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Scattering of Light by Protons
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Within the framework of the Chew-Low-Wick development an analysis of the scattering of photons from
a nucleon is carried out. It is shown that an exact relationship exists between the Compton effect amplitude
and the experimental meson-nucleon scattering phase shifts for all multipoles except magnetic dipole and
electric quadrupole provided that effects arising from currents inside the nucleon source (i.e., line currents)
are slowly varying functions of photon energy. That part of the magnetic dipole scattering which can be
described in terms of the isotopic vector part of the anomalous magnetic moments of the nucleon is also
treated exactly. The cross section for the Compton process is evaluated on the basis of the electric and
magnetic dipole contributions only, since a nonrecoil theory is clearly expected to be poor for photon energies
greater than 300 Mev. Fairly good agreement with experiment is achieved.

I. INTRODUCTION

I~INK of the most useful applications of the Chew-
Low' formalism has been in the derivation of

relationships between various processes involving
mesons, nucleons, and photons. It has proved possible,
using the assumption of a static nucleon, to relate
certain parts of the matrix element for single meson
photoproduction, ' low-energy double meson photo-
production, ' anomalous magnetic moments, and other
structural properties of the nucleon4 to the meson
nucleon scattering phase shifts. In this paper a similar
relationship is derived for photon nucleon scattering
for all multipoles except magnetic dipole and electric
quadrupole. It should be emphasized that our calcu-
lation is not based on a "one-meson" approximation,
but that we have considered the effects of all "-e

mesons" in the intermediate states.
The assumptions involved in deducing this relation-

ship are the usual ones of the static theory. Ke describe
the nucleon by an extended source function p(x) with
Fourier transform e(k), and assume the interaction
between this source and the meson field is linear in the
Geld, thus coupling only P-wave mesons. The result is
derived only to lowest order in the electromagnetic
field. The principal assumption which is made is the
absence of interaction between the nucleon and any-
thing but P-wave mesons. Thus for any multipole other
than M1 or E2, the meson absorbing the incident
photon through the meson current, or through the
interaction current, must also be the meson which
emits the Gnal photon. As a result, one may establish a
correspondence between the diagrams of Fig. 1(a) and
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Fro. 1. Diagrams
demonstrating the
correspondence be-
tween (a) Compton
scattering and (b)
pion-nucleon scat-
tering.
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' R. H. Capps and W. G. Holladay, Phys. Rev. 99, 931 (1955).

those of Fig. 1(b). On the other hand, if the meson
upon which the incident photon is absorbed is allowed
to interact before emitting the final photon, the cor-
respondence breaks down. In order to interact, the
meson must be P wave, and the photon must be
magnetic dipole or electric quadrupole. Consequently,
different techniques are required to handle these multi-
poles. The greatest part of the magnetic dipole con-
tribution is trivially related to the scattering amplitude

by observing that the isotopic vector anomalous
moment absorption of a photon of momentum k and
polarization e is identical with the absorption of a
neutral meson of momentum (kXe).

The most unpleasant feature of the static theory in
its application to the Compton effect is in the non-
locality of the interaction, expressed by the presence
of the cutoff s(k). As has been discussed often befores
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the nonlocality produces a violation of gauge invariance
unless some mechanism describing the transfer of charge
from the nucleon core to the point of emission of the
meson is put in. This is usually done by introducing
line currents. ' These serve to restore gauge invariance,
but also produce extra electromagnetic interactions
which cannot be neglected. It is known' that gauge
invariance determines the coeKcients of the two
leading terms in the expansion of the scattering ampli-
tude in powers of the photon energy, the first of these
being just the usual Thomson amplitude. These
coeKcients are not reproduced if the line currents are
neglected.

The fact that the line currents are not unique means
that it is pointless to attempt to calculate their eGects
explicitly. Our approach will be to use the fact that we
know what the two leading terms will be if gauge
invariance is maintained, and assume that the only
important e8ect of the line currents is to produce these
terms. Any further contribution of line currents must
be of order (k/M)', and hence negligible in the energy
range of interest here. We shall therefore not include
line currents, but imitate their eGect by subtracting
the di6'erence of our nongauge-invariant calculation and
the low-energy theorem.

Relativistic dispersion relations have also been used
to investigate this problem. ' Such an approach has the
advantage of not requiring a cuto6 and allowing in
principle the inclusion of nucleon recoil eGects. On the
other hand these treatments suffer from the fact that
in practice they are essentially a "one-meson approxi-
mation" and furthermore require some guesses about
the high-energy behavior of the matrix elements. It is
hoped that the static theory as developed in this paper
will shed some light on the validity of the various
assumptions used in a dispersion relation approach.

