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In analogy to the dispersion-relation method for scattering, the description of nucleon electromagnetic
structure by local-field theory is discussed in terms of mass-spectral representations for the form factors.
The existence of such representations is made plausible although not proved, and it is shown that the spectral
distribution functions are related to scattering amplitudes on the mass shell but sometimes in a nonphysical
region. It is argued that the main contributor to the magnetic moment structure in the spectral distribution
must be the two-pion state, and an attempt is made to evaluate this contribution in terms of the known
behavior of pion-nucleon scattering. A semiquantitative calculation yields results in reasonable agreement

with experiment.

It is emphasized that the large observed charge radius of the proton does not imply the dominance of the
two-pion state in the charge structure. Thus it is not impossible that higher mass configurations supply the
isotopic scalar charge needed to explain the small neutron-electron interaction.

I. INTRODUCTION

HEORETICAL calculations of the electromag-
netic properties of the nucleon have been carried
out for many years within the framework of local-field
theory, but mainly by perturbation techniques' of
dubious validity. Recently the use of dispersion rela-
tions in the problem of pion-nucleon scattering? and
photopion production® has shown that local-field theory
is capable of some quantitative correlation of physical
phenomena even when the perturbation method fails.
It is the purpose of this paper to attempt to apply the
kind of relations that have successfully correlated
experiments involving low-energy pions to the problem
of the nucleon electromagnetic form factors. To the
extent at least that the electromagnetic structure of the
nucleon is determined by virtual pions of sub-Bev
frequencies such a program should be enlightening, even
though in the end local theories in the strict sense may
be abandoned.

1.—There are at least three reasons for believing that
the anomalous magnetic-moments structure of the
nucleon is dominated by low-frequency virtual pions:

(¢) The anomalous moment is almost entirely a
vector in isotopic spin, i.e., the anomalous moments of
neutron and proton are nearly equal in magnitude, with
opposite signs. This situation prevails not only for the
static moments but up to frequencies at which the
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1 References to most of the published perturbation calculations
may be found in the paper by B. Fried, Phys. Rev. 88, 1142
(1952), who gives the formulas for the neutron to lowest order
in the pion-nucleon coupling constant. A numerical evaluation of
t(llxgsfg)rm factors is given by M. Rosenbluth, Phys. Rev. 79, 615

2 References here may be found in the recent paper by Chew,
Goldberger, Low, and Nambu, Phys. Rev. 106, 133‘7) (1957).
(1;5(;7};8‘”’ Goldberger, Low, and Nambu, Phys. Rev. 106, 1345

moments have fallen to about } of their static values.*
It will be explained below that the #*, =~ pair, the
virtual configuration of lowest energy contributing to
the nucleon electromagnetic structure, is a vector in
isotopic spin space. It is of course possible for a com-
bination of virtual effects other than pion pairs to
produce an almost purely vector moment, but such a
circumstance must be regarded as unlikely.

(b) The sign and the approximate magnitude of the
anomalous moments are correctly given by the cutoff
model of the Yukawa theory.? This model is normalized
to the same low-frequency limits as the local theory, but
neglects nucleon recoil as well as antinucleons and
strange particles and excludes virtual pions of energy
higher than about 1 Bev.

(¢) The measured mean square radius of the mag-
netic-moment distribution* corresponds to the wave-
length of a pion of about % Bev.

In contrast to the anomalous magnetic moment, it
is experimentally clear that the charge structure of the
nucleon is #ot dominated by «*, =~ pairs. The decisive
fact here is the extremely small second radial moment
of the neutron charge distribution as compared with
that for the proton, which is at least ten times as large.®
Thus the charge density is certainly not an isotopic
vector.

2.—Before going into the details it is perhaps ad-
visable to outline the approach to be used. It is well
known that the linear interaction of nucleons with the
electromagnetic field can be expressed in terms of four
real scalar functions of ¢% the square of the energy-
momentum-transfer four-vector.® We shall label these

4E. E. Chambers and R. Hofstadter, Phys. Rev. 103, 1454
(1956), and R. Hofstadter, in Proceedings of the Seventh Annual
Rochester Conference on High-Energy Nuclear Physics (Interscience
Publishers, Inc., New York, 1957).

5 H. Miyazawa, Phys. Rev. 101, 1564 (1955).

8 For a recent review of experimental knowledge about the
electromagnetic structure of the nucleon, see Lévy, Ravenhall,
and Yennie, Revs. Modern Phys. 29, 144 (1957). This article also
discusses those theoretical features of the problem which follow
from invariance considerations.
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266 CHEW, KARPLUS,
functions G15(¢%), G1"(¢?), G25(¢?), G2V (¢?), where the
index 1 goes with the part of the interaction propor-
tional to v,4, (the “charge”) and the index 2 goes with
the part of the interaction proportional to ¢,,4,9, (the
“magnetic moment”).% The superscripts .S and V refer
to the isotopic character of the interaction, scalar or
vector, the normalization being specified by the relations

G5(0)+G."(0)=e, G:5(0)—G,"(0)=0, (2.1)
G (0) 4G (0)=pp  Go5(0)—=Go (0)=pn, (2.2)

where e is the proton charge and u, and u, the proton
and neutron static anomalous magnetic moments, re-
spectively. The conventional form factors® are given
by the ratio of the appropriate G(¢?) to the value at
¢?=0. Thus in our notation the proton form factors are

G1,25(¢)+G1, 2" (¢?)
G1,25(0)+Gr,27(0)

Our approach is to be based on mass spectral repre-
sentations of the type

Py o7 (g?)=

e ¢ g5(m?)

GiS(@) =——— dmt———"— (2.3)
2 7 JEm: m? (m*+¢?)
e ¢ g7 (m?)

GV () =——— dnt———"—, (2.4)
2 7 Jemn: m? (m*+¢°)
1 p= g25(m?)

o= [ amt—=, (2.5)
T J (3ma)? m*+q
1 ® gV(m2)

e (2.6
TV (2mg)? m?-g?

which have been suggested by a number of authors.”
The four real weight functions gi,05'V(m?) may be
nonzero for 7 equal to the mass of any system strongly
coupled to the nucleon which at the same time can be
created by the electromagnetic field. The lightest such
isotopic vector system is the «+, «— pair, while the
three-pion 7+, 7, #° system is the lightest isotopic
scalar; hence the thresholds at (2m,)? and (3m.)% It
will be shown in Sec. IIT that, in general, systems of
even numbers of pions contribute only to the isotopic
vector charge and magnetic moment while odd numbers
of pions give purely isotopic scalar contributions. Of a
mass comparable to six pions is the K*, K~ pair, and
eventually of course one comes to the baryon pairs,
starting with the nucleon-antinucleon system. From a
practical standpoint one must hope that in the mass
spectra the contributions from the simplest systems
are the most important.

