 As an example, the second-order contribution to the electro-
magnetic self-energy of a charged particle has the form

" 2
M @O=g f dtidtadg®dRo exp(-—az [tjl)
o =

Xexp[2(p10— g — &) (81— t2) Jh (g% k0).
The spatial integrals and the integrals over the three-momenta
are included in %(g%%%); #:° is the initial (and final) energy of
the charged particle; ¢® and 0 are the energies of the intermediate
particle and photon. If we change integration variables to E
=p9—¢—k? and 2, and let E;= —E;, then

" 2 2
M®=g?| dhdtdE; exp(—aE |t,~l) exp iElE,»t,-)f(El).

The A%-integral, which depends on the dynamics of the electro-
magnetic interaction and is not related to the time integrals, has
been absorbed into f(E:) = S dkh(E1,k°).

277



278

E; is related by > ;-1 E;=0 arising from over-all
energy conservation.
Using (1), and the fact that g(8/9g) M a=2_ . nM ™,
we find that
a 0 no
AE=limi~g—M ,=)_ limi—M , ™=} AE™. (5)
=02 ag 2 n

n @0

Therefore

m 0
AE®™ =limi—M . =ign f dEy- - -dE, 4
a—0 2 o

XO(El"'En)f(EI"'En—l)) (6)
where

. M e
@(El' . En)=11n%-2—f dtl' . dtn

Xexp(—aéft,-[ exp(i]Z;E,-lj). ©)

To evaluate O(E;- - - E,) it is simplest to perform all
the integrals involved in AE™, and then examine the
result. We assume that the orders of integration may
be freely interchanged, although one must still go to
the a-limit after the time-integration.

If we first perform the integrations over #;- - ¢, in
(7), we find

@(El * 'En)
no p* w1 2a )
=lim— | di. ] e"Ef‘")e'““"‘. (8)
a02J_, =1 \Ef+o?

We do not integrate over £, at this stage so as to permit
each of the (n—1) energy integrals to be performed
independently.

The jth energy integral is

fwdE 2 (B By Ea)
e itn cee ....in_ .

| g '

This integral can be performed by extending E; into
the complex plane and transforming to a contour
integral. For #,>0 we close the contour in the lower
half-plane. In this case there will be contributions from
the simple pole at E;= —ia and from the singularities
of f(Ey---Ej -+ E, ;). We shall ignore the latter since
they lead to smaller inverse powers of @, and give no
contribution in the limit @—0. Then if we include the
‘results for both positive and negative ¢,, this integral is

In
z,n.e—ultn]f(El. ., _ia,l,__[, .. ‘En—l)-

Combining all such energy integrals, we find

no o
AE™ = (2z)" g™ lim— f dtneneltnl
a0 9 o
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= (277) n—lign II_ITS%[f (my e 7w)

= (21!') n—lignf(o’ e )0) (9)
This result shows that

O(Ey- - - En) = (2m)™ ﬁl(?(Ef)-

7=1

(10)

On the other hand, suppose we let a—0 before we
perform the time integrals. The resulting matrix ele-
ment is

Mo(")=g"f dEy- - -dE, 1®(Ey- - E,) f(Ey- - - En_y),

- (11)
where

@(El...En)=f°°

—00

dty- - -dt, exp(i > E,-t,-)

=1

= @n TLa(E) = (2my0) T a(2), (12)

since X ;1" E;=0. [The expression §(0) is not well-
defined, but this equation can serve to give it meaning.
Alternatively, we could let X ;—1" E;=¢;s, the energy
difference between the initial and final states, so that
5(0) is replaced by 8(ess), and then let e,7—07]. As a
result,

(P(E1‘ . En)=27r§(0)@(E1 N En); (13>
and

Mo™=—2ri5(0) AE™. (14)

If we sum the contributions of all orders, we find

Mo=1In{p|So| ¢)=—2wi6(0)AE, (15)
or

(oSo] )= e2rioas, (16)

This result was anticipated in a heuristic argument of
Feynman.! Sy is the operator which is considered in
the Feynman formulation; it is clearly more convenient,
for purposes of calculation, than S,. If we expand the
exponential in (16), we arrive at the following pre-
scription: Compute, using the energy representation
for all time-dependent functions, those terms in
{¢|So| ¢) which contain only one energy-conserving
8-function (i.e., the connected diagrams).” The sum of
these terms is — 276 (0)AE.
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7 These include terms corresponding to the self-energy of the
vacuum as well as those yielding the energy shift of the system
under consideration. These occur additively, and the vacuum-
fluctuation terms can be separated from the real, physically-
interesting, energy shifts.



