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Intrinsic Quadrupole Moment and the Resonance Width of
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The correlation between nuclear deformation and the resonance width of photonuclear reactions is
discussed. The general trend of the nuclear deformation is in good agreement with the predictions of
Marumori, Suekane, and Vamamoto, and the existence of the correlation is clarified. The calculation
assuming the splitting of the resonance and a constant width for spherical nuclei agrees qualitatively with
experiments, but quantitatively the calculated values are too low, especially for strongly deformed nuclei.
For light nuclei the quantatitive calculation has little meaning, but a similar correlation is found for them.
The mass-number dependence of the resonance width is discussed qualitatively; it turns out that the vari-
ation of this width arises from various causes and is not a simple function of mass number. A discussion of
the nuclear shape in the highly excited state (~20 Mev) is given, and it is shown that this nuclear shape
may not be very different from the shape in the ground state.

I. INTRODUCTION
'
QHOTONUCLEAR reactions have been studied

extensively for the past several years. The observed
mass-number dependence of the resonance energy is in
agreement with the theoretical predictions' ' of Gold-
haber and Teller' (hereafter denoted as GT) or of
Steinwedel, Jensen, and Jensen' (hereafter denoted as
SJJ). The systematics of the resonance width has also
been studied experimentally, "and it has been found
that the values of the resonance width are small at
magic numbers and large in the intermediate regions. '
Since this behavior is quite similar to that of the
nuclear quadrupole moment, it was proposed by the
author' and independently by Danos' that this Quc-
tuation of the width might be explained by nuclear
deformation. If we assume that the resonance splits
into two parts due to the deformation, we can calculate
the value of this splitting from the quadrupole moment.
The calculated results' agreed fairly well with experi-
ments. However, in this calculation we should have
used intrinsic quadrupole moments obtained from
Coulomb excitation instead of the quadrupole moment
from spectroscopic experiments. Therefore the results
of the previous note' should be taken rather quali-
tatively.

Recently, many experiments on Coulomb excitation
have been performed, ~ giving us su%cient data to
study the systematic variation of nuclear deformation.
Moreover, the resonance width has now been measured

for rare-earth nuclei. These nuclei have very large
resonance widths and their cross-section curves show
the possible existence of a splitting into two peaks.

Therefore we have extended the calculations of our
previous note' using intrinsic quadrupole moments,
and the collective model of GT' or SJJ.' This type of
calculation of splitting has also been performed' by
using the independent-particle model as discussed by
Wilkinson. '0

In Sec. II we summarize the experimental data on
intrinsic quadrupole moments. Our values agree fairly
well with the calculations of surface rigidity by
Marumori, Suekane, and Yamamoto. " In Sec. III we

investigate the correlation between nuclear deformation
and the resonance width. In Sec. IV the calculation of
the splitting is carried out and the results are compared
with experiments. In Sec. V we give a qualitative dis-
cussion about light nuclei (Z(21), for which the
quantitative calculation has little meaning. In Sec. VI
we comment concerning the mass-number dependence
of the resonance width. In Sec. VII the validity of our
model is discussed qualitatively. In the last section we

summarize our results.

II. NUCLEAR SHAPE AND INTRINSIC
QUADRUPOLE MOMENT

Bohr and Mottelson" showed that the spectroscopic
quadrupole moment, Q, was given by
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Of course, these criteria are rather arbitrary.
Finally, we calculate the nuclear eccentricity, here

defined by16(2)Q.=P(x)Qo

where Q„ is the quadrupole moment due to the particle or
outside a core and Q, is the quadrupole moment due to
the surface deformation. Furthermore it was shown"
that

where Qs is the intrinsic quadrupole moment, which is
related to the "classical shape" of the nucleus. The
projection operator P is a function of x, the parameter
of the coupling strength between particles and the
surface. P(x) is given by Bohr and Mottleson for weak
coupling (w), intermediate coupling (i), and strong
coupling (s). Therefore, if we know Q and the value
of x, we can calculate Qs. We can also obtain Qs directly
from the experiments on Coulomb excitation.

