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Connection between Spin and Statistics
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The proof of the connection between spin and statistics for interacting fields is divided into two parts:
commutation relations involving components of a single field, and commutation relations between diA'erent
fields. The first problem is treated in this paper: the connection between spin and statistics is shown to
follow from a few simple postulates. The explicit discussion is limited to the cases of spin zero and of
spin one-half.

1. INTRODUCTION (or actually the validity of TC and P separately) and
inferred the connection between spin and statistics.
Earlier work by Belinfante and Pauli' had shown that
the connection between spin and statistics can be
deduced for charged fields if one postulates invariance
under C for their interaction with the electromagnetic
field; this interaction is in any case invariant under T
and P. The recent very satisfactory proof of the TCP
theorem by j'ostr still has to use the usual connection
between spin and statistics; the commutation character
not only of a 6eld with itself but also that between
different 6elds has to be assumed.

This situation is rather unsatisfactory; the theorem
of the connection between spin and statistics and the
TCP theorem support each other mutually but no
independent proof of either of these theorems has been
given. It is not clear whether Pauli's arguments' do not
lose their strength when interactions are present (and
this is, of course, the only case when the TCP theorem
is a nontrivial statement). In the present paper a new
derivation of the connection between spin and statistics
for operators of the same 6eld will be given. The proof
is valid in the presence of interactions and does not
postulate the TCP theorem or an equivalent of it. We
analyze fields which either are Hermitian or, if they
are non-nermitian, admit a gauge transformation of
the 6rst kind:

HE theorem on the connection between spin and
statistics states that particles with integral spin

obey Bose statistics and particles with half-integral
spin obey Fermi statistics. Fields corresponding to
particles of integral spin are to be quantized with minus
commutation relations whereas plus commutation
(anticommutation) relations have to be employed in
the quantization of fields with half-integral spin. The
connection between spin and statistics was proved by
Pauli' for noninteracting fields on the basis of a few
simple postulates. ' In the presence of interaction the
theorem splits into two parts:

Commtttatiort relatiorts betweert two operators of the
same geld.—Minus commutation relations for fields of
integral spin (Bose fields), plus commutation relations
for fields of half-integral spin (Fermi fields).

Commutatiort relations betweert diferent ftelds Minus. —
commutation relations between different Bose 6elds
and between one Bose and one Fermi 6eld, plus com-
mutation relations between diGerent Fermi fields. We
shall refer to this choice of commutation relations
between different fields as the "normal case."

There is a close relation between the TCP theorem'
and the connection between spin and statistics. The
derivations and discussions by Luders, Sell, and Pauli
use, among other postulates, the usual connection
between spin and statistics; the commutation relations
of a field with itself are taken for granted, those be-
tween different fields are explicitly postulated. 4 On the
other hand, Schwinger' postulated the TCP theorem

qo(x)~iO(x)e', (p*(x)~q *(x)e '
;

similarly for spinor fields, etc. This gauge transforma-
tion may, of course, involve simultaneously several
fields. The operator which generates it may represent
the electric charge or other conserved quantities like
baryon number, strangeness (in strong and electro-
magnetic interactions), or lepton charge (if this
quantity is conserved). We believe that two Hermitian
fields can be reasonably combined into a single non-
Hermitian field only under the assumption of some
such gauge invariance. ' Otherwise such a combination

' W. Pauli, Phys. Rev. 58, 716 (1940).
2 The postulates will be listed at the places where they are

needed for our own analysis of the problem.' G. Luders, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
28, No. 5 (1954) and Ann. phys. 2, 1 (1957); J. S. Bell, Proc.
Roy. Soc. (London) A231, 79 (1955); W. Pauli, in Niets Bohr aud
the Development of Physics, edited by W. Pauli (McGraw-Hill
Book Company, Inc. , New York, and Pergamon Press, Inc. ,
London, 1955).

'Actually only anticommutativity of different spinor fields
was postulated. Apparently none of the authors was at that time
aware of the fact that an equally nontrivial problem is given b
the commutation relations between two Bose fields or one Bos
and one Fermi 6eld. A discussion of this point is given at the en
of this section.' J. Schwinger, Phys. Rev. 82, 914 (1951);91, 713 (1953).

y ' F. J. Belinfante, Physica 6, 870 (1939); W. Pauli and F. J.
e Belinfante, Physica 7, 177 (1940).
d 7 R. Jost, Helv. Phys. Acta 30, 409 (195/).' To derive the equality of masses (and lifetimes) of particles

and antiparticles from C invariance or from the TCP theorem
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is arti6cial and one actually has two diGerent Hermitian
fields.

