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Calculation of Electron-Electron Scattering
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The matrix elements involved in the calculation of electron-electron and positron-electron scattering
are written down explicitly for a complete set of initial and final spin states of the particles. This permits
the evaluation of the cross section for any polarization combination desired, with a minimum of labor.

~ ~WO papers have recently appeared in which the
polarization-sensitive parts of the electron-elec-

tron and the positron-electron scattering cross sections
are calculated. ' ' In both these calculations the spin-sum

method is used. This method is not simpler than the
direct calculation of matrix elements when all polariza-
tions are summed over' and has the feature of becoming
more complicated the greater the specialization of
initial and final states, as more projection operators
must be used. All variables summed over are irre-

trievably lost.
This note provides a set of matrix elements from

which any electron-electron or positron-electron scat-
tering cross section may be calculated, complete with

instructions for such calculations.
We deal with an "initial" state containing two elec-

trons described by spinors u(p&) and u(p, ). u(p, ) is a

TABLE I. Values of 4P'M for electron-electron scattering.

3 component of spin
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positive-energy spinor describing the target electron.
u(ps) is of positive energy for the electron-electron
scattering problem, where it represents the inc~deaf
electron, and is of negative energy for the positron-
electron problem where it represents the scattered
positron. Similarly u(ps) is of positive energy and u(p4)
is of positive or negative energy, so that the "final"
state is specified by these two spinors. The matrix
elements of interest have the form

~=K. (u(ps)v. u(p ))(&(P4)~.u(ps))
p,~1 (Pt —Ps)'

—(&(Ps)v.u(ps))(&(P4)v.u(pt)), (&)
(P2 —ps)'-

3f depends on the four spins associated with the
momenta pr p4.

To calculate these matrix elements it is convenient
to use the center-of-momentum reference system and to
let the momenta of the incident particles lie along the
3 axis, the momenta of the scattered particles lie in the
23 plane. Then we may write, for the electron-electron
problem,

u(pr) =exp( —~sx/2) ul,

u(ps) =exp(ns7t/2)u, ,

u(ps) =exp( s~&0/2—) exp( —ns7(/2)us,

u(p4) =exp( —io.&8/2) exp(usX/2)u4,

+ +
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—1+——t an2 (8/2)
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where cosh7t=E/nz, E being the energy of a particie in
the center-of-momentum system, and 0 is the scattering
angle in this system. The spinors u&—N4 then represent
particles at rest. We choose to make them eigenvectors
of a3 which is diagonal in the commonest representation
of the Dirac matrices. '

In the positron-electron problem the operators occur-
ing in the expressions for u(p, ) and u(p4) are inter-
changed. Thus in the electron-electron problem the
spins of ur, us being + means that the incident eiectrons

'We use the normalization u„y4u, =b„ for our rest spinors. If
rq are the Pauli matrices (k = 1, 2, 3), then

~ A. Sincer, Phys. Rev. 107, 1434 (1957).
' G. W. Ford and C. J. Mullin, Phys. Rev. 108, 477 (1957).
' See comment by H. A. Kramers, Quantum Mechanics (North

Holland Publishing Company, Amsterdam, 1957), p. 479.
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have their spins in the +3 direction, and us, u4 being
+ means that the scattered electrons have their spins
along the + direction of an axis rotated through 8
from the +3 direction. In the positron-electron problem
the spins of ui, u4 being + means that the incident
electron has its spin in the +3 direction and the incident
positron has its spin in the —3 direction, and similarly
for N3, N2 relative to the inclined axis.

The quantities to be calculated now have the form

tts exp(nsx/2) exp(io r8/2)y„exp( —mrs)t/2)ui. (3)

The calculations are all made with the spin of the
incident particle travelling in the +3 direction positive.
The matrix elements are invariant under a reversal of
all spins, so this is sufhcient. Table I contains the results
for electron-electron scattering; Table II, those for
positron-electron scattering. The spins tabulated in
Table II are those for the electron (1 and 3) and for
the positroir (4 and 2), not for the hole which represents
the positron.

As an example of the use of these tables, we reproduce
Ford and Mullin's cross section for the scattering of a
longitudinally polarized electron by an electron whose
spin is in the direction defined by polar angles P, P.
To do this we must express the spinor u1', describing
the target spin, as a superposition of the two spin states
represented in Table I. We obtain N1' from u+ by two
rotations;

TAsx,z II. Values of 4p 3E for positron-electron scattering.