If we do not have any data on Coulomb excitation
for even-even nuclei, we shall make use of the data on
the 6rst excited states" of such nuclei to calculate the
value of Qs. However, it is well known that the value
of Qs obtained from the energy of the first excited level
is several times larger than the value of Qs from Cou-
lomb excitation. Therefore we normalize the former to
nuclei for which the data on Coulomb excitation are
known, and determine the approximate value for other
nuclei. The values obtained in this way are marked
with a superscript "e"in Table I.

The value of Qs determined from Q depends upon x.
The coupling strength x can be determined by the
following method: we introduce a quantity, F(E2),
de6ned by the ratio of the observed electric quadrupole
transition probability, B(E2),b„ to the single-particle
value, namely

F(E2)=B(E2)obs/B (E2)..n ..
For B(E2),.s. we use the following estimater:

B(E2),.s.=3X10 sA'I'X 10~' cm'.

(3)

(4)

gobs/|Ms, p. but IJ b —p

Here p is the magnetic moment and "conf" means the
values obtained by conlguration mixing. "'4"

(3) Strong coupling (s):

Qob.»Q. .. or Q.b./ Q.. i, or F(E2)»10,
rm G. Scharff-Goldhaber, Phys. Rev. 90, 58'7 (1953).' A. Arima and H. Horie, Progr. Theoret. Phys. (Japan) 12,

623 (1954);Phys. Rev. 99, 778 (1955).
1~ S. Hayakawa and T. Marumori, Progr. Theoret. Phys.

(Japan) 17, 43 (1957).

We define the strength of the coupling in the following
way:

(1) Weak coupling (m):

Qob —Q. ; or F(E2)—1.

(2) Intermediate coupling (i):

Q.b, =2—3Q, , or Q,b —Q,. r, or 1&F(E2)&10,

e=5Qp/(4ZRp') . (6)

Throughout this paper we shall take Rs= (1.5)fAt
X10 "cm.

The results for stable nuclei (Z~21) are listed in
Table I.Light nuclei will be discussed in Sec. V.

III. CORRELATION BETWEEN NUCLEAR ECCEN-
TRICITY AND RESONANCE WIDTH OF

PHOTONUCLEAR REACTIONS

In order to show that there exists a correlation
between the nuclear eccentricity and the experimental
resonance full width at half-maximum of the cross
section for photon absorption, we plot these two
quantities in Fig. i.

Since the deformation of the nucleus seems to be
affected more strongly by neutrons than by protons, "
we draw the graph as a function of neutron number.

It was shown by Morinaga" and Johanssonts that
the (y,p) reaction was sometimes several times to ten
times larger than the (7,N) reaction for nuclei of A &40.
Therefore, for such light nuclei the approximation of
taking only the width of the reaction which emits
neutrons might not be good. However, for the heavier
nuclei shown in Fig. j., this approximation is expected
to be fairly good.

The experimental uncertainty of the width is assumed
to be &1 Mev; while the uncertainty in e is estimated
to be from 20 to 30'%%uo of its value.

IV. SPLITTING OF THE RESONANCE
DUE TO DEFORMATION

(a) Approximate Calculation

Figure 1 clearly shows that a correlation exists
between Qs and the resonance width 1'. The discrep-
ancies at neutron number E(50 might be due to the
contribution of the (y,p) reaction.

This correlation can be explained by the splitting of
the resonance. The resonance energy of dipole vibration
(hereafter denoted as Es) decreases with increasing

"This definition of eccentricity is diR'erent from the previous
one (reference 5). In reference 5, e= (Ris —Rss)i/Ri. The relation
between these two definitions is: e'= e(6+e)/(3+4e).