The derivation of the representations (2.3)-(2.6) to

7Y. Nambu, Nuovo cimento 6, 1064 (1957).
8V. Glaser and B. Jaksic, Nuovo cimento 5, 1197 (1957).
9 M. Gell-Mann (private communication).
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be given in Sec. II presupposes that Gi(Z)/Z and G»(Z)
approach zero for large Z. Actually, it may be inferred
from the work of Lehmann, Symanzik, and Zimmer-
mann®® that G1(Z) approaches zero also. In that case
one may write a relation of the form
1 8,V m2
Gl‘s'V(q2)=- fdm2 w’ (2.7)
- w4

with the restriction on g%V implied by Eq. (2.1). The
convergence, however, is achieved only because of
electromagnetic damping, which sets in for extremely
large ¢*=> M?¢%7, while according to perturbation theory?
the functions G behave logarithmically for large ¢* in
the range M?2eB>>¢>>M?, Tt is possible that an exact so-
lution of the pion-nucleon field theory would lead to
functions Gy which tend to zero even without electro-
magnetic damping. At present, however, we cannot feel
at all confident of such a circumstance, so we prefer to
use Egs. (2.3) and (2.4) to avoid a large contribution
from the uncertain regions. The anomalous magnetic-
moment distribution, on the other hand, for reasons
which are essentially dimensional, is definitely expected
to approach zero for ¢2>>M? with or without electro-
magnetic damping. Thus for practical purposes we are
confronted by a difference between the charge and mag-
netic moment distributions.

3.—Often it seems appropriate to discuss the nucleon
electromagnetic structure in configuration-space lan-
guage, and to that end one conventionally introduces
three-dimensional Fourier transforms of the functions
Gl, 2S, &

1

PO e,

1
MSV(r)=— fdp e 1G5V (p2). (3.2)

(2m)°

Although the configuration-space functions p and 9
have no precise physical meaning they correspond
roughly to charge and anomalous magnetic-moment
densities, respectively. Substituting Egs. (2.5) and (2.6)
into (3.2), we have
1
MSV () =—ov fdmz 257 (%)
2r?

e—mr

, (3.3)
r
which shows that in the spectral decomposition of the
magnetic moment the contribution of a particular mass
value 7 has a “range” ~1/m. Thus the lightest masses
that contribute to gq(m?) give rise to the longest-range
structure.

A quantity often used to characterize the size of the
nucleon is the “mean square radius of the anomalous
magnetic moment,” ¢ that is (suppressing the super-

10 Lehmann, Symanzik, and Zimmermann, Nuovo cimento 2,
425 (1955).
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scripts S and V),

(rm"'),u=fdr rQEm(r)/fdr n(r),

which is easily shown to be related to the logarithmic
derivative of Ga(¢?) at ¢?=0:

(3.4)

1 dGz(q2)
% 7m2 = 5 35
< > Gz (0) [ dq2 ] 7°=0 ( )
> (m) ()
gam o
Y= | dm? dm? . (36
<>fmm/fmm (3.6)

Thus the mean square radius is related to some average
mass in the weight function go/m?,

)= (m)p,

a notion which is useful if the spectral distribution is
predominantly of one sign. Actual calculation, as will
be seen in Sec. V, shows no tendency for g, to oscillate,
although it has not been proved that a change of sign
is impossible. Taking the measured root-mean-square
radius of the anomalous (vector) nucleon magnetic
moment,? one finds a corresponding average mass of
Smr, which, if divided between two particles, would
give each an average total energy of 2.5 m,. This low
average energy suggests, as mentioned above, that
virtual K particles and baryons play only a small role
in the determination of the anomalous magnetic
moment.

4.—Because of the uncertain behavior of Gi(¢?) at
infinity, there may not exist a useful connection
between the second radial moment of the charge dis-
tribution and an average virtual mass. Going through
the same manipulations as above but using Egs. (2.3)
and (2.4) rather than (2.5) and (2.6), one finds for the
mean square radius of the (scalar or vector) charge the
formulas

(3.7

2 glon)
KoDs=— e, (41)
e Y (3mqy)? m
2 ) g V(m2)
Koo == [ B @)
e v (2my)? m

Often the statement is made that because the lowest-
mass intermediate state the =+, #~ pair, contributes to
the vector charge but not to the scalar the latter should
have a much smaller mean square radius than the
former. Such reasoning, however, is tacitly based on the
assumption that a formula of the type of (3.7) holds
for the charge radius as well as for that of the magnetic
moment. Formulas (4.1) and (4.2) in themselves imply
nothing about either the relative or the absolute mag-
nitudes of the second radial moments of the scalar and
vector charge distributions.

The experimental fact that the scalar and vector
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second radial moments of the charge are almost equal
means, of course, that configurations more complicated
than the «t, 7~ pair are important. Why this should
not also be true for the magnetic moment we must say
at once we do not understand. It is, however, fortunate
that at least part of the problem of the nucleon electro-
magnetic structure may be tractable.

5.—In our present state of knowledge an attempt at
a specific evaluation of the weight functions gy, 25"V (m?)
must be confined to the two-pion contribution, and
even here we have not succeeded in formulating a
reliable method of calculation. We shall show that the
two-pion part of the weight function is proportional to
the charge-exchange pion-nucleon scattering amplitude,
but at a negative value for the square of the momentum
transfer. An extension of the physical scattering am-
plitude is thus required, which we attempt to carry out
by means of dispersion relations combined with
Legendre polynomials. If integrals are cut off and an
expansion is made in inverse powers of the nucleon
mass the results of the static model® can be reproduced.
Without a cutoff we are unable to make a definite cal-
culation, but arguments will be given to support the
belief that the local theory, properly evaluated, will be
in agreement with the observations.

In Sec. IT we discuss and to some extent justify the
representations (2.2) to (2.6). Section III deals with
general properties of the various intermediate-state
contributions to the weight functions gy, 257 (m?), and
in Secs. IV and V we concentrate on the two-pion
intermediate state. In Sec. VI our findings are sum-
marized.