3 component of
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1 3 4 2 4p2M
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with

u, '= exp( io sp/—2) exp( io gP/—2)u+
=au++bu,

a= exp( i p/2)—cos(it/2),
b= i exp(iy—/2) sin(f/2).

plying by the factor

ro'(&+1)

2p4P4

The cross section is now obtained by taking the linear which contains all necessary factors m, densities of
combinations (aXelement in row 1+bXelement in states, etc. rs is the classical electron radius. The first
row 5}, etc. , squaring absolutely, adding, and multi- par't of the procedure leads to
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Equations (7) of reference 2. Note that a factor 4 is omitted before sin'8 in the second term of this equation. The factor is
correct in the previous equation, Eq. (6).
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This does indeed lead to Ford and Mullin's result. The
quantities p and p used above refer to the laboratory
frame, while Ford and Mullin's refer to the center-of-
momentum frame. The connection is

Pig,b=2+ c.m. —1.
All angles are center-of-momentum angles.

In a similar way the cross section for any combination
of incident and scattered polarized electrons or posi-

trons can be constructed. I'he depolarization of elec-
trons or positrons scattered from polarized electrons
may be found, a result not obtainable from the spin-sum
calculations published, as can the scattering of trans-
versely polarized electrons. So many possible combina-
tions occur that it is best to await the need for a cross
section before carrying out the combination of the
parts, rather than make all possible combinations now.
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An integral representation is found for the matrix element, between given states, of the commutator of two
field operators. The representation makes use of the information derivable from the local commutativity of
the operators and from the mass spectrum of the fields. The representation was discovered by Jost and
Lehmann and proved by them for the case of two fields of equal mass. It is here extended to the case of
unequal masses.

The mathematical basis of this work is the fact that every function f(g) of a four-vector q, with p, Fourjer
trarisform f(x) which vanishes for space like x, has a unique extension which is a solution of the wave
equation in six dimensions.

I. STATEMENT OF THE PROBLEM

''OST and Lehmann' have introduced an integral
representation for matrix elements of causal commu-

tators. Their representation is a powerful tool for in-
vestigating the analytic behavior of scattering ampli-
tudes as a function of all relevant momentum and
energy variables. In particular, Lehmann' was able to
obtain a proof of dispersion relations, shorter and
simpler than the original proof of Bogolyubov. ' Un-
fortunately, the Jost-Lehmann analysis applied only to
the commutator of two fields of equal mass. The
Lehmann proof of dispersion relations was restricted to
the scattering of equal-mass particles, and for this
reason remained unpublished. In this paper we extend
the integral representation to the case of unequal masses.

A more important task for the future is to explore
systematically the analytic consequences of causality,
not restricting attention to the special type of informa-
tion which can be embodied in dispersion relations.
Progress in this direction has already been made by
Kallen and Wightman, 4 using only the causality condi-

& R. Jost and H. Lehmann, Nuovo cimento 5, 1598 (1957).
4 H. Lehmann (private communication). 1Voie added ir4 proof.

Lehmann has used the results of this paper to prove that certain
scattering amplitudes are analytic functions of the momentum
transfer (to be published in Nuovo cimento).

3 Bogolyubov, Medvedev, and Polivanov, Uspekhi Math. Nauk
(to be published).

G. Kalldn and A. S. Wightman (private communication to W.
Pauli). See report by G. Kallen in Proceedings of Seventh Annual
Rochester Conference on High-Energy Nuclear Physics, 1957 (Inter-
science Publishers, ¹wYork, 1957, Session IV, p. 17.

f(x)=ig' ~ILA(px) ~(—px)3IQ P» (3)

or of its Fourier transform

f(q) = d4x exp( iq x)f(x—)
(2pr)4 &

Here IP,4r) and IQ,p) are any two states specified by the
energy-momentum vectors I' and Q a,nd by other
quantum numbers n and p.

By Eq. (1), the function f in x space has the property

f(x) =0 for x'&0. (5)

From Eqs. (3) and (4), the function f in q space also has

tion and assuming nothing about particle masses. We
hope that the integral representations here established
may make it possible to extend the Kallen-Wightman
analysis so as to include detailed information about the
mass spectrum.

We are concerned with two fields A(x) and B(x),
obeying the causality principle

LA (x),B(x')j=0 for (x—x')'&0. (1)

Here x and x' are 4-vectors, and the scalar product is
de6ned by

x' p = xpgp —x ' y =xpgp —x&gr —xpgp —xpgp. (2)

The problem is to determine the analytic form of the
function