~' H. Morinaga, Phys. Rev. 97, 1185 (1955)."S. A. E. Johansson, Phys. Rev. 97, 1186 (1955).

e= (Ri—Rs)/Rp,

where E~ and E2 are the longer and shorter axes of a
spheroidal nucleus, respectively, and Eo is the radius
of a spherical nucleus with the same volume. The
relation between Qs and e is



INTRINSIC QUADRUPOLE MOMENT

TAsLz I. Various quantities related to nuclear deformation. Items enclosed in parentheses represent assumed or uncertain values.
Column 1: Nucleus studied. Column 2:ground state spin, I. Column 3:observed value Q,b, of the spectroscopic quadrupole moment.
The data are taken from the review article of Blin-Stoyle, ' unless otherwise stated. Column 4: single-particle value Q, .~. of the spectro-
scopic quadrupole moment. Column 5:the value Q„&calculated from con6guration mixing. ' Column 6: intrinsic quadrupole moment
Q0 calculated from Q,b, for the case of intermediate coupling. Column 'l: intrinsic quadrupole moment Qo calculated from Q,b, for the
case of strong coupling. Column 8: intrinsic quadrupole moment Qo from experiments on Coulomb excitation. Column 9: enhancement
factor F(E2) de6ned by Eqs. (3) and (4). Column 10: single-particle value p. , of magnetic moment. Column 11:calculated value
po f of . magnetic moment using configuration mixing. ' Column 12: observed value p,b, of magnetic moment taken from the table of
Blin-Stoyle. Column 13:coupling strength between extra particles and the surface determined as weak (m), intermediate {i),or strong
(s) by the criteria in the text. Column 14:nuclear eccentricity e calculated by Eq. (6).Qo is taken from the Coulomb excitation measure-
ments, if available. Otherwise Qo is taken from the spectroscopic value Q,b, with the coupling strength listed in column 13.

Nucleus

(2) (3)

obs

(4)
Q(10 24 cm2)

S.p.

(5)

conf

(6)

inter.

(7)
Qp(10 24 cm2)
strong

(8)

Coul.

(9) (1O) (11)

F(B2) s.p. conf

(13)

obs Coupling

(14)

21SC2446

22T12446

Ti2847

T12648

Ti2744

Tisssp

28V27ep

Vsse'
24Cr26'4

Cr28»
Crsg'8
Crsoe4

26Mnspes

26Fe2884

Fesose
Fe81»
Fes268

27Co8288

2sNiso'8
Niss«
Nisse'
Ni8462

Nisge4

24Cusc
Cusege

spZn84«
Znsgge

Zn 8767

Znssg8

Znco74

81Gassgs

Gaco»

7/2
0

5/2
0

7/2
0

(6)
7/2
0
0

3/2
0

5/2
0
0

1/2g
0

7/2

0
0

(3/2)

0
3/2
3/2
0
0

5/2
0
0

3/2

3/2

0.3 &0.2 —0.02

~ ~

0,5 +0.2 0.08

—0.16
—0.15

~ ~

—0.06
—0,06

0.23
~ ~

0,05

0.15 0.05

0.3 &0.15f 0.08

-0.03

0.19
L0.303h

—0.11
—0.11

0.1S
E0.203h
0.15

$0.14)h

0.42

0.35

0.55

-0.17
—0.15

0.25

0.13

0.68

0.76

0.99

—0.90
—0.84

0.98

0.50

0.75'
( &0.92d)

0.56d

(0.52e)

( &0.39)

(O.76e)

(1.OO )
1.26&

(0 77e)
1.00d

&1.00'
(i.o2 )

(o.73')
(o.vve)

(0.76e)
(0.78e)

(-1.03~)
(—0.96')

1.04&

0.934

(1.0oo)

5.79 4.74
11

210
6.0

S.025.79

4.76
~ ~ ~

—0.8

5.1$

S
s 023
s ( &0.28)

(0.17)
S

(o.16)
S

i or s (0.18) {s)

(13)

(16)
320
(12)
15
15

{15)

(11)
(12)

-1.91
~ ~

4.13

—1.91

5.79

—0.49

~ ~

+0.4

4.10

—0.47

3.47

P ~

0.05
s

465 8 or s

(o.19)

(o.23)
0.29

(o.16)
0.21
0.21

(0.21)
0.10 ($)
0.19 (s)

(0,15)
(o.16)

(11)
(13)

6.5
5.5

14
11
18

(14)

-1.91 -0.03 ~0

3.79
3.79

~ ~

2.17
2.30

2.23
2.38

1.37
~ ~

0.81 0.88

8

8

8ors
(o.16)
(0.16)
(0.03)
0.03
0.19
0.16

0.17
~ ~ ~

3.79 1.58 2.02 0.16

3.79 1.82 2.$6 0.08

~ ~ ~ ~

—1.91 —0.58
(4.9)
27
34

82Ge88 4

Geco'2
Ge41»
Ge4 274

Geccse

ssAs427'