II. THE MASS-SPECTRAL REPRESENTATIONS

6.—Recently Bogoliubov, Medvedev, and Polivanov!
and others? derived dispersion relations for meson-
nucleon scattering from the causal nature of a local-
field theory. In this section we shall show that the elec-
tromagnetic structure factor satisfies requirements that
are analogous to the properties of the meson-nucleon
scattering amplitude. We therefore infer that it has a
spectral representation similar to the dispersion relation
for the scattering amplitude. Our discussion closely
follows that in reference 11.

We shall write the form factor for the emission of a
virtual four-vector quantum with momentum ¢, (0 <¢?),

a(p's\Fu(p',0; )u(pys), (6.1)

where the nucleon makes a transition from the state
with momentum p, spin and isotopic spin s, to the
state ¢’, s’; # and 4 are the usual normalized spinors.
The index s will be suppressed where no loss of clarity
results. If the field operator 4,(x) for the virtual elec-
tromagnetic field is introduced in addition to the

U Bogoliubov Medvedev, and Polivanov, Institute for Ad-
vanced Study Notes, Princeton, New Jersey, 1956 (unpublished).
(lnsB)remermann, Oehme, and Taylor, Phys. Rev. 109, 2178

958).
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nucleon operators ¥ (x) and ¢ (x), we can consider the
function in Eq. (6.1) as an S-matrix element to which
the reduction formulas' can be applied:

a(p's)\Fu(p',q; p)u(p,s)=(p's’, qu| S| ps)
(2m)

f d*x d*y e~ iemeiry
&S
w(re -
3Au(x)5¢ ()
= f d'x d'y e~imeiry

B (27)3
) X@'s'| T (Gu(®)7s () | 0)u(p,5),

plus a possible local contribution to the integrand when
x=1%. Here the currents are

0 )utps

(6.2)

)i St sl st
u(x) = , fig(y)=1 .
A " )

In the final step of Eq. (6.2), the causality conditions
have been used in the form

07u(®)/os(9)=0, @e>y0 or (¥—3%)>0;
378(9)/64,(x)=0, @m<yo or (z—9):>0. (6.4)

We may now define the causal function S and a set
of related covariant functions,

(&' | TLju(%),78(y) 1| 0) = — g4+ 5 (x—y) 5 (6.5a)

(187 (%)/6¢(y) |0) = — eip" GH)§ 5 @dv) (g —y) ;
(6.5b)

(0'1675()/64,4(x) | 0) = — g7 1ir" @15 ret) (5 — 3)) 5 (6.5¢)

@' ju(®)7s(y) | 0) = —ie~ 1" @GS, (x—y) ;
(6.5d)

(@' | 75(3) ju(x) | 0) =7’ @S, (x—y).  (6.5€)

The translation invariance of the field equations
assures that the functions S defined in this way are
functions only of the difference x—7y. Two useful rela-
tions among these functions are

$189 (5) = 5,604 (1) 5,8 ()

(6.3)

=S80 (2) =S, (%), (6.6a)
and
S”ﬁ(ret) (x) =Sms (adv) (x) =S,L,s(+) (x) +Suﬁ(_) (x) (6.6b)
In terms of the Fourier transform G(? (%),
S® (x)z feik:cG(i) (k)d“k,
)
6.7

GO (k)= f e #=S O () dkx,
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the form-factor Eq. (6.2) is written

a(p',s")Fu(p',q; p)u(p,s)
=218 (p—q—p")Gus? 3"+ u(p,s). (6.8)

The quantity of physical interest is this form factor
considered as a function of positive ¢ when

p=p=—01%, (69)

where M is the nucleon mass. ,

Because of momentum conservation (or translation
invariance) at least one momentum in addition to g,
must be varied. The representation Eq. (6.2) we have
constructed is most convenient when ' is held fixed,
because then the dependence on momentum transfer
is contained entirely in the exponential factor

¢ iagivy = g—ilatin") (v g hiv! (@tu) (6.10)

which has been used to obtain Eq. (6.8). We shall
therefore use the rest system of the final nucleon with
the following notation:

pﬂ’: <O)M)7 (61121,)
7,= (\e, +w), (6.11b)
pu=(—Ne, E=M+w). (6.11¢)

The condition that p, be a nucleon momentum leaves
w the only variable (beside the trivial possibility of
rotating e), because A is determined by Egs. (6.9) and
(6.11c) to be

A=[(M+w)2— M2 (6.12)

7.—In order to establish a dispersion relation we
should now like to apply Cauchy’s theorem to
G (3p'+q) considered as a function of complex w.
The Fourier integral Eq. (6.7),

Gt (G +0) = [ b= expl =i x—am)]

XS,@ (x)d%, (7.1)

unfortunately exists only on part of the real axis,

Imw=0, Rew>0 or Rew<—2M, (7.2)
where

[Imw| > [Im A|. (7.3)

It is necessary to determine, therefore, whether there is
an analytic function which is equal to the integral in
Eq. (7.1) where that exists, and to locate its singu-
larities if it can be found. In perturbation theory
S©(x) and G (k) can be exhibited explicitly as poly-
nomials in the momentum compovents times simple
functions of the invariant squares of the momenta, so
that the analytic continuation can be carried out by
inspection.”

We shall proceed by establishing a dispersion relation
for nonphysical values of #?,

(7.4)



ELECTROMAGNETIC STRUCTURE OF NUCLEON

so that Eq. (6.12) becomes
A=[(M+w)?—7r]

We then conjecture that the analytic continuations of
the G as a function of 7 can be extended to

T <M?,

(7.5)

(7.6)

for which they have the required values given by Eq.
(7.1) and its obvious modifications.