II. CALCULATION

We wish to evaluate the Compton cross section using
second-order perturbation theory in the electromagnetic
coupling. The unperturbed system is to be the meson-
nucleon system, in the static approximation. Then the
unperturbed Hamiltonian is the usual one of the Chew'
theory, namely:

H=Q &o„a„tu„+Q„(U„a„+U„tc„t). (g)

The notation is standard. ~ is an index denoting the
momentum x and charge state ~=1, 2, 3 of a meson.

Furthermore,

and

where fs is the unrenormalized coupling constant, and
p is the meson mass. o and ~„are spin and isotopic spin
operators for the nucleon. The unperturbed eigenstates,
that is, the eigenstates of H, are denoted by f„& i, with
energy E„.The superscript (—) is used to indicate the
eigenfunction with "incoming wave boundary condi-
tions. '" In addition the unperturbed Hamiltonian
should include the Hamiltonian of the free radiation
field. This will be suppressed.

The perturbing Hamiltonian describes the interaction
of the electromagnetic field and the meson nucleon
system. This will contain two parts, linear and quadratic
in the charge e. Both will include contributions from
line currents, According to the philosophy which we
have adopted for handling line currents, however, we
do not need an explicit form for them. We must merely
remember to subtract the two lowest terms in the
photon energy from the expression we get ignoring line
currents, and then insert the low-energy theorem. This
method of treating the line currents corresponds to the
"subtractions" which are made in the dispersion theory
approach to this problem. ' The perturbing Hamiltonian
neglecting line currents is then all we need to consider.
This is

Here A(x) is the photon field operation, p(x) is the
meson 6eld operator, and j(x) is the total current
operator (except for line currents) of the meson-nucleon
system. These operators are all in the Schrodinger
representation. The last term in Eq. (2) represents the
amplitude to scatter from a static nucleon, and gives
the Thomson cross section.

The matrix element of interest is now obtained by
doing first order perturbation theory in the terms in e',
and second order perturbation theory in the j A term.
Explicitly, we wish to calculate:

iM (ke ~ k'e') =2 LA'(0)7* A(0)+2es I A'(x)7* A(x) Q el &*(x)P(x)If»)
2M J
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In this equation the matrix elements of the photon where
field have been explicitly evaluated, and thus

and

A(x) = ee''*,
(2k) &

A'(x) = e'e'"' *,
(2k)'*

where ke and k'e' are the momenta and polarizations
of the initial and final photons. We have also taken
k= k'; that is, we have assumed energy conservation.

This is perhaps an appropriate place to discuss
brieQy the kinematics involved in the static model.
Under the assumption that the nucleon is infinitely
heavy, on which the static theory is based, there is no
distinction between, for example, the laboratory and
center-of-mass coordinate systems. The calculation is
done in either system, and in both the nucleon is at
rest before and after the collision. In actuality, of
course, the nucleon is not infinitely heavy, so the system
used cannot really exist. The question then is whether
this fictitious system best approximates the real
laboratory system or the real center-of™mass system,
or perhaps something else. The fact that k=k' in the
fictitious system and that k =k' also in the real center-
of-mass system indicates that the fictitious system used
in static model calculations should be identified with
the actual center-of-mass system. This will be done
here.

One further comment should be made. If line current
effects are introduced into Eq. (3), making the theory
gauge-invariant, it is easy to show explicitly in a
manner similar to that used by Capps' in a perturbation
(in f') calculation of the process, that the Thomson
limit actually does result at zero photon energy.

We now turn to the explicit evaluation of the matrix
element M(ke —+k'e'). We shall restrict ourselves to
electric dipole and magnetic dipole scattering, and shall
discuss the electric dipole eGect first. Consider the terms
in Eq. (3) involving the current. This current consists
of an interaction current and a meson current:

(ief())
j (x) = (4r) l

I l)e[rag y(x) —~. y(x) r3j
Ep&—ie$P(x) &&*(x)—qP(x) VQ(x) j. (4)

It may also be decomposed in a different way. ' We write

1 =3~+)»»+J»» (5)

It is easily seen from parity conservation that j, and
j„contribute only to magnetic dipole Compton scat-
tering. For the present, therefore, we shall replace j
byj .

