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The examination of the particular solution of the
field equations, given by Case III, shows that its
physical interpretation is completely diGerent depend-
ing on whether (2.5) or (2.6) are used as equations of
motion. Obviously, if a third set of equations of motion
were to be selected, we might have a third independent
physical interpretation of exactly the same solution.
Since the problem of selecting a suitable set of equations
is far from solved, there seems little point to attempting
to give physical interpretations of the remaining solu-
tions found in this paper.

io. CONCLUSION

Ke have, in this paper, discovered a set of rigorous
solutions of Einstein's latest form of unified field theory.
It was hoped that an examination of these solutions
would clarify a great deal of ambiguity that arises in
the identification of fundamental physical quantities.
Instead of this clarification, our solutions have shown
that the unified field theory is not complete, in that
equations giving the motion of test particles have to
be selected.

In regard to equations of motion, we would like to

emphasize that (2.5) and (2.6) are put forth only for
basis of illustration. Actually it is our opinion that
neither set is suitable for a unified field theory. These
equations act to separate the actions of the two fields
and enable us to label the eftects as gravitational or
electromagnetic in character. Thus the present theory
and these particular equations of motion would have
little claim to be a unified theory. Its character would
be closer to a theory of two distinct fields which interact
with each other.

Finally, to conclude this paper we would like to make
a few general remarks about Einstein's present form of
theory. Basing his theory on a nonsymmetric tensor
introduces too many degrees of freedom in the sense
that an infinity of tensor quantities can be defined in
terms of such a tensor. For this reason we believe that
a mathematical type of approach is doomed to failure
and a more physical type of approach should be used.
Certainly an intermediate theory based on a symmetric
tensor and a generalized electromagnetic potential
vector is worth further investigations and might point
the way to a clearer understanding of a theory based on
a nonsymmetric tensor.
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It is shown that for electromagnetic waves the gravitational field of a rotating body acts as an optically
active medium. Thus, the plane of polarization of the wave rotates while it passes through this field. The
effect is small. The angle of rotation due to the gravitational field of the sun is about 10 "radian.

''T is well known that according to the general
~- theory of relativity, gravitational fields inQuence
electromagnetic ones. To be specific, the rays associated
with an electromagnetic wave are not straight but
curved if the wave passes through a gravitational
field, and the frequency of the wave is changed if the
gravitational potentials are different at the points of
emission and observation. ' The two eGects are con-
nected. The change in frequency shows that the phase
of the wave is aGected; but then, in general, so will be
the rays, since they are the orthogonal trajectories of
the surfaces of constant phase. However, an electro-
magnetic wave is not completely characterized by the
rays and its energy; it also has a state of polarization.

«There is no change in the frequency if the gravitational
potentials are the same at these two points, even if the wave has
passed through a region where the potential was diferent. If it
were otherwise we could violate the law of conservation of energy.

Will this polarization be uninfluenced by a gravitational
fields This eGect, if it exists, must be independent of
the two eGects mentioned since they must take place
even if the field is a scalar one and the latter eGect
obviously cannot take place in a scalar field. For this
reason its order of magnitude may also be quite
different. Unfortunately, we shall see it is much less.

In this paper we shall And that if the gravitational
field is caused by rotating bodies the plme of polariza-
tion of the wave can change, in a manner similar to
that which would occur if the wave passed through an
optically active medium whose optical axis coincides
with the axis of rotation of the source. The e8ect seems
to be too small to be observed in practice.

In Sec. II we shall discuss the eGect using essentially
the equivalence principle. This treatment already
gives approximately the size and sign of the effect.

In Sec. III we derive the results using Maxwell's
equations in the presence of gravitational fields.
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The eGects of a gravitational field are completely
contained in the metric tensor, g;~. If two diferent
observers associate the same metric tensor with a
given portion of space-time they will observe the same
gravitational field, and the physical phenomena taking
place in that portion of space-time will be influenced in
the same way by the gravitational field for both
observers. (This is essentially the equivalence principle. )

We shall make use of this fact to show that according
to the general theory of relativity a physical process
occurring in the presence of a gravitational field
generated by a rotating body has locally the same
appearance as if the same process would take place in
the gravitational field of the same body without
rotation, while the frame of reference of the observer
is rotating with a certain angular velocity of much
smaller magnitude and opposite sign from that of
the body.

The metric tensor of a weak gravitational field
generated by a rotating body is given by the following
expressions':

gli = g22 =g33= (1—2$/C ) ~

a«= (1+20/ '),
i (gi4)g24) f—34) = —(2G/c'R') LX R.

R is the radius vector from the center of the mass to
the point of observation; L is the angular momentum
of the body; p is the Newtonian gravitational potential
of the mass, except for a small addition which is essen-
tially the gravitational potential of the mass associated
with the energy of rotation of the body. (Since this
contribution is small and will not inQuence the effect
we seek, we may disregard it.) In the derivation of (1)
one has assumed that the gravitational field is small
and that R is large compared with the linear dimensions
of the body.