The functions G are the easiest to discuss. By
introducing into Egs. (6.5d) and (6.5e) a complete set
of states labeled by the quantum number 7, with the
rest-energy M, and the energy-momentum vector
ku(kB*=—M ,?) we obtain

S, ()= -—(71)—3 > f 0% 2kl (ko) (4.2

Xew@r' =0 (p!| 75(0) | n,k) (k| 5,(0)]|0), (7.72)
and
S () = : 4 2 ?
e (x)—(2—1r)3§ f @'k 2k (ka)d (R*+M ,2)
Xem =@ =R(p'| 7,(0) |nk)(nk|55(0)|0). (7.7b)

In view of Eq. (7.4), ¢* and the momentum X are now
given by

E=M2Mo—1, \=[(M+w)—7], (1.8)

whence follows

[Tmw| >|Im 2|, (1.9)

for all values of w, real and complex. The Fourier
transforms at the value §p’4-¢ can therefore be obtained
as

Gus™® (3" +9)=Gus™® (w,7)
=2m1 Y, 200 (—w)d(g®+M 112
ot

X(#'176(0) | n+, —gXn+, —q] 7.(0)|0) (7.10)

and

Gt (B3 +9)=Gus ()
=2mi Y 2E0(E)s(p*+ M ,2)

X' 7u(0) [n—, p)(n—, p|7(0)|0), (7.11)

where we have introduced notation to indicate the
functional dependence on w,r and to distinguish the
sets of states = that contribute to G respectively.

Since 7,(0) is a vector operator, its matrix element
(n+, q| 7.(0)|0) vanishes unless the state #-+ contains
at least two pseudoscalar mesons; hence the lowest-
energy intermediate state has M,.=2m, and the
function G (w,7) vanishes over a large part of the
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real axis,
Gﬂﬂ+(w77) =05 q2> '_4m1r2
—M?*+7—4m,?
or w>w(r)=——, (7.12)
2M

In particular, G vanishes in the “physical” region
w=>0 where the quantum is really emitted (E>M).
Similarly, the matrix element {(#—, p|7s(0)|0) vanishes
unless the state z— contains at least one nucleon and
a meson, M, > (M+m.), so that we have

Gus (0,7)=0, P2 —(M~+m,)

or 7<(M4m,)% (7.13)

Since the inequality is always satisfied in the region
(7.6) in which we are interested, the function G will
not be considered further.

From Eq. (6.6) we may now infer the corresponding
relations among the Fourier transforms,

Gus® (“’,T) =Gugt™e? (wﬂ')

=G (w,7), w>wo(r), (7.14)
and
Gmg(ret) (w,.r) _G“ﬂ(adv) (w,T)

= ﬂﬁ(+)(w;7)’ w<w0(7')- (715)

8.—To construct the analytic continuation of the
retarded and advanced functions we must exploit their
space-time behavior, Eq. (6.4). To avoid the branch
points at A=0 in the integral representations Eq. (7.1),
we shall treat the even and odd forms, i.e., the forms
symmetrized and antisymmetrized in the sense of the
vector e,

(e,o)GMﬂ(ret) (w,T) =fe—%ip':ceiwz
—1
X (coske- X, —)\— sin\e- x) Sy (x)d%, (8.1)

which are even functions of A. Because S@¥(x)
restricts the integration to the future light cone, these
functions are analytic in the region

Im o> |ImA|, (8.2a)

or
Im >0,

in view of Eq. (7.9). The functions

(8.2b)

(e,o)G“B(adv) (w,T) — fe—%ip’zeiw:co
__i .
X ( coshe-X, —):— sin\e- x)Sﬂg(”d") (x)dx  (8.3)

are analytic in the region

Imw<—|Im}:| (8.4a)
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or

Im w<0 (8.4b)

because the integration extends only over the past
light cone.

Furthermore, Eq. (7.14) states that on part of the
real axis

w>wo(7) (8.5)

the causal, advanced, and retarded functions are equal;
they are, therefore, the same analytic function
(@9 ,4(w,7), regular in the entire complex w plane with
a branch point at

w=wo(7),

(8.6)

and a cut from there to infinity; we shall take the cut
along the negative real axis. A retarded function is
obtained by approaching the cut from the upper half
plane and an advanced or causal function by approach-
ing from the lower half plane.

Since the discontinuity in G on the cut is known
from Eq. (7.15), we can apply the Cauchy theorem to
the function G (w)/w if this function approaches zero
for large values of w. In accordance with the discussion
in Sec. I, 2, we assume that this is the case, and that
(G (w) may not approach zero. The resulting dispersion
relation or spectral representation is

© o G (o7 -
© G (w,7) =— f — ' +“9G(0,7),
2t J_o o' (0 —w

w>0. (8.7)

It follows from covariance arguments that the function
©@ approaches zero for large values of w if G (w)/w
does. The spectral representation for that function is
therefore

1 wo(r) ()7 ﬁ(+) (w T)
(D)Gﬂﬁ(wﬂ-):T — 7 do', w>0.

T Y

(8.8)

w'—w
9.—We shall now assume that Egs. (8.7) and (8.8)
hold for
T=M2 9.1)
The possibility of such an analytic continuation has
been proved rigorously'? only for the case in which the
meson and nucleon masses satisfy the inequality

me>NV2—1)M.

We believe that this restriction is a result of the
method used for the proof and that it will be removed
when further progress is made in the study of this
problem.

We may therefore write the spectral representations
for the even and odd form factors 9F, which differ
from the functions (=G only by the constant final
nucleon spinor. It is still more useful first to decompose
the form factor into the four real scalar functions

GASIOROWICZ, AND ZACHARIASEN

described in the introduction,

Fu(p',9; ) =1v[G15(¢)+7:G1" (¢D) ]

+a'uyql'|:G2S(q2)+T3G2V(q2):]) (9'2)
and to do the same for G,
G ™ (w0, M%) = — 211 (p',5) {ivul g5 (— &)
+738" (=) JH0..¢.[85(—¢)
+7g" (=1} (9.3)

It is clear that each of the functions gy, 257 is related to
the analytic continuation of the corresponding Gy, o5
in the same way as G is related to G¢. Then the
g1,25V are real functions as a consequence of the
Riemann-Schwarz “principle of reflection.”

Each of the two functions G157 has a spectral repre-
sentation of the form Eq. (8.7), in which we may set
[Eq. (7.8)]

w=q/2M, '=—m?/2M, (9.4)

to obtain Egs. (2.3) and (2.4). The functions ¢.G557
satisfy a representation of the form (8.8), while ¢oG2S'V
satisfy one of the form (8.7) with [¢G25" Jp=0=0;
both give the same result, which leads to Eq. (2.5) and
(2.6) after the change of variables in Eq. (9.4).

III. GENERAL PROPERTIES OF INTERMEDIATE-STATE
CONTRIBUTIONS

10.—Having obtained the spectral representation for
the form factors, we now focus our attention on the
four weight functions

o, 2S’V<m2).