0
0 ~ ~ ~

9/2 -0.2
0 ~ ~ ~

0
3/2 0.32

4

0.06

—0.43

0.18

-0.22

0.36

-0.37

1.46

—0.99'
—2.26&

& -1.49tI
-1.58d
—1.52rI

( &1.20)~

10
18

450
27
24
90

-1.91 -1.72

3.79 2.21
1.54

-0.88

1.44

0.15
0.19

&0.21
0.23
0.23

&0.17

84Secp74

Se4276

Secs77

Sec47s

Secsso

Secss'
seBrcc»

Brcg81

0
0

1/2
0
0
0

3/2

3/2

~ ~ ~

0.33

0.28

~ ~ ~

0.06

0.06

~ ~ ~

0.19

0.19

0.41

0.34

1.92

1.62

1.45d
2.07&

(&2 08)d
1.89~
1.$2d

0.75d

( &1.62) I

( &1.81)1

23
44
43
36
22
5.2

0.64

~ ~ ~

3.79

3.79

~ ~ ~

2.55
1.91
2.52
1.91

0.$3

~ ~ ~

2.11

2.27

0.17
0.27

&0.27
0.24
0.20
0.09
0.16

0.13

seKr4278

Krccgo

Kr4gss

Kr4788

Krcssc
Kreoso
Rb4sse
Rbeos7

ssSr4e'4

Srcsso
Src487

0
0
0

9/2
0
0

5/2
3/2
0
0

9/2

0.15

~ ~ ~

0.3ilt
0.15It

0.07
0.05

~ ~ ~

0.28

~ ~ ~

po. iv jh

~ ~ ~

t 0.14jh

0,19

0.34
(0.14)

0.28

0.66
0.38

2.9&

1.7&

0.9j

0.75&

83
29
8.8

$.6
—1.91 —0.83 —0.97

0,86 1.32 1.35
3.79 2.79 2.75

~ ~ ~ ~ ~ ~ ~ ~ ~

($.1)
—1.91 —0.68 —1.1

0.36
0.21

&0.12
0.02

&0.08

0.04
0.02

8 ( (0.08)
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TABLE I.—Contieled.

Nucleus

Sr»oso

3A'50 9

OZr»090

Zr»lgl

Zr»292

Zr»494

Z1 6696

41Nb»298

(2)

0
1/2
0

5/2
0
0
0

9/2

(3)

obs

(4)
g(20 24 cm2)

s.p.

—0.13

(5)

conf

~ ~

f —0.083]h

—0.33

(6)

inter.

(0.12)

(7)
Qp(20 24 cm2)
strong

—0.24

(8)

Coul.

(O.SSe)

(0.55e)

09m

(3.0)

(2.S)

6,0

—0.26

-1.91 —0.8

6.79
~ t ~

6.60
5.71

(9) {10) (11)

F (Z2) s.p. conf

(12) (13) (14)

-0.14

—2.9l

( &o.oS)

( &0.05)

&0,09

6.16 (i or 24) &0.02

obs Coupling

42Mo»og'

Mo»294

Mo»39»

0
0

5/2

(0 71e)
1.70d

( &2.43d)

(4.1)
23
95 —1.91 —0.35

—1.08

—0,91

s (&O.O6)
s 0.17
s ( )0.23)

Mo»496

Mo»»g'
0

5/2
1.76d 23

—1.91
~ ~

+0.05
—0.65

0

—0.93
0.17

Mo»egs

Mo58100

44Ru»296

Ru»4gs

Ru»599

Ru 56100

Ru »plol

Ru»s'"
Rueo'04

4»Rh»8108

46pd»6'02

Pd 68104

Pd»g105

Pdep106

Pdeglos

Pde 4110

47Ageol

Age, log

48Cd»8'06

Cdeolos

Cd62110

Cd63111

Cd64n2

Cde»lls

Cdoe"4

Cd68116

49Ine41»