The derivation will be given for spin zero and one-
half. The extension to spin one is evident. Higher spins
will not be treated. The postulates on which the deriva-
tion is based will be given at those places where they
are needed for the proof. Formal complications arise in
the presence of a quantized electromagnetic 6eld.
Special care is needed to apply our arguments to that
case; the discussion will not be given here.

Xo detailed analysis appears to have been given so
far of the problem of the commutation relations
between diferent 6elds. It has been known for some
time that the above-speci6ed normal case is not always
the only possible one; interactions can be constructed
for which the character of the commutation relations
between diGerent fields is to a certain extent arbitrary.
A trivial example is that of noninteracting fields; non-
trivial cases have been given by various authors. ' The
problem will be discussed in general in a forthcoming
paper by one of the authors (G. L.), under the assurnp-
tion that the theory is specified by a local interaction
and that the resulting di6erential equations are also
local. Here we shall only summarize his results. It can
first be shown that the above-mentioned normal case
provides a possible choice of commutation relations.
In the presence of a certain invariance property of the
theory, however, other choices are also possible. They
can all be obtained from the normal case by means of
one or more generalized Klein transformations. " This
freedom in the choice of the commutation relations
can be shown not to acct the validity of the TCI'
theorem. It is in fact possible to satisfy this theorem
in all cases by a simple rede6nition of the TCI'
transformation. "

2. HERMITIAN SPIN-ZERO FIELD

Let y(x) be a Hermitian spin-zero field in the
Heisenberg representation.

We first postulate:

I. The theory is ittvarialt with respect to the proper
inhomogetteous Lorerttz group (which includes
four-dimensional translations but does not
contain any reflections).

It follows that the expectation value (y(x) q (y))s with
respect to the physical vacuum is an invariant function

one also has to postulate the existence of gauge invariance, i.e., of
a generalized charge operator. This requirement is, however,
usually not stated explicitly.

9 K. Nishijima, Progr. Theoret. Phys. Japan 5, 187 (1950);
S. Oneda and H. Umezawa, Progr. Theoret. Phys. Japan 9, 685
(1953); T. Kinoshita, Phys. Rev. 96, 199 (1954); Umezawa,
Podolanski, and Oneda, Proc. Phys. Soc. (London) A68, 503
(1955); R. Spitzer, Phys. Rev. 105, 1919 (1957).

"O. Klein, J. phys. 9, 1 (1938).
"The above results throw some light on questions raised in a

recent paper by T. Kinoshita and A. Sirlin LPhys. Rev. 108, 844
(1957), footnote 227.

of the diGerence four-vector

(Lp(x), &p(y) j)s=0 ($ spacelike).

We now postulate:

(4)

II. Two operators of the same field at points separated

by a spacelihe interval either commute or alti
commute (Locality) ."

Relying upon this postulate, we do not discuss the
problem as to whether quite different types of relations
between 6eld operators might be possible. We therefore
have only to show that the assumption

(f 9 (x), q (y)))s=0 (g spacelike)

leads to contradictions with postulates which shall be
given later. From Eqs. (4) and (5) one concludes that

(p(x) p(y))s=0 ($ spacelike).

If further one postulates:

III. The vacuum is the'state of lowest ertergy,

(6)

one 6nds by the method of analytic continuation as
used by Hall and Wightman" that Eq. (6) holds, not
only for $ spacelike but for all $.We assume as usual that

IV. The metric of the IIilbert space is positive defilite

This postulate allows one to conclude from Eq. (6) that

&(*)12=0, (7)

where Q is the physical vacuum. We finally postulate:

V. The vacuum is rtot iderttically artnihitated by a field.

Since Eq. (7) is in contradiction with this postulate, the
assumption (5) is untenable.

Postulate V is probably less familiar than the others
and may require a word of explanation. If the field

qr(x) represents a stable particle, so that incoming and
outgoing 6elds can be associated with y(x), Eq. (7)
certainly cannot hold since there are known to exist

's More explicit expressions for f(p) under the additional
assumption of Postulate III were given by G. Kallen, Helv. Phys.
Acta 25, 417 (1952); H. Lehmann, Nuovo cimento 11, 342
(1954);M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).

"We do not wish to formulate at this point the much weaker
requirement of locality which is needed in Jost's proof of the
TCI' theorem.

'4 D. Hall and A. S. Wightman, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 31, No. 5 (1957).