As already observed, these functions contain a sum of
terms corresponding to the possible intermediate states
in Formula (7.10); thus for each g,

(10.1)

g=gen+tgent Fgeot - Fgam+---. (10.2)

Each of these partial weight functions g; vanishes for
value of m? less than (m;)?, where m; is the sum of the
rest masses of the particles in the state 7. As argued in
the introduction, a particular g; therefore contributes
to the nucleon structure only within radii of the order
of the Compton wavelength associated with the mass
m; Thus it is appropriate to concentrate on the
functions g; corresponding to the low-mass intermediate
states, in order to discuss the outer regions of the
nucleon in configuration space.

According to (7.10) the weight functions g; are pro-
portional to the matrix element for a virtual photon of
mass m to “decay” into the intermediate state in ques-
tion. It follows that the total angular momentum of
any possible intermediate state is one, while under
either space inversion or charge conjugation the state
must be odd. The total charge is of course zero. Further-
more the total isotopic spin I can be only zero or one,
states with =0 contributing to the isotopic scalar part
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of the nucleon electromagnetic structure and those with
I=1 to the isotopic vector part.

To obtain a special selection rule for the least massive
states, those containing only pions, one may consider
the combined operation of charge conjugation and 180°
rotation about the y axis in isotopic spin space. Under
this operation a pion state is even or odd depending only
on whether an even or an odd number of pions is present.
Since the states of interest here are odd under charge
conjugation, they will contain an even number of pions
if the total isotopic spin is odd and an odd number of
pions if 7 is even, i.e.,

ZamyS=0, if # is even, (10.3)
and
gonm V=0, if nis odd. (10.4)
We thus have
g8=gantgemt tgen)S+ FgamS+- -,
g'=gentgunt +gex)y’+ - (10.5)

+gowmV+-.

If the charge contribution from the three-pion inter-
mediate state were of the same magnitude as that of
the two-pion state, one might have an explanation for
the difference in second radial moments between the
proton and neutron charge distributions. There is no
visible reason, of course, why the three-pion configura-
tion should contribute substantially to the charge
density and not at the same time to the magnetic
moment. However, this same statement can be made
in our current state of knowledge about any possible
source of isotopic scalar charge, so that the three-pion
state must be regarded as a possible candidate to supply
the needed scalar charge. At the present time we know
of no sensible way to estimate even the sign of the
three-pion contribution. On one side a closed nucleon
loop is required to couple this system to the electro-
magnetic field and on the other side a nonphysical
matrix element for the process 3r — N+N (or =+N
— 27+ N) is involved.

For intermediate states of mass greater than 24/ the
other factor in g;, as given by (7.10), is the physical
transition amplitude connecting the state 7 to a nucleon-
antinucleon pair. According to calculations by Bern-
stein, Federbush, Goldberger, and Treiman,® the uni-
tarity of the .S matrix severely limits the size of contri-
butions from such states, a circumstance that gives
encouragement to a program of calculation which
ignores the high mass region. In particular, the contri-
bution from the nucleon-antinucleon intermediate state
is given by the product of nucleon electromagnetic
structure factors themselves, evaluated at ¢?>= —m?, and
nucleon-antinucleon elastic scattering amplitudes in the
physical region. There seems no reason to think that
this (VN) contribution should be even remotely ap-

13 T, Bernstein and M. L. Goldberger, paper delivered at the
1957 Stanford Conference on Nuclear Sizes (unpublished).
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proximated by setting Go5'V(—m?) =0,G,5 V(—m?) =1e,
and using the Born approximation for nucleon-anti-
nucleon scattering, the procedure equivalent to the
standard perturbation calculations.! This point is dis-
cussed further in Sec. VL

IV. FORMULATION OF THE TWO-PION
CONTRIBUTION

11.—The contribution to the nucleon electromag-
netic structure from the two-meson intermediate state
will be calculated in the next two sections. The reasons
for concentrating on this part of the process are: (1) it
is the only part for which at present anything like a
calculation is feasible; (2) there is reason to hope, as
explained in the introduction, that the two-meson con-
tribution dominates the magnetic moment.

For an intermediate state consisting of mesons of
four-momenta ¢; and g, with isotopic spin indices j and
k, we have for the spectral distribution function, Eq.
(7.10),

a(p) 1. (p',p)u(p)
1
= —E[Gﬂa ) (w0, M) g (p) ]
. [#adetartasta
L (2m)° 410°¢20(q1 1 G271 ¢
X{p|7(0)|q17g:k)u(p){q17, g2k 7.(0) | 0).

The second factor of the integrand, i.e., the matrix
element describing the disappearance of the photon
with the creation of a pion pair, may on the basis of
invariance considerations be written

(11.1)

1€
(————(91—92)u

wiwg)?

(917, q2k] ju(0)[0)=

X (8j10k2—800k) F [ (q1+¢2)%]. (11.2)

Here F.[(q1+¢:)%] is a form factor associated with the
one-photon, two-meson vertex, normalized to unity for
zero argument. This function for positive argument
describes the electromagnetic structure of the pion in
the same sense as the functions Gy 95V describe the
nucleon, and in principle could be measured directly by
electron-pion elastic scattering. In practice we shall be
forced to set F. equal to unity (“point pion” approxi-
mation) since there is at present no understanding,
either experimental or theoretical, of the pion structure.
However, this approximation may be postponed until
the very end of the calculation, since F.(—m?) appears
simply as a multiplicative factor in the weight functions
gor (m?).

The other factor in the integrand of Eq. (11.1) is
related to the meson-nucleon scattering amplitude. Ex-
plicitly, if the amplitude for scattering a meson in the
state ¢ by a nucleon in the state p, leading to a meson
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¢’ and a nucleon p’, is denoted by {p’,¢'| T'| ,q), then
we have

@'17(0) |17, gokyu(p) = (p1',— k| T|p, q17). (11.3)

Of course, writing —gs for the final pion energy-
momentum implies an extension of the scattering am-
plitude to a nonphysical region. This extension will
occupy Sec. III, 14.