»pSn62"2

Sne4»4
ne»115

Sneell6

Sne~II7

0
0
0

5/2
0

5/2
0
0

1/2
0
0

5/2
0
0
0

1/2
1/2
0
0
0

1/2
0

1/2
0
0

9/2
9/2
0
0

1/2
0

1/2

~ ~ ~

1.14
1.16

0.16
0.16

0.41
0.42

1.10
1 ~ 12

1.93
1.97

1.64d

2.57d

(1 45)d
1.73d

{+2 94)d
2.51d
3.22d

2.3e

2.1d

(2.0)I
2 4d

2.8d

3.2d

2.0~
2.2'I

2.02d

2.2d

2.14d

2 9d

2.35d
2.49d

1.32m

20
47

70 —1.91
22

(23) —1.91
44
71

—0.26 —0.10

31

39
51
60
24
28

—0.26
—0.26

—0.11
—0,13

31
30
28
70
33
36

~ ~ ~

—1.91
\

—1.91

~ ~ ~

6.79
6.79

—0.49

—0.77

5.62
5.59

~ ~ ~

—0.59

—0.62

5.49
5.50

10
—1.91 —0.73 —0.92

—1.91 —1.18
—0.50

—1.00

—1.91 —0.45 —0.57

s

0.16
0.24

0.12
0,15
0.16
0.21
0.27
0.20

0.17
0.17
0.19
0.23
0.27
0.16
0.17

0,15
0.16
0.16
0,21
0.17
0.19
0,14
0.14

&0.09

Sneslls

Sneg"9
Snvo"0

Sny 2122

Sn7 4124

» ISbyp121

Sb»»s
52Tees'20

TevoI22

Tevllss

Te7 2124

Te~sl25

Te24126

»,b412Z

54Xey0124

Xe22126

Xeg412$

Xev»129

0
1/2
0
0
0

5/2
7/2
0
0

1/2

1/2
0
0
0

5/2
0
0
0

1/2

—0.5
—0.7

~ \

\

—0.69

—0.13
—0.15

—0,26
—0.39

—0.14 —0.31

—O.S8
—0.73

—0,97

2127
—1.35

—1.80

1.37m

1.41m

1.42m

1.38m

2.35d
2.17d

(0.7)~
1.97d
2.2+

1.79d
1.67d

1.61"

(2.4S )
(2.33e)

11
11
10

32
26

17
15
13

(32)
(28)

4.79
1.72

3.49
2.49

—1.91 —0.82

-1.91 —0.60

4.79
~ ~ ~

3.04

~ ~

—1.91
~ ~ ~

+0.14
-1.10
-0.46

~ ~

—1.91 —0.95 —1.05

3.36
2.55

-0.74
~ ~ ~

—0.89

2.81

~ ~ ~

—0.78

s
(i)
s

&0.09
0.09
0.11
0.11
0.09
0.08
0.08
0.15
0,23

(0.04)
0.12
0.16
0.11
0.09
0.09
0.10

0,13
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TABLE I.—Continued.

Nucleus

(2) (3)

obs

(4)
0(10 24 cmg)

s.p.

(5)

conf

(6)

inter.

(7)
Op(10 24 cmg)
strong

(8)

Coul.

(9) (10) (11)

F(E2) s.p. conf

(12) (13)

obs Coupling

(14)

Xe76'30

Xe77181

Xe78188

Xeao'84

Xesglse

55Cs7s'33

0
3/2

0
0

7/2

~ ~ \

—0.12

~ ~

~ ~

~ t ~

—0.003
~ ~

—0.11

—0.26 —0.20 —0.72
(2.07e)

(1.84e)
{149e)
(1.29e)

(22)

(17)
(11)
(8)

1.15

1.72

~ ~ ~

0.48
0.70

~ ~

2.10
2.42
2.75

0.70

~ ~

2.58

0,12
(o.i 1)

assumed
0.11
0,08
0.07

56Ba74 3

ga76188

a7sla4

Qa7g185

Baso'86

Baslls&

Qasglss

57Lasl188

Lass'sg

0
0
0

3/2

3/2

5
7/2

~ ~ ~

(0 7)r
0.23& 0.16 0.44

(1.52 )
(1.7o )