Consider the matrix element

(4.' ' „).A A)

This vanishes for m=0, by definition of j . The sum on
e in Eq. (3) therefore runs from one to infinity instead
of zero to infinity. The matrix element, then, represents
single photoproduction (e= 1), double photoproduction
(e= 2), triple photoproduction (e= 3), etc. If the
photon which is absorbed here is not magnetic dipole
or electric quadrupole, one of the final mesons (namely
that one which coupled to the photon) cannot be a
E'-wave meson. It therefore cannot interact with the
nucleon, so we may write

(6)

where p is the non-P-wave meson which absorbed the
photon. In general, for any multipole photon, we have

and hence

~
~

~
~

1' —)», A ik,)=(ll, ,' ' a„)"». A p,)

V,»»' ). (8)

As indicated above, the second term here contributes
only to magnetic dipole and electric quadrupole scat-
tering. For present purposes we therefore restrict
ourselves to the first term. We note that j may be
replaced by j here, by virtue of Eq. (5).

The commutator is readily evaluated. We obtain

~

~

~ ~

ie 2e y
(Jn» ' j 'A A = Z ~~n3 ()~( )—»

(2k)& (4(0„(oy ),)i
ie if 0 1(E„),pke)+&". k.-' ' (» )'——,~(ll» —kl) .»l), (&)

(2k) ~ (2~.)'
where we have defined

2e y(y —k)
1(E„,pke) =e+

E ' (o, ),'+ie—
(10)
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&AIL~.,A' A']'if=i' '&9--i' 'll ~u, j'j A]IA& SOIL~., J'3 A*]'l0-i' '&{0--i' 'IL~.,J'j A"]I@&

E~i+~d„—k —acn=1

(11)

No approximations have been made in obtaining this result for any multipole other than magnetic dipole or
electric quadrupole. Several diagrams included in this equation are shown as examples in Fig. 1(a).

The Q„ in Eq. (11) may now be evaluated by making use of the relation

The symbol 8 i, k „vanishes unless the state e—1 is a one-meson state, containing a meson of momentum k —p
and charge n. ln the following discussion, we shall be interested in two vectors I; those for the initial and final
photons. For convenience in writing, these two vectors will be denoted l(E ) and I (8 ). Also, L shall be used for
I with the sign of k changed.

The P„ terms of Eq. (3) have then been reduced to

where I'z and Qr are the usual angular momentum and isotopic spin projection operations, defined by

{il~1/2l j) (1/4ir)0 @j) {'i
i +it'2l y&

= (1/4') (38'i 0;0;—),
&-'lQ, l-&=l.'., &- IQ.„I &=-:(»..—..'.).

(13)

Replacing e—1 by e in Eq. (11), separating out the e=O term, and employing Eq. (12), we finally obtain for
the P„ terms of Kq. (3) the result:

(,
0 e-

e' (4irf') t d'p 1» I

2k ( p' ) " (2ir)'(o„.

2e'. p(p —k') ) ( 2e p(p —k) )
)

GD
—k —$Eu

( 2e p(p+k)) ( 2e' p(p+k')q.
e e— e e'—

My+k ) k G)p+k' J ~ 48 t' tPp 1 t' de„sin $(K)

~d„+k . . 3k" (2ir)'cv, " ~'i'(k)

21'*((u„) 1((o„)—ie I'*((u„)X 1((u„) 2L*(id„) L'((o„)—ie L*(~d„.) XI '(a),)X—

%@+ides

k iE. 4ir'e'
I

d'p 1

2k ~ (2ir)'(u„

l
sin(8(lp —k'l))e'"~i' —"'~'

Xl
e'. p

L2(k' —p) 1(cubi k) —ie (k' —p)XI(~y—k')]
M& k~+(d& k 16

sin(b(lp+kl))e"O»+k&i ( e p
IL

—2(k+p) I(, )+i (k+p) XI( „,)]
~v+k I

p+k l
i co~+k+co~+k —ie)

+the complex conjugate of the entire last integral with the interchanges k ~k', e~ e'. (14)

In deriving this result we have dropped the term
proportional to 8 ~., I, ~, 8„~.I, , since this is a
vacuum polarization e6ect and does not give a contri-
bution to the scattering proper. (See Fig. 2.)

