## Associated Production of $\Sigma^0$ and $\theta_2^0$ ; Mass of the $\Sigma^{0*}$

F. EISLER, R. PLANO, N. SAMIOS, AND J. STEINBERGER, Columbia University, Irvington-on-Hudson, New York and Brookhaven National Laboratory, Upton, New York

ANT

M. SCHWARTZ, Brookhaven National Laboratory, Upton, New York (Received December 3, 1957)

An event in which  $\theta_2^0$  and  $\Sigma^0$  production and decay are both observed, is described. This event yields a mass value for the  $\Sigma^0$  and demonstrates the associated production of the  $\theta_2^{0}$ . Additional events yielding mass values of the  $\Sigma^0$  are reported.

URING the course of studying the production and decay of strange particles in a liquid hydrogen bubble chamber, we have observed a most unusual event. This event, an example of the reaction  $\pi^- + p \rightarrow p$  $\Sigma^0 + \theta^0$ , has two features of exceptional interest.

(A) The  $\theta^0$  produced in this reaction is observed to decay via the *long-lived*  $\theta_2^0$  decay mode first predicted by Pais and Gell-Mann.<sup>1</sup>

(B) The  $\Sigma^0$  undergoes the decay  $\Lambda^0 + e^+ + e^-$ , permitting an accurate measurement of the mass of the  $\Sigma^0$  hyperon.

The above event occurred in a chamber 12 in. in diameter and 6 in. deep, filled with liquid hydrogen at a density of  $0.06 \text{ g/cm}^3$ . The chamber was in a magnetic field of 13.1 kilogauss. The exposure was to a 950-Mev  $\pi^-$  beam at the Brookhaven National Laboratory Cosmotron.

Figure 1 is a photograph of the event. A  $\pi^-$  meson interacts at point A. Leaving the point of interaction are an electron and positron. Originating at point Band pointing to A is a V particle which is identified as a  $\Lambda^0$  decay. Reconstruction in space of the  $\Sigma^0$  decay permits us to predict the vector momentum of the  $\theta^0$ which was produced in the primary reaction. Upon examining the projected line of flight of the  $\theta^0$ , we do indeed find a V at C. Both prongs of the V are on one

TABLE I. Comparison of measured angles with angles expected for associated production and decay of  $\Sigma^0$  and  $\theta_2^0$ .

| Angle                       | Measured angle<br>(degrees) | Expected angles<br>(degrees) |
|-----------------------------|-----------------------------|------------------------------|
| $\pi_{in}^{-}-\theta^{0}$   | $31.0 \pm 1.0$              | 30.8                         |
| $\pi_{in}^{-} - \Lambda^0$  | $5.2 \pm 1.0^{\rm b}$       | 5.4                          |
| $\pi_{in}^{-}-e^{+}$        | $54.7 \pm 1.5$              | 54.7                         |
| $\pi_{in}^{-}-e^{-}$        | $61.5 \pm 1.0$              | 61.5                         |
| $\Sigma^0$ (projected)      | $9.0 \pm 1.0$               | 9.2                          |
| $\pi^ p$                    | $62.5 \pm 4$                | 61.5                         |
| $\Lambda^0 - \dot{p}$       | $6.9 \pm 0.4^{\circ}$       | 6.5                          |
| $\Lambda^0 - \pi^-$         | $55.6 \pm 3.0^{\circ}$      | 55.0                         |
| $\overline{\theta^0} - L^+$ | $54.5 \pm 1.0$              |                              |
| $\theta^{0}-L^{-}$          | $29.6 \pm 1.5$              |                              |
| $L^{+}-L^{-}$               | $61.3 \pm 1.5$              |                              |

\* Chosen so as to make consistent fit with known beam momentum of 1090 Mev/c.

• From measurements on  $\pi^-$  and p. • Determined from total opening angle and measured moments.

side of the direction of flight so that it is clear that this V cannot arise from a two-particle decay. Furthermore, the elapsed time from production to decay is  $10^{-9}$ second in the  $\theta^0$  rest frame. This is *ten* times the lifetime of the ordinary  $\theta_1^0$ , which decays into two pions. Measurement of the decay angles and momenta establish the decay mode as being consistent with either

 $\theta_2^0 \rightarrow \pi^{\pm} + \mu^{\mp} + \nu$ , or  $\theta_2^0 \rightarrow \pi^{\pm} + e^{\mp} + \nu$ .

Previously reported experiments<sup>2,3</sup> have established the existence of a neutral particle with a mass approximating that of the  $\theta_1^0$ , with three-particle decay modes including those mentioned above, and a lifetime of  $\sim 10^{-7}$  second. In these aspects this particle fits the picture of the  $\theta_2^0$  drawn by Pais and Gell-Mann.<sup>1</sup> Furthermore, it has been shown<sup>4</sup> that approximately one-half of the  $\theta^{0}$ 's produced in association with conventional hyperons can reasonably be accounted for only if one assumes a long-lived decay mode with a lifetime  $>3\times10^{-8}$  second. The event described herein is the first reported case where this long-lived decay mode is actually observed in association with a hyperon. As such, it provides one of the last remaining links in the verification of the theory of Pais and Gell-Mann. This is the only three-body  $\theta^0$  decay observed by us. In the same photographs we have seen  $450 \Lambda^0$  production events, with an average potential  $\theta^0$  decay time in the chamber of  $5.5 \times 10^{-10}$  sec in the  $\theta^0$  rest system. If onehalf of the  $\theta^{0}$ 's decay in the three-particle modes with long lifetime  $(\theta_2^0)$ , our single observation corresponds

TABLE II. Comparison of measured and expected momenta of decay products.