The diagonal elements of g;I„- are responsible for the
frequency shift and bending of light rays in the presence
of a gravitational field.

We shall show that y causes a rotation of the plane
of polarization.

It is interesting to observe that while the diagonal
elements depend only on the gravitational potential,
the o8-diagonal elements, collected in y, contain the
angular momentum of the source. The latter does not
appear in the nonrelativistic theory and in this sense
the effects due to the vector y are truly relativistic,
stemming entirely from the fact that the gravitational
field is described by the metric tensor.

If the body were not rotating, y would vanish, but
the diagonal elements would stay the same (except for
the unimportant term mentioned). If we transform

2L. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Press, Cambridge, 1951), p. 328. (Observe
that we use an imaginary time coordinate while the book uses a
real one. )
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FIG. 1. Rotating mass with equivalent coordinate
system and light wave.

now to a frame of reference rotating with angular
velocity 0, the diagonal elements remain essentially
unchanged (g44 receives a small additional term which
can be neglected as long as 0 is small) but y will become
2QX R/c. ' Hence at the point R the metric tensor will
have the same value as for the rotating body if the
directions of Q and L are opposite and GIa&/c'R'=0,
where I is the moment of inertia of the rotating body
and cv the magnitude of its angular velocity. If the
physical process takes place in a portion of space whose
linear dimensions are negligible compared with E, we
can then say that the two physical situations, ro-
tating body and Gxed frame, fixed body and frame
rotating with the above-specified angular velocity, are
equivalent.

Hence, to investigate how the plane of -polarization
will change, it is sufficient to contemplate the following
situation. Let a plane wave travel in the direction of L,
passing the body at a distance E. in the equatorial plane.
We subdivide the path into three sections. In section
(3) the influence of the gravitational field cannot be
felt; in (2) the wave is under the influence of the gravi-
tational field. (See Fig. 1.) In view of the results in
the last section we shall consider, instead of the ro-
tating body (rotating counterclockwise in Fig. 1), a
rotating frame (dotted lines in Fig. 1). The two frames
should coincide as the light wave enters region (2).
Now we pursue the wave as seen from the rotating
frame until it reaches frame (3). We now turn back
the dotted frame to its original position. The path in
this arrangement, l', will be approximately the actual
path (neglecting the bending due to the static field,
and the fact that the angular velocity will vary as
the distance between points along the path and the
origin vary). The electric vector E' of the plane wave
will be turned now with an angle relative to the position
E it would occupy along path l, which is the path in the
absence of rotation. This angle will be approximately

' Reference 2, p. 246.
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(D/c) (GI&o/c'R') since in each second the frame turns
an angle GIcu/c'R', and it takes D/c seconds to pass
through the region. Let us take D E and E to be
about the order of the radius of the body. LThis is
admittedly crude, since Eq. (1) was derived by assuming
that R is much larger than the radius of the body. ) We
then get for our effect 8 y=GI&u/c'R2 GM/c' since
I 3M'. For the sun we take M~2X10" g, ~ 10 '
sec; then Dp~4&&10 " radian, which is a very small

quantity,

BF,g/Bxi+BFi;/Bxi+BFi, i/x;= 0,

B (g 'Fi ) /B x =0
(2)

if no charges and currents are present; g is the absolute
value of the determinant of g;I, .

If the gravitational field is strong, it is somewhat
complicated to discuss the relation between F;~ and
the electric and magnetic field. If, however, the gravita-
tional field is weak, as is always the case in practice,
we can interpret Eq. (2) easily. This we shall now do.
As in (1), the metric tensor is given by

ga =&a+V'a
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Then the form of Eq. (2) is simply

curlE+B B/Bt =0, div B=0,

curlH+B9/Bt =0, divD =0,

with

(5)

B=H+M, D=E+P,
P=eR+(yX B), M=nB —(yXR),
n= —2Q.

(6)

Hence the e8ect of the weak gravitational Geld manifests
itself as if a material medium were present with an
electric and magnetic polarization. Equation (6) gives
the relation between the polarization and the Geld

We shall now show that this effect can also be derived

by using Maxwell's equations in the presence of a
gravitational field.

If the gravitational field is given by the g;g, tensor,
and the 6eld by the Ii;& tensor, the equations which
have to be satisfied are

strength. At first sight Eq. (6) does not appear to be
of the correct form to produce optical rotation. For
it is well known that in an optically active medium the
polarization depends on the 6eld strength and its
derivatives. Thus it seems that if the constitutive
equations are as given by Eq. (6), the gravitational
Geld will not act as an optically active medium; hence,
there will be no rotation of the plane of polarization.
However, we must realize that ordinarily we consider
the optical constants to be actually constants along
the ray, while in our case it is essential that y is zero
at a large distance from the rotating body, while finite
in its neighborhood. Indeed, we shall see that Eq. (6)
de6nes an optically active anisotropic medium, if y
is not a constant.