The three terms in Eq. (14) arise from the following
sources. The first comes from the e—1=0 term of Eq.
(11) and represents single photoproduction of a meson

p followed by radiative capture of p. The second comes
from the sum of all the other terms, with o"I from each
commutator. The last results from the cross terms
between a e I from one commutator and a 8„ i,. k ~,

from the other. It therefore appears only in the n —1=1

term of the sum. Equation (14) is an exact expression
for the scattering of all multipoles except M1 and E2,
together with some 3fj and E2 scattering. As it stands,
it is an unpleasantly complicated expression, which
simplifies, however, on picking out just the electric
dipole amplitude. This amplitude may be extracted
using the appropriate electric dipole projection oper-
ator.

Denote the electric dipole amplitude of the first term
of Eq. (14) by

(~'/2Mk)LAi(k)e' e+Bi(k)ie e'Xe],
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and of the second and third terms of Eq. (14) by

(e'/2Mk)[A2(k)e' e+B2(k)ie e'Xej.

We first discuss Ai and B~, that is, the 6rst term in
Eq. (14). Physically, this represents the single photo-
production of a meson followed by its radiative capture,
together with the crossed analog of this. Consider the
expression

fief' 1
P(p ~ ke)—= (4n)&I( p ) (2k(o~)&

2e.p(p —k) )
&«

I
e—,I (»)j

We therefore obtain

e' 1 ~ ( ~s(»~,)
A, (k)=-

2Mk s-k~ &(o ' k' —ie)—

e' 1 t ( ~s(~,)
Bi(k)=-

2Mk s.~ ((o '—k' —i»)

(19)

Performing the subtractions to take care of the line

currents, we have the amplitude of interest:

g2

[A i(k) —A i(0)—kA i'(0)j
2Mk

This is the matrix element, in perturbation theory, to
photoproduce a positive meson p from a photon ke.
The electric dipole part of this can be written:

g2

k t ( ~s(~,)
d~„l

k2 —i»J—
(20)

Psi(p+ —ke)=k '*[fso"e+fii(s e—3P '0" pp e)j.
(16)

Here fs and fD are the amplitudes to produce S and D
wave mesons, respectively; they are functions of k' and
co„2. Note that since k/co„, this amplitude is off the
energy shell and hence does not describe a physical
process. For the case k=cv„, we have as the 5- and
D-wave electric dipole photoproduction cross sections

p = ~
=2p

es(~,) =—
I
fs(k=~.) I', e'i~(~.) =—

I
fD(k=~.) I' (17)

It should be noted that the exact prediction of the
static theory for fs and fz is obtained by evaluating
them from Eq. (15).This is again because only I' wave-
mesons can couple to the nucleon in this model.

Using Eqs. (15) and (16), we see that

g2

Ai(k) =-
2Mk

(I fsl'+2I f&I'l
p .'d .I

s'k& (»» '—k' —i» )

f I fsl' —If~I')
Bi(k) = p~u~~n I

2~k s'J E (g„2 k' i» —)—
(18)

(ief) 1
fs=(4 )'I

0 y, I (2(u„)~

Furthermore,

and fr) 0. ——

2e'f'( p q

p' (~,i

A & and 8& could therefore be easily evaluated directly
from this expression. It is of interest, however, to
transform these equations a bit further. Suppose for
the moment that we ignore the meson current. Then

[Bi(k)—Bi(0)—kBi'(0)j
2Mk

Then equations are seen to be identical in form with the
dispersion relations of Gell-Mann and Mathews. ' The
only differences are (i) that they have in principle
(though not in practice) included recoil and (ii) that
they use experimental values for o.s(co„) whereas we,
to be consistent, should use the predictions of the static
theory.

If the meson current is retained, the identification of
our Eqs. (18) with the electric dipole dispersion rela-
tions is not quite so immediate, because the amplitudes

fs and fD in Eq. (18) are off the energy shell. By using
the (by now) standard arguments for deriving dis-
persion relations for a static potential, for example, it
is seen that the oG-energy shell amplitudes in Eq. (18)
can be put on the energy shell. Thus Eqs. (20) hold
with the meson current included as well (with a slight
modification for the presence of D waves).

As stated above, the consistent procedure for us to
follow would be to use the static theory to calculate
0.8 and o.D. This is easily done since perturbation theory
is correct for S- and D-wave mesons. This model agrees
fairly well for low energies; however, it does not do so
well for high energies. A better numerical result wouM
therefore presumably be obtained if we inserted experi-
mental values for 0-q and OD. We have done this.