(1.6o )

{126e)

(11)
(14)

(12)

(7)

1.15 0.94

1.15 0.95

1.72 1.88
2.19

0.83

0.94

2.78

(s)
s

8ors
8

0.09
O. 1 1

0.12
0.09

0.08
(0.05)

esCe78'86

Ceso'ss
Ces9140

Ces4'48

59Prag141

0
0
0
0

5/2

~ ~ ~

~ ~

—o.oif -0.14 —0,30
1
—0.35j

(1.19 ) (6)

4.79 4.53
3.95

4.0

0.07

(74I) (m)

eoNdsg'48

Ndsa'48

Nda4'44

Nds5145

7/2

7/2

1.4

1.4

2.1

2.1

0.888

1.33e

3.4

7.7
-1.91

~ ~

—0.84 —1.0

—0.65—1.91 —1.05
-0.64

0.04
0.08
0.07
0,08

Ndae'46

Ndss148

d9 0150

egSms8144

Smas'47

Sms6148

8ms7'49

0
0
0
0

7/2

0
7/2

~ ~ ~

0.72

~ ~ ~

0.72

1.03

1.03

1.54

1.54

1 58s
2.636
4.80t

2 2

11
29
96

—1.91 —1.01
-0.60

-1.91 -1.21
—0.81

~ ~ ~

—0.76

~ ~

-0.64

(s)

0.08
0.13
0.24

0.08

0.11
0.08

Smaa'
Smgoles

Smg 9154

63Euasl 51

Eugp158

64Gdas'58

Gdgp154

Gdgllee

Gdg slee
Gdg 3157

Gdg4158

Gdg6'6o

65Tbg4"g

eeDyg 0156

Dyg 2158

Dy941 60

Dyg 5161

Dygeleg

Dyg7168

y98164

e7Hogs"
68Erg4169

Frg6164

98166

Erg9167

0
0 ~ ~ ~

0
5/2 1.2
5/2 2.5

0
0

3/2 1.1»

0 ~ 4 ~

3/2 1.0»

0 ~ ~

0
3/2

0 ~ ~ ~

0
0 ~ ~ ~

(3/ 2)
(5/2)

0 ~ ~ ~

(3/2)
(5/2)

0
7/2 2
0
0 ~ ~ ~

0 ~ ~ ~

7/2 io.2

(3 5)f

0.16
0.16

0,18

~ ~ ~

0.36

~ ~ ~

0.70

3.4
7.1

6.9

6.3

4,2

21,9
(7.5)

3.131
5.571
6,71

7 1u

(4.o )
6.5u

68u
7.1~
6.2u

7 7U

97u
87u

71x

7.9x

92x
76u

7 3x
(7 3')

41
127
182

(1io)
179

200

231
361

193

236

315
213

198
(195)

4 79
4.79

0.12

~ e ~

~ ~ ~

-1.91

3.6
1.6

3.6

~ ~ ~

-0.31
~ ~ ~

—0.38

1.5 +0.4

~ ~ ~

-0.5

S
S
S
S
S
S

0.15
0.27
0,32
0.15
0.32
0.17
0.29
0.29
0.32
0.28
0.35
0.44
0.37

0.29

0.34

0.39
0.31

0.29
0.29

(o.29)

Frlpples
Er109170

eg Tm lopleg

7 g Qbgsl 68

blpp170

0

1/2
0
0 7.1x (178)

(7.55~)& (208)

2.79
~ ~ ~

—0.2

{0.29)8

(0.24)

0.27
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TABLE I.—Continued.

(2)

Nucleus I

(3)

obs

(4)
Q(10-~ cm2)

S.p. conf

{6)

inter.

(7)
Qp(10 24 cm2)
strong

{8)

Coul.