Using the notation introduced by Chew, Goldberger,
Low, and Nambu,*

(#', —qk|T|p, q15)

@PNHL—AD W)

- (40)1(.02)%
+iv,0uBP (W2,¢") Bat+[— A (W)
+iv,0.BO (W2,¢) Bl 7 ju(p)), (11.4)

where —g=(q11¢2), 0=%(01—¢2), P=3(p+2"), and
2= —(P4(Q)? we may carry out the isotopic-spin
sum in Eq. (11.1) to obtain

e
Len(p'p)= e f d*qud*g2d(g1+g2+9)

X8(gP+ma) (g’ +ma") 5 (q1— o)
XA W) —imBO (W,¢") IFx(¢7).  (11.5)

The three-dimensional integrals over ¢; and ¢s have
been increased to four dimensions by adding the mass-
shell delta functions. It can be seen that only positive
frequencies contribute.

12.—It should be noted that in Eq. (11.5) only the
charge-exchange scattering amplitudes occurs and that
the contribution, as expected, is only to the isotopic
vector part of the nucleon electromagnetic structure.
Introducing ¢ and Q in place of ¢; and ¢» and then per-
forming the integration over d*, we obtain

(4
102 ) == [ #Q L Ga- Qs

XL (3¢— Q) +m."10.LAC (W)
— OB (W) JF-(¢).  (12.1)

The next task is to relate formula (12.1) to the scalar
weight functions g1, 2¢2x)” (m?). Clearly we are to make
the identification m?= —¢?, and by standard invariance
arguments we find

g1am” (m?) .
= [:Ma('mz)+61(m2)+M2‘82(m2)]T4;F,,(—mz), (12.2)
g2em 7 ()

~[- 3~ IMBO ISP (), (123)

U4 Chew, Goldberger, Low, and Nambu, Phys. Rev. 106, 1337
(1957).
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where

a(—@)=— f PONQHEE+m 2D 20200

X (P,0,/PYAC (W), (12.4)
Bi(— )= f BB+ 3¢ m.D5 (20205
X{[PQ— (PQ)]/2P BO(Whgd), (12.5)
Ba(— )= f 25O+ +m2)5(240)
X ([P —3(PQ)Y/2(PY BOWEg). (12.6)
If we recall that
Pr=—M2—1q?, (12.7)

then it is clear that these integrals indeed depend only
on the single scalar g2

13.—In order to exploit these results, the pion-
nucleon scattering amplitude is needed in a nonphysical
region, in particular in a region where the square of the
momentum transfer ¢? is negative. The wvariable
W?=— (P+Q)?* also takes on nonphysical values, but
the dispersion relations permit us to extend the scat-
tering amplitude to values of W? anywhere in the
complex plane. It is the technique of extension to
negative ¢? that is our particular problem here.

Actually, for ¢ less than —4M?2, the matrix element
we are concerned with can be identified with the physical
amplitude for the process 7+ — N-+N. In the future
this identification may turn out to be useful, but at the
moment the only good theoretical approach we have
to pion-nucleon matrix elements derives from the
prominence of the (3,3)-state scattering resonance. Any
calculation attempted now has to be based on pion-
nucleon scattering rather than on pion-pion production
of a nucleon pair. This conclusion is reinforced by the
empirical fact, emphasized in the introduction, that the
“average” value of #? in the magnetic-moment weight
function go¥ (?) is less than M?, so that we may hope
not to have to be concerned with values of (—g%) =m?
that are greater than 4M2 If the high-virtual-mass
region turns out to be crucial in understanding the
nucleon magnetic moment, our motivation for concen-
trating on the two-pion contribution will be lost.

So long as one works with Feynman diagrams, i.e.,
with a perturbation evaluation of the pion-nucleon
matrix element, there is no problem about continuing
to negative values of ¢?; the functional dependence is
explicit. The whole point of the approach adopted here,
however, is to avoid the perturbation method; and the
most obvious alternative is the method already used
with some success in the dispersion relations for non-
forward scattering, where nonphysical values of g% also
occur—that is, an extension by means of Legendre
polynomials.

It is clear that a polynomial expansion cannot be
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valid for indefinitely high values of |¢?|. In fact, as
pointed out by Symanzik, the possibility of meson-
meson scattering implies that strictly speaking the
expansion will not converge for |¢?| >4m.? a condition
which excludes our entire range of integration. However,
there is reason to think that meson-meson scattering is
weak and that for practical purposes the Legendre
expansion may be used for |¢?| <4M? We shall make
this optimistic assumption here, thereby allowing a
crude calculation of ga.(m?) in the low-mass region.

14.—Let us start with the conventional scattering
dispersion relations in the form used by Chew, Gold-
berger, Low, and Nambu®:

1 00
A (W2 g)=~ f dW™ Im A (W)
(M +my)?

™

1
x{ l (14.1)
Wk (PHQr Wit (P Q)
B(—) W2 2 2[ 1 | ! ]
O i oy e (-0
+1 f : dW" Im B& (W",¢%)
™ (M +my)?
1
x| | | as2)
Wok(PHQF W+ (P— Q)

where g,2 is the rationalized and renormalized Yukawa
coupling constant. As emphasized by these authors, the
forms (14.1) and (14.2) correspond to the most op-
timistic assumption possible about the behavior of the
amplitudes as W?approaches infinity. There is, however,
some experimental evidence to support the optimistic
assumption for charge-exchange scattering, the case
with which we are dealing here.!> We note for future
reference that the Born approximation; i.e., neglect of
A and of the integral contribution to B¢ in the
calculation of the weight functions Egs. (12.2) to
(12.6), is equivalent to including in the nucleon form
factor only the lowest-order perturbation-theory con-
tribution to the meson current effects.

The only place in Egs. (14.1) and (14.2) where the
dependence on ¢? is not explicit is in the imaginary parts
of A and B in the dispersion integrals. It is here
that the polynomial expansion is needed. According to
Chew et al.,'* these imaginary parts may be expressed
in terms of partial-wave “total” charge-exchange cross
sections o7, for states with parity (—1)* and total

15 Goldberger, Miyazawa, and Oehme, Phys. Rev. 99, 986
(1955).
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angular momentum /3%,

1
P Im (4©); BO)

(W+M;1) « ,
=_—£—?+_M__ :L;.:OEPM @*)o. =Py ()0 ]
W-M;-1) =
———E:—]ll—‘—— Eﬂ P, (x)l:o'l_(_)'—‘UH_(_):l. (14.3)

Here E is the nucleon energy and % the relative pion-
nucleon momentum in the barycentric system, while
P/ (x) are derivatives of Legendre polynomials of the
cosine x of the scattering angle,
x=1—¢*/2k, (14.4)

which exhibit the dependence on ¢2

Our intention, of course, is to use experimental infor-
mation about the total cross sections for the first few
partial waves in pion-nucleon scattering to effect an
approximate evaluation of Eq. (14.3) and thus of Egs.
(15.1) and (14.2). Any single partial-wave contribution
can then be extended to negative values of ¢%. The dif-
ficulty, as explained above, is that the series in I does
not converge for large |¢?|.