The remaining part of Eq. (14), namely A2 and B2,
can be evaluated in a similar way by using the electric
dipole projection operators. These terms correspond to
multiple meson production, followed by inverse
multiple meson production. The Anal expressions for
A2 and 82 are quite lengthy and will not be reproduced;
we shall content ourselves with a brief summary of the
numerical results. A2 turns out to be almost independent
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FIG. 2. Vacuum polarization
diagram appearing in Compton
effect.

of k, up to at least k= 2p. Its actual value is about ]..8,
and it varies by less than 1%%uI'I. 82 is not constant, but
it remains very small; its maximum value in the range
0 to 2p is about 0.05. Once the subtractions are per-
formed, then, A2 and 82 will electively have vanished.
This reinforces very strongly the assumption made in
the dispersion-theoretic approach that higher order
intermediate states are unimportant.

Next discuss the term in p*p in Eq. (3). This may
also be evaluated exactly in terms of the meson nucleon
scattering phase shifts. In order to do this, we follow
the technique described by Fubini. ' The desired matrix
element is

The space integral here is laborious but straightfor-
ward. ' The remaining integrals on a and ~' are done
numerically. The result shows A3(k) to be a decreasing
function of k, starting at about eight Thomson ampli-
tudes at k=0, with zero slope.

The final electric dipole scattering comes from the
last term in Kq. (3), representing the scattering due to
a point static 'nucleon. The amplitude resulting from
this is just the usual Thomson term, (e'/2Mk)e' e.

Altogether, the electric dipole scattering amplitude
is given by

(e'/23K) f e' et AI(k)+A 2(k)+A 3(k)+1)
+ie e'XeI BI(k)+82(k)g}. (25)

The foregoing analysis has produced the exact
prediction of the static theory for the electric dipole
scattering amplitude, barring line current effects. We
now turn our attention to magnetic dipole scattering.
Here, unfortunately, no complete calculation seems
possible, due to the fact that the same meson need not
interact with both photons. Thus diagrams such as
those shown in Fig. 3 can contribute in this case. We
are, however, helped by two circumstances. First, the

g2

e' e—"d'«"" "'(AI4*(x)4(x) IA). (21)

where if we, for example, neglect all meson-nucleon
phase shifts except that arising from the 33 states,

f 4 f dcog (sin 533(Qlz~) )
R ( )= +—i'

I
I. (23)

PM 3K K V(K) E M+M„' )
This contains all multipoles. We again wish to select
only the E1 amplitude; denote it by

(e'/2&k)A3(k) e' e.

Note that there is no spin-Rip contribution from this
term. We obtain

r t K'dKK'dK'
A 3(k) =64II'~ I jI (Kx) jI(K'x)

J J J
RI (co„) RI((0„~)

Lj,'(kx)+ j,'(kx) $x'dx. (24)

'5. Fubini, Nuovo cimento 3, 1425 (1956),

Upon expanding the meson Geld into creation and
destruction operators and introducing the quantities
R(~) deFIned by Fubini, ' this may be rewritten as

47re' p d'K t. d'K' It(K)p(K')
1C' 1C" (2~)'" (2~)'~' —~ '

X ~d'x expLi(x+x'+k —k') xg

FIG. 3. Diagrams
in which different
mesons interact with
the photons, thus
contributing only to
M1 and E2 scat-
tering.

magnetic dipole scattering is fairly small at low energies
compared to the electric dipole, so that an accurate
calculation should not be necessary. Second, at high
energies, the entire scattering is dominated by a large
resonance in the magnetic dipole, and the resonance
terms can be calculated exactly.

Magnetic dipole scattering will arise from the fol-
lowing terms. The j, and j„parts of the current con-
tribute only for M1 photons. The second term in Kq.
(7) gives an M1 effect. In addition, these are M1 effects
from the terms already calculated from which we earlier
extracted only the electric dipole contribution. Of all
these sources of 3fj scattering, only that coming from
j„ is important at high energies. This part produces a
huge resonance at about 300 Mev in the lab system,
and completely swamps the other effects. At low
energies, j„does not dominate, but our subtractions
and use of the low-energy theorem should repair most
of the damage produced by using j, alone. Furthermore,
as stated above, the 3f1 scattering is small at low
energies, so approximating it to some extent does no
harm.