| Track                | Measured momentum<br>(Mev/c) | Expected momentum<br>(Mev/c) |
|----------------------|------------------------------|------------------------------|
| Þ                    | $717 \pm 30$                 | 740                          |
| π-                   | $105 \pm 10$                 | 103                          |
| e <sup></sup>        | $95.4 \pm 6.0$               | 95.4                         |
| <i>e</i> <sup></sup> | $8.6 \pm 0.5$                | 8.6                          |
| $L^+$                | $195 \pm 10$                 |                              |
| $L^{-}$              | $80 \pm 12$                  | • • •                        |
|                      |                              |                              |

<sup>2</sup> Lande, Booth, Impeduglia, Lederman, and Chinowsky, Phys. Rev. 103, 1901 (1956). <sup>3</sup> Fry, Schneps, and Swami, Phys. Rev. 103, 1904 (1956). <sup>4</sup> Eisler, Plano, Samios, Schwartz, and Steinberger, Nuovo cimento 5, 1700 (1957).

<sup>\*</sup> This research is supported by the U. S. Atomic Energy Commission and the Office of Naval Research. <sup>1</sup> A. Pais and M. Gell-Mann, Phys. Rev. **97**, 1387 (1955).



FIG. 1.  $\Sigma^0$  and  $\theta_2^0$  associated production and decay observed in a liquid hydrogen bubble chamber.

to a lifetime of  $225 \times 5.5 \times 10^{-10} = 1.2 \times 10^{-7}$  sec. This is quite in line with the lifetime of  $(0.8 \pm 0.4) \times 10^{-7}$  sec reported by Bardon *et al.*<sup>5</sup>

Details of the angle and momentum measurements of the complete event are given in Tables I and II. The  $\pi^-$  from the  $\Lambda^0$  decays in flight at point D and its secondary  $\mu^-$  stops in the glass. The electron from the  $\mu^-$  decay re-enters the chamber. The momentum of the  $\pi^-$  is established from the range and emission angle of the secondary  $\mu^-$ . All other momenta are obtained from curvature measurements.

Using the momenta of the  $\Lambda^0$ ,  $e^+$ , and  $e^-$  and the angles between each of them and the projected  $\Sigma^0$ , we compute the Q of the reaction  $\Sigma^0 \rightarrow \Lambda^0 + \gamma$ . The  $\Lambda^0$  momentum used was adjusted to provide the best fit to the known incoming-beam momentum (1090±15 Mev/c). We obtain

$$Q = 80 \pm 5$$
 Mev.

The error is due primarily to multiple scattering and secondarily to error in dip-angle measurement on the electron tracks.

TABLE III. Tabulation of  $\Sigma^0$  decay Q values.

| Event | Q (Mev)     |
|-------|-------------|
| 1     | $70 \pm 10$ |
| 2     | $75 \pm 12$ |
| 3     | $82 \pm 15$ |
| 4     | $72 \pm 12$ |
| 5     | $82 \pm 13$ |
| 6     | $73 \pm 16$ |
| 7     | $76 \pm 17$ |

<sup>5</sup> Bardon, Chinowsky, Fuchs, Lande, and Lederman, Bull. Am. Phys. Soc. Ser. II, **3**, 24 (1958). In addition to the above, we have observed seven other events each giving a Q value for the  $\Sigma^0$  decay. The latter events were observed in a propane chamber, 12 in. in diameter and 8 in. deep in a magnetic field of 13.4 kilogauss. The measured Q values are listed in Table III. Each of these events was characterized by an observed decay of the  $\Lambda^0$  and the conversion in the liquid of the  $\gamma$ . The first three events have been described previously.<sup>6</sup> In the case of the last four events, the Q is obtained by making use of the  $\Lambda^0$  and the  $\gamma$ .

Combining all events, we obtain

$$Q = 77.4 \pm 3.5$$
 Mev.

This Q value may be combined with the measurements on the  $\Sigma^- - \Sigma^0$  mass difference.<sup>7</sup> The resulting Q value is  $Q = 75.1_{-2}^{+1.2}$  Mev. This gives a mass of the  $\Sigma^0$ :  $M = 1190.3_{-2}^{+1.2}$  Mev<sup>†</sup> using the latest value of the  $\Lambda^0$ mass = 1115.2 Mev.<sup>8</sup> For comparison, the most recent values of the  $\Sigma^+$  and  $\Sigma^-$  masses are:

$$M_{\Sigma^+} = 1189.5 \pm 0.3$$
 Mev,<sup>9</sup>

$$M_{\Sigma} = 1196.5 \pm 0.4 \text{ Mev.}^9$$

<sup>6</sup> Plano, Samios, Schwartz, and Steinberger, Nuovo cimento 5, 216 (1957).

<sup>7</sup> Alvarez, Bradner, Falk-Vairant, Gow, Rosenfeld, and Tripp, University of California Radiation Laboratory Report UCRL-3775 (unpublished).

<sup>8</sup> W. Barkas, Venice Conference on Elementary Particles, September, 1957 (to be published). <sup>9</sup> R. S. White, Proceedings of the Seventh Annual Rochester

<sup>9</sup> R. S. White, Proceedings of the Seventh Annual Rochester Conference on High-Energy Nuclear Physics, April, 1957 (Interscience Publishers, Inc., New York, 1957), p. VIII-31. <sup>†</sup> Note added in proof.—We would like to thank Professor A.

 $\dagger$  Note added in proof.—We would like to thank Professor A. Rosenfeld for pointing out an error in these values as given in our preprint.



FIG. 1.  $\Sigma^0$  and  $\theta_{2^0}$  associated production and decay observed in a liquid hydrogen bubble chamber.