15.—In evaluating the quantities a(m?), 8:(m?), and
Ba2(m?) as given by formulas (12.4) to (12.6), we may
use the representations (14.1) and (14.2) to carry out
the integration over Q, because they give the depend-
ence on W and thus on Q. One obtains inverse trigo-
nometric functions of a variable y,

19 ,9)
y(W'2m?) ok (15.1)
where
ge=CGmr—mD)}, qu=(1P—3m?)}  (15.2)
The functions are
T [ Qr 1
I.(W", —I—m2)=——(——2 [1—— tan—ly], (15.3)
m\ gn y

T Qs’ 1 1
Isy (W2, +m?) =— —[tan“y—~(1—— tan—ly)],

m 2qn y\ oy
(15.4)
—T @ 3 1
Igs(W", +m?)=—o [tan—ly-——(l—— tan“y)],
m 2¢.° y\ oy

(15.5)
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and the final formulas for the spectral functions are

e
Y am () =—F+(—m’)
81 (2m)

]

1
g2" am (m?) =_e—F1r('—' m?) —%gﬂﬂz(M% +m?)+—
472 2 T

This is as far as one can carry the calculation without
making approximations.

V. ATTEMPTED EVALUATION OF THE
TWO-PION CONTRIBUTION

16.—Several different kinds of approximations may
be distinguished. First one may take advantage of the
dominance of the (£,2) resonance in Egs. (15.6) and
(15.7) to treat W' — M as small compared with M, this
being the approach which has had considerable success
in theoretical discussions of pion-nucleon scattering
and photopion production.® Of course for making
practical use of the polynomial expansions it is also
necessary that m?=—g¢* be small—an unfortunate
requirement, since for calculation of the electromag-
netic form factors an integral over all values of m? is
involved. Nevertheless, it may be of interest to see how
the weight functions g (m?) behave for small m?;
therefore we tentatively neglect all terms of order 1/M?
and assume |¢?| sufficiently small that the polynomial
expansions are well approximated by keeping only .S
and P waves. Formula (14.3) then becomes

qz
ImA(_)(W"",(f)zk'[as(_)‘i‘&fp%(_)(1— )]

2k
2Me'
T Lopy @ —ap],

(16.1)

2M
Im BO (W)~ —kT[‘TP% O —opy ], (16.2)

where o'=W'—

Furthermore, in view of the uncertainties involved
it seems legitimate to set all partial cross sections for
pion-nucleon scattering, except that for the (%,3) state,
equal to zero and to approximate the latter by a delta
function. From the effective-range approach!® one may
relate integrals over the (2,2) resonance to the value
of the coupling constant g,2, viz.,

12M o 4 s
——op =~ w'2—
T F 9

16 G. Chew and F. Low, Phys. Rev. 101, 1570 (1956).

(M+w,)*], (16.3)
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0

1
g Lo (M2, +m?)+ M3 (M2, +m2)]—|——f AW [M Im A (W, —m?)
TV (M +mr)?

xuawa+WHJmBﬁmva—wthva+wHﬂﬂmmva+W»ﬁ,(w@

AW [~} Tm AC (W2, —m®)(W?, 4-m?)

(M +mg)?

—3iM Im BOO(W?, —m®)Is(W"2, +m?)] I (15.7)

where w, is the resonance energy (w,~2m,). In this
way we approximately evaluate the integrals over
dW' in Egs. (15.6) and (15.7) to find

ef* (2¢x m?
v 2y~ R 2
gien " (m?) = m,2(m){ 5 m,)
8 m? Wy qr
—-—(wrz—}————-m,ﬁ)[l———— tan™! (——)] l, (16.4)
9 2 gr Wy
ﬁ(%)
m2\ m
T A wl+g.
e () -2]),
29 gs*
e \2 (g
2={ — — }=0.08.
() ()

In Egs. (16.4) and (16.5) only terms of lowest order in
1/M have been kept, in order to achieve simple for-
mulas and to facilitate comparison with the cut off
model. The first terms in the large brackets are due to
the nucleon poles and are seen to be substantially larger
than the contribution from the (£,3) resonance.

The general form of these approximate (no-recoil,
low-m?) expressions is similar to results obtained by
several authors using the cutoff model.5' In that
model one finds for the electromagnetic structure factor
the lowest-order perturbation result plus relatively
small corrections proportional to integrals over charge-
exchange scattering cross sections. For the magnetic
moment it is the spin-flip cross section that occurs,
while for the charge it is the non-spin-flip, the same
forms obtained here. If our expressions (16.4) and
(16.5) are cut off at m?~ (2M)?, numerical results close
to those of the cutoff model emerge.'?

g20m " (m?) =

where

178§, Treiman and R. Sachs, Phys. Rev. 103, 435 (1956); G.
Salzman, Phys. Rev. 105, 1076 (1957).

18 The' algebraic forms of the structure factors so far derived
from the cutoff model are more complicated than the spectral
representations (2.4) and (2.6) even though the numerical content
is approximately equivalent when the approximations (16.4) and
(16.5) are employed.
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Because of the approximations made, the results
(16.4) and (16.5) have incorrect asymptotic behavior.
Instead of vanishing at infinity, gicer (m?)/m? ap-
proaches a constant while goor) (7?) increases as m. As
explained already, it is not easy to remedy this defect
because the polynomial expressions (14.3) and (14.4)
are inappropriate for asymptotic considerations, and so
long as the behavior at infinity is wrong we cannot
calculate the electromagnetic structure factors without
cutting off. For pion-nucleon scattering'* and photopion
production® it was possible, by use of the spectral-
representation approach to local-field theory, to re-
produce the essential results of the cutoff model once
the position of the (3,3) resonance was known. It was
not necessary to introduce a cutoff explicitly. We have
not been able to do the same here, and we infer that the
cutoff model is correspondingly less reliable for describ-
ing the nucleon electromagnetic structure than it is for
phenomena involving real pions of low energy.