4
One then has

(V (*)V (y))s=f(E)

where f(g), for spacelike $, depends only upon the
invariant („g„butfor timelike $ depends also upon
whether this vector points into the future or past light
cone." Use is made of the special consequence of
Postulate I that the physical vacuum is a Lorentz-
invariant (and nondegenerate) state. One concludes
from Eq. (3) that
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nonvanishing matrix elements of q(x) between the
vacuum and the one-particle states. But even in a more
general case it seems unlikely that a Hilbert space can
be constructed if Postulate V is not satisfied.

The whole analysis holds in particular in the absence
of interactions, the case originally studied by Pauli .
His deduction rests, for integral spin, on Postulate I
and Postulate II. Postulate IV is tacitly assumed; the
role of this postulate was studied later by the same
author. "Postulate V is evident for free fields because
of the well-known procedure of constructing the
Hilbert space in this case. Postulate III, on the other
hand, does not seem to play any role in Pauli's proof
for the case of integral spin.

1i.(x) =Pp(x)Cp, (8)

where C is the 4-by-4 charge conjugation matrix. ' We
shall analyze the vacuum expectation value

(9)

This expression has the properties of positive definite-
ness which will be needed below. In the following, we
write

3. HERMITIAN SPIm OmE-HALF FIELD

Let the spin one-half 6eld it (x) be Hermitian, or
rather be a Majorana field,

Postulate IV, that
y.(x)n=0, (16)

which is in contradiction with Postulate U.
The case of no interaction is again a specialization.

Whereas our analysis proceeds along parallel lines for
spin zero and spin one-half, Pauli's proof proceeds
rather differently in the two cases. For half-integral
spin his deduction rests very heavily on Postulate III.
In our own analysis, on the other hand, this postulate
does not play a more important role here than it did in
the case of integral spin. It should also be pointed out
that Pauli's argument requires a modification in the
case of Majorana fields, since the c-number expression
for the energy vanishes identically in that case.

4. NON-HERMITIAN FIELDS

As explained in the Introduction, we regard non-
Hermitian fields as reasonable concepts only in the
presence of some gauge invariance, i.e., if the theory is,
for spin-zero fields, invariant under the transformation
(1). From this postulate of gauge invariance it follows
that

( (*) (y)&o=( '(*) *(y))o=0 (17)

Since our technique is restricted to vacuum expectation
values of the products of two field operators we can,
using Postulate II, only try to show that the assumption

Cab+48p 'ga, p

The matrix q is symmetric:

(10)
({p*(x),p(y) }&s=0 ($ spacelike) (18)

leads to contradictions with our postulates. Applying
Postulate I, one concludes from Eq. (18) that

Since expression (9) is the fourth component of a four-
vector, it follows from Postulate I that

v-p(P-(x)A(y) &o= $4g(8 (12)

"W. Pauli, Progr. Theoret. Phys. Japan 5, 526 (1950). Our
assumption that p(x) is a Hermitian field does, of course, not
imply Postulate IV. If use were made of a nonpositive-definite
scalar product, Hermiticity would be de6ned with respect to
this scalar product (self-adjointness in Pauli s termino1ogy).

j Various de6nitions of this matrix occur in the literature. We
use the one given by %. Pauli in reference 3. Summation over
repeated spinor indices is to be understood in our formulas.

where g(() is an invariant function of the difference
vector $. Making use also of Eq. (11), one sees that

rl p((it (x),fp(y)))s ——0 ($ spacelike). (13)

Because of Postulate II we have only to show that the
assumption

ri p(g (x),fp(y)]&o=0 ($ spacelike) (14)

leads to contradictions with the other postulates. In
analogy to Eq. (6), one finds that in this case

~-p(P-(x)A(y) &o=0 (8 sp«e»ke) (13)

From Postulate III it follows that Eq. (15) holds with-
out restriction on p. Remembering (9), one finds, from

y(x)Q= y*(x)n=0, (21)

which is in contradiction with Postulate U.
The conclusions for spin one-half run quite parallel.

Since, however, some formal care is needed we reproduce
the arguments in detail. The analog of Eq. (17) is

(4-(x)A(y) &s= (0-(x)A(y) )o=o.