G. N. Watson, Besser Functions (Cambridge University Press,
New York, 1944), second edition, chap. XIII.
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We therefore limit ourselves to j„.We have' 9.0

(
(Py Pm i

J. &A
) (4 f)'

8.0—

7.0—

x(4.' '
o kXe

(2k)'
~ 0) P&) 6.0—

Inserting this in P„in Eq. (3), we notice that the result
is identical to the integral equation satis6ed by the
amplitude to scatter a neutral meson of momentum
kXe into one of momentum k'Xe', barring certain
factors. Correcting these factors, the exact result for
the magnitude dipole scattering from j„may be easily
written down. It is, if we retain only the 33 phase shift

sin833(k) e""&+
2f ) kq'

XL2(k'Xe') (kXe) —io (k'Xe') X(kXe)$, (27)

Eo 5.0—
I-

b

b
4.0—

3.0—

2,0—

t.o

0
0 50

I

IOO 150

K„

200 250 300

where q'=k' —p, '. The small phase shifts could also be
included, but their effect is only about 10% even near
k= p, so they will be neglected. We write this amplitude
as

(e'/2Mk) k
—'{k'Xe'.k XeC&(k)

+ie. (k'X e') (kX e) L
——'Cq(k) j}.

Mo= e' e+ip'k '0 (k'Xe"') X(kXe)
2%k

icy [k(kXe)P(kXe)k

2M 1 2k'

k'(k'X e')+ (k'X e')k'
~ e

The low-energy theorem states that the Compton
scattering amplitude, including terms in 1/k and inde-

pendent of k, is given by'

Fio. 4. The total cross section including both E1 and 3II1 effects.

M(ke —& k'e')„,~«,
——(e'/2Mk) f e' eL1+A~(k)

—Ag(0) —kA g'(0)+Ay(k) —A2(0) —kA g'(0)

+A, (k) —A3(0) —kA3'(0))+i+ e'Xel —(kg~/e)

+B~(k) —Bi(0)—kBg'(0)+B2(k) —B2(0)—kB2'(0))
+k—'(k'Xe') (kXe)l C~(k) —C~(0) —kC~'(0))
+ik 'e (k'Xe') X (kXe)l (2Mkp'/e') —-'C (k)

+-,'Cg(0)+-,'kCg'(0) j}. (30)

This includes subtractions to reproduce the line current,
and the insertion of the low-energy theorem. Setting
A2, 82, A3, and C& equal to zero gives us the dispersion
relation of Gell-Mann and Mathews for electric dipole
scattering in the static limit.

III. RESULTS

The differential cross section for the Compton scat-
tering process is readily obtained from Eq. (30), and
may be written as

2k'

—(icy~/2M)e e'Xe, (28)

d(r/do, = (8'/47rM)'I (-,' IA I'yg' lcl'+g
I

BI�'+

2 IDI')

+(l IA I'+l ICI'—

ALIBI'

—-'IDI') cos20

+ (AC*+A*C+BD*+B*D)cos8$, (31)
where p is the total magnetic moment of the nucleon,

and pg its anomalous part. If we pick out of this the E1
and M1 contributions, we are left with just

8 8Pg
e' e— io"e'&(e

235k 2M

+p'k 'o (k'Xe')X(kXe). (29)

Our complete scattering amplitude then takes its final

form;

where A, 8, C, and D are defined as the coefficients of
e' e, is (e'Xe), k '(k'Xe') (kXe), andik 'e (k'Xe')
X (kX e), respectively in Eq. (30). The numerical
evaluation of the various amplitudes making up 3, 8,
C, and D has already been briefly discussed. The total
cross section r obtained by integrating Eq. (31)j is
plotted in Fig. 4 as a function of incident photon energy
in the laboratory system. In Fig. 5 we show the electric
dipole contribution to this cross section (that is, we
set C and D equal to zero). The differential cross section
for a c|:nter-of-mass sc@ttt:ring angle of 90' is plotted
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in Fig. 6, along with experimental data. "At energies
larger than about 1.5 meson rest masses, the cross
section is pretty well dominated by the resonance in
the magnetic dipole j=~ state. At low energies, the
cross section is predominantly electric dipole. The dip
appearing in the cross section is due to a cancellation
between electric dipole scattering from the meson cloud
and the Thomson amplitude. It is seen that the ex-

periments are qualitatively reproduced, but the agree-
ment is not ideal, particularly around 200 Mev. It
should be mentioned that the size of the magnetic
dipole contribution, which is what is responsible for
the larger than desirable values near 200 Mev, is quite

"Yamagata, Auerbach, Bernardini, Fuosofo, Hansen, and
Odian, Bull. Am. Phys. Soc. Ser. II, 1, 350 (1956).

0 50 100 l50
K„

200 250 300

Fro. 6. do/dQ at 90' in the center-of-mass system. Experi-
mental points from reference 10.

sensitive to the choice of scattering phase shifts. Since
these are not too well known in this region, this may
be an explanation of the disagreement.
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