17.—It is interesting to note, however, that in the
low-m? region our results (16.4) and (16.5) are fairly
well represented by making the Born approximation to
the scattering amplitude, i.e., keeping only the rational
term in Eq. (14.2) which comes from the single-nucleon
intermediate state. For example, at the empirically
determined “average” m?® [see Eq. (3.7)] the contri-
bution to the magnetic moment arising from the
integral over the (%,3) resonance is only 179, according
to Eq. (16.5). Once we recognize this simplifying fact,
it is easily possible to evaluate the magnetic-moment
form factor with no further approximations other than
treating the = meson as a point charge. As stated earlier,
the result is precisely equivalent to lowest-order per-
turbation theory.

It may seem remarkable that a perturbation result
can be anywhere near the truth, since it is well known
that the perturbation calculation of pion-nucleon scat-
tering is grossly misleading. The main trouble for scat-
tering, however, occurs for the non-charge-exchange
amplitude, where the S-wave part is overestimated by
an order of magnitude. The g? approximation to the
charge-exchange amplitude, on the other hand, is not
too bad at low energies even in the physical region and,
in the nonphysical region required here, is relatively
more accurate because one is closer to the pole at W=M
than to the ($,3) resonance. In the immediate neighbor-

hood of the pole, of course, the perturbation result is.

exact. The weight functions we obtain now without the
neglect of nucleon recoil are

oL ()L )

MmN\ Mgy Yo Yo

m? 3 1
——[tan—lyo———(l——— tan‘lyo)] I, 17.1)
4g.* Yo Yo
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and £ g
e qr
g:¥ (2m)~— )
MaE\ mq,’
3 1
X {tan—lyo——(l—-—— tan‘lyo) }, (17.2)
Yo Yo
where now )
qrqn

One is tempted to assume that the weight functions
g1,2(m?) are everywhere reasonably well represented by
this approximation and proceed to an evaluation of the
structure factors. The anomalous (vector) nucleon
magnetic moment obtained from Eq. (17.1) is 1.5¢/2M,
quite near the experimental value 1.84¢/2M, although
the close agreement must be fortuitous because the
mean square radius of the magnetic moment, similarly
calculated, is only about half the experimental value.
Nevertheless we may regard the perturbation result as
giving a qualitative and perhaps a semiquantitative
representation of gs(m?).

Assuming the same to be true for g;(m?), one may
use Eq. (17.2) to estimate the mean square radius of the
vector-charge cloud [Eq. (4.2)]. The result for (r,72)V
is 0.24m,.72%, which agrees with the measured value*®
within the fairly large experimental uncertainties. It
should be remarked that these results for the vector
charge and magnetic-moment structure obtained from
the local theory, using only the Born approximation
to the meson-nucleon scattering amplitude, are not
very different from those given by the cutoff model in
the same approximation (both being in reasonable
agreement with experiment). That is to say, the effect
of nucleon recoil in the Born contribution introduces
a natural “cutoff” in the neighborhood of m?= (2M)2.
Presumably, if a correct method for handling the scat-
tering corrections could be formulated, a natural cutoff
would appear there also.

VI. SUMMARY AND DISCUSSION

18.—The reader may at this point feel that the
authors have perpetrated a fraud, cloaking nothing
more than old-fashioned perturbation theory in a vast
cloud of words and equations. To refute this impression
let us review what has been accomplished, starting with
the problem of the magnetic-moment structure, which
is much clearer than that of the charge.

We began with the observation that in the framework
of the spectral representation the observed qualitative
properties of the anomalous nucleon magnetic moment
suggest that it is due principally to the two-pion inter-
mediate state. We then attempted a calculation of this
contribution and had to deal with the problem of
extending the meson-nucleon scattering amplitude into
the region of negative squared momentum transfer.
However, it was found that for small values of m?= — ¢?



276 CHEW, KARPLUS,
the main part of the weight function geen” (%) was
due to the nucleon pole in the pion-nucleon scattering
amplitude, which depends only on the renormalized
Yukawa coupling constant and which can be extended
without difficulty. Thus it seems reasonable to ignore
the scattering corrections and to use only the nucleon
pole in order to gain a rough idea of the content of the
local theory. When this is done, one finds a magnitude
for the static anomalous moment and a ‘“‘size” which
are in semiquantitative agreement with the observa-
tions. Our conclusion from this result is that a correct
calculation based on the local theory may very well
yield complete agreement with experiment. The fact
that the practical estimate finally carried out here is
equivalent to a piece of lowest-order perturbation
theory is irrelevant to the validity of this estimate.

It has of course not been shown that more com-
plicated intermediate states fail to contribute appre-
ciably to the magnetic moment. Here we are unable
even to make an estimate until some understanding
has been developed of the matrix elements coupling
these states on one side to the electromagnetic field and
on the other side to the nucleon.

The particular high-mass intermediate state that has
discredited local-field theory in the magnetic moment
problem is the NN system, whose contribution when
evaluated by perturbation theory is of the same order
of magnitude as that of the two-pion state and which
contains a large incorrect isotopic scalar part. The
reader may well ask why he should disbelieve perturba-
tion theory for the NN state when he is asked to accept
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it for the 2w configuration. The situations in these two
cases, however, are quite different, because in the former
the relevant scattering matrix element (NV+N—N-+N)
is to be evaluated in the physical region and there is no
reason to think it is even remotely approximated by
the second-order Born approximation. This approxi-
mation is known to be totally misleading even for
nucleon-nucleon scattering, and in the nucleon-anti-
nucleon problem the influence of annihilation processes
on elastic scattering is enormous. Furthermore the NN
contribution to the magnetic moment involves the
nucleon structure factors Gy,2%'7, which we know are
important but which are ignored in the perturbation
calculation. The corresponding pion-structure factor
F,, which occurs in the 2w contribution, may be im-
portant but there is no evidence to this effect.

19.—The situation with regard to the charge structure
of the nucleon is not nearly so clear, but we feel that in
this case also one should not conclude that local-field
theory is incapable of ever explaining the known facts.
In particular the fairly large “charge radius” observed
for the proton* does 7ot imply that the two-pion state
is the main contributor. It is quite possible that an
isotopic scalar part, approximately equal in magnitude
to the vector part, will be forthcoming from the 3=
state to produce the required small charge radius for
the neutron.
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