Equation (18) is to be replaced by

(22)

(L4'-*(*)4'-(y) 3&o= 0 (6 spaceiike) (23)

This equation is to be disproved. Since the left-hand
side transforms like the fourth component of a vector

(v*(x) p(y)+p(x) q*(y))s ——0 ($ spacelike); (19)

compare the derivation of Eq. (4) from Eq. (3). From
the Postulate of Gauge Inriarialce D.e., Eq. (17)j, one
then obtains

((.(*)~v*( ))(.(y)+ v*(y))&.=0
($ spacelike); (20)

the equation is valid both with two plus signs and
with two minus signs. Postulate III makes this
equation generally valid. Since both ip(x)+ to*(x) and
i(q (x) —&p*(x)) are Hermitian fields, Postulate IV leads
to
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one finds, instead of Eq. (19),

9'a*(x)0'a(y)+iP~ (x)iP *(y))o= 0 ($ spacelike); (24)

compare the transition from Eq. (13) to Eq. (14).
Equation (20) is to be replaced by'r

n-t ((li-(x)~f-A ~*(x))(A(y)+{~oA*(y))&o=0

($ spacelike), (25),

where the (symmetric) matric { is the inverse of the
matrix rl defined in Eq. (10) and f p*=rl p Sin. ce
iP (x)+{,iP„*(x)and s(iP„(x) t.,—iP,*(x))are Majorana
fields, one is led to

which replaces Eq. (21) and contradicts Postulate V.

"The formally simpler expressions ((P~(x)+f~*(x))(p (y)
&P~*(y)))o would also vanish for spacelike p. Such expressions,
however, do not have simple transformation properties under the
proper Lorentz group and so do not permit application of the
methods of Hall and Wightman.

The analogs of Eqs. (4) and (13) for non-Hermitian
fields, i.e.,

(L~*(x),o (y) 3)o= ({4-*(x)4-(y) ))o=o

(g spacelike), (27)
or the stronger relation

({iP (x),its(y)))o —0 ($ spacelike) (28)

cannot be derived from Postulate I. To obtain these
equations one has to invoke Postulate II.

ACKNOW EDGMENTS

The authors would like to thank F. J. Dyson. for
encouragement, H. I.ehmann for a letter on the Hall-
Wightman method, and K.. Symanzik for discussions
and critical reading of a preliminary version of the
manuscript.

Note added&i proof We h.
—ave been recently informed

by Professor A. S. Wightman that results similar to
those contained in this paper have been independently
obtained by ¹ Burgoyne (Copenhagen).
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The effect of the electromagnetic structure of the proton and neutron upon the hyper6ne splitting of S
states in hydrogen and helium is calculated nonrelativistically. Convenient formulas are given, assuming that
the charge and moment distributions of the proton and neutron are Gaussian. A summary of calculations of
nuclear structure effects in deuterium is given and the present experimental situation is reviewed. If there
is no relativistic or interaction moment contribution to the magnetic moment of the deuteron, the percent D
state is 3.9, which is, under the same assumptions, consistent with the hyperfine splitting of deuterium.

I. INTRODUCTION

"UNCLEAR structure contributions to the hyperfine
structure (hfs) of hydrogen and helium have been

a subject of continual interest. First Bohr, ' and then
I ow' more carefully, calculated nonrelativistically such
eRects in deuterium, and subsequently there was a
calculation by Salpeter and Newcomb' of relativistic
corrections, while tritium and He' have been investi-
gated by other workers. ' ' None of these calculations
includes the eRect of nucleon structure, which is calcu-
lated in this paper. For the proton there have been a
number of calculations summarized in the work of
Zemach. ' He has exhibited a general form for the hfs of

* Supported in part by the National Science Foundation.
' A. Bohr, Phys. Rev. 78, 1109 (1948).
2 F. Low, Phys. Rev. 77, 361 (1950).' E. E. Salpeter and W. Newcomb, Phys. Rev. 87, 150 (1952).
4 E. ¹ Adams, II, Phys. Rev. 81, 1 (1951);A. M. Sessler and

H. M. Foley, Phys. Rev. 94, 761 (1954).' A. M. Sessler and H. M. Foley, Phys. Rev. 98, 6 (1955).' A. C. Zemach, Phys. Rev. 104, 1771 (1956).

hydrogen, which, at least as far as nucleon structure is
concerned, is given in terms of the first statistical mo-
ment of a distribution which characterizes the proton
structure, and furthermore can be determined by other
experiments such as electron-proton scattering. Zemach
rigorously establishes by 6eld-theoretic arguments the
validity of the nonrelativistic calculation.

In this investigation the nonrelativistic method of
Zemach is extended, without field-theoretic justi6cation,
to H', H', He'+, and He'. This procedure is equivalent to
neglecting relativistic and interaction moment contribu-
tions. In Sec. II the nucleon size contribution to H' and
H' is derived assuming for convenience of calculation
that the nucleons can be characterized by Gaussian
charge and magnetic moment distributions. Although
this is apparently not true experimentally for the
proton, ~ the difference between a Gaussian and the true

~ F.Sumiller and R. Hofstadter, Bull. Am. Phys. Soc. Ser. II, 3,
50 (1958).