We expect that the effect will be the largest if the
direction of propagation of the wave coincides with the
axis of rotation of the body. Let us then try to And the
following solutions of (5) and (6). A wave packet
is proceeding in the +s direction which is also the
axis of rotation of the body. Its lateral extent in the
x, y plane should be limited and much smaller than
E. which is the distance in the equatorial plane between
the path of the wave packet and the center of the
rotating mass. These solutions are to be accurate to
first order in y but not more.

The eGects of the gravitational field manifest
themselves through n and y. If only o, were present we
would obtain the bending of light rays, but no change in
the polarization. This, then, does not interest us.
Hence we shall put a=0, and keep only y. In this way
we can investigate the eGect of y unadulterated by
other efFects.

Putting, then, (6) with n=0 into (5), we obtain

curlD —(B grad)y+(y grad) B+BB/Bt=0,

curlB+(D grad)y —(y grad)D —BD/Bt=O, (7)

divD= divB=0.

Let us assume that D= (Di,D2,0), (B=Bi,82,0). Then
the gradient operator will correspond to differentiation
with respect to x and y. (y has no s component either. )
What about the x, y derivatives of y, B, and D? It is
easy to verify that, barring points on and near the
equatorial pla, ne, Bpi/By&&Byi/Bx and By2/Bx))By2/By.
Hence we shall neglect B&i/Bx and B»/By. The remain-
ing derivatives are Bpi/By =a/r' =o, By2/Bx= —a;
a=2G/c', if we take y= (a/r') (y, —x, 0), which corre-
sponds to a rotation along the positive s axis.

If a true plane wave would propagate in the s
direction the x and y derivatives of (Di,D2) and

(Bi,82) would be zero. If the wave has a finite extension
this cannot be strictly true. However, if we confine
our interest to the central part of the wave packet this
will be true to a good degree of approximation. Actually
at the end of the calculation we can verify that with this
solution (y. grad) B, etc., are small compared with the
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other terms in the equation. Taking into account where we have neglected (dl/ds)'and o'. Hence
these approximations, we have satisfied (approximately)
the divergence equations; the other two equations give

l+ = ada) (12)

i((o+dl/ds)d +(a+c )b =0,
—(a+(u)d +i((o+dl/ds)b =0,

i (cv+dl/ds)d++ (o —cu)b~=0,
—(o cv) d~+i (cu+dl—/ds) b+ =0.

(10)

(We have two pairs of homogeneous equations, a pair
for each of the sets (b~, d+) and (b, d ).For a solution
to exist, the determinant of the coeScients in each
pair must vanish. This results in

dL/ds+o =0 for the minus pair,

dl~/ds a=0 for the plu—s pair,

AD—2/Bs aB—g+ Bg=0) BB2—/Bs+ o D2 Dg —=0,

(3Dg/Bs+aBg+Bg 0, ——cog/Bs —aDg Dg=—0, (8)

where the dot indicates partial differentiation with

respect to t. Let us introduce now Di+iD2=D+e '"',
D&—iD2= D e ', and the similarly constructed 8,
8+. We obtain

dD /ds+(a+(v)B =0, dD+/ds+(o(u)B+. =.0—,

dB /ds (a+co)D—=0, dB+/ds (a ta)D—~—=O. (9)

If 0. were independent of s the solutions would be of
the form D =d e' *, where d is a constant (s has the
coefficient cu since c=1). If a is not a constant but a
slowly varying function of s, we can attempt a solution

by writing D =d e' '+"&'), where the derivatives of
l(s) are small. If we do this, we get the equations

We can now easily verify that with this l, (y grad)D,
etc., are small compared with the other terms in the
equation. $

The expressions (12) solve our problem. We see that
the two circularly polarized components of the plane
wave, the +, —vectors, travel with different velocities,
and this fact gives rise as usual to a rotation of the
plane of polarization. Since / would be zero if y is a
constant, the eGect depends on y being a function of
x and y, just as we have said in the discussion of Eq. (6) .

We obtain, then,

D~(s) =de'&- "cosl„—(s),
D (s) =de'&"' "" sinl+(s).

(13)

From this we see that if l+(s) is positive, the D vector is
rotating from the x axis toward the y axis as the wave
is proceeding in the s direction. This is a rotation along
the positive s axis. Since we have taken y to correspond
to a rotation of the body along the positive s direction,
we see that the plane of polarization rotates in the
same sense as the body does.

Moreover, the total angle of rotation is given by
6p=2GI/c'R' if the ray passes from minus infinity to
plus infinity along a path which is parallel to the axis of
rotation and intersects the equatorial plane at a
distance E from the center of the rotating body.

Both the sense and the magnitude are the same as
the results obtained in Sec. II by more qualitative
considerations.