(9) (10) (11)

P (B2) s.p. conf

(12)

obs Coupling

(14)

Yb 1011vl

Yblo21v2

Yb 1p3lv3

Ybr041v4

Yb,~lvo

?ILU104'v5

Lu 1p51v6

v2Hf lp2lv4

Hflo41vo

Hf1051vv

Hf »61vs

Hflpvlvo

Hf los'80

v3Ta1psl 81

v4W106180

Wlpsl82

Wl 10184

W112'86

v 5Re 1lpl8

11218

260s106'84

Qsllp186

Qsllllpv
Qs112188

Qsll 3189

Os114190

Qs116192

vvIr114191

Irllpl»
vSPt112»0

Pt114»2
Pt116194

Ptl lv195

Pt118»6
Pt12p198

voAu 1ls'pv

80Hg116»6
Hg»8198
Hg119199

Hg120200

H g 12 1201

Hg122202

Hg1242'4

81T1122208

T112420

82Pb122204

Pb124206

Pb12620v

Pb126208

SSBi126209

1/2
0

5/2
0
0

7/2
)7
0
0

7/2
0

9/2
0

7/2

0
1/2
0
0

5/2
5/2
0
0

1/2
0

3/2
0
0

3/2
3/2
0
0

1/2
0
0

3/2

0
0

1/2
0

3/2
0
0

1/2
1/2
0
0

1/2
0

9/2

3.9

3.9a

8.0

3.0

3.0

2.7

~ ~

2,8
2.6

0.6a

~ ~ ~

1.0~0,5
1.0+0.5

0.6

~ ~ ~

0.45a

~ ~ ~

—0.4

0.18

0.20

~ ~

0.18
0.18

~ 0 ~

0,14
0.14

0.14

~ ~

0.30

0.74

0.65

0.39
0.40

~ 0 ~

0.40
0.40

0.29

~ ~ ~

—0.53
I
—0.5$)b

5.0
4,6

1.0

1.5
1.5

0.8

0.75

10.9

8.1
( 10)

6,4

5.5

5.6

7.7
7.1

3.7

5.9
5.9

3.5

2.7

(6.93&)e

8 $u

7 9aa
89u
7 9bb

8.3u

7 9aa

6 7bb

{8Oe)

7.6~
(6 9bb, co)

6.7z
$9x
4 7bb

4 3bb

($.6 )

(5.3 )

($.o )
(3.9 )
5 3dd

3 4dd

(2.52e)
2.4bb

3 2bb

1,7bb

1.4bb

2.6aa

(2.2e)

2.2dd

1 6dd

2 4dd

2 2dd

1 6aa

1 4aa

1 $aa

1.02aa
0.69aa

(-0)

210

109

{104)

(45)

(19)
17

8.7
5.8

18

14

0.64 0.5

1.37
+

1.72 2.4

—1.91

1.72 2.6

0.64

4.79 3.19
4.79 3.17

0.12
0.12

0.44
0.44

0.64

0.12 0.45
0.29

~ ~ ~

2.79
2.79

~ ~

1.44
1.43

~ ~

0.64
~ ~ ~

2.62
~ ~ ~

3.30

—1.91 —0.51

0.45

—.0.7

2.9
4.2

2.1

0.1

3.17
3.20

0.7

~ ~ 0

0.17
0.17

0.61

0.14

0.50
~ ~ ~

—0.56

~ ~ ~

1.61
1.63

~ \

0.59

4.08

6 OI's

6 or s

6 or s

0.32
(0.37)

0.29
0.33
0.29
0.31
0.29
0.22

(0.28)
0.27

(O.24)
0.24
0,21
0.16
0.15

0.19

0.18
0.12
0.17
0.13
0,17
0.11

0.08
0.08
0.11
0.05
0.03
0.08

0.07
0.07
0.05
0.08
0.07
0.07

0.04
0.04
0.04
0.03
0.01

~0
~0

ooTh142»
92U142234

U143+5
U146238

0
0

7/2 ( 8)
0

(8.45) (17)

$7dd
(6.3e)
9.76

6 9dd

76
(91)

108

~ ~

—0.8

0.13
0.15
0,23
0.16

a R. J, Blin-Stoyle, Revs. Modern Phys. 28, 75 (1956).
b See reference 11.
c See reference 14,
d G. M. Temmer and N. P. Heydenburg, Phys. Rev. 104, 967 (1956).' Data calculated from the first excited states. See reference 13.
& K. Murakawa (private communication).
& G. Trumpy, Nature 176, 507 (1955).
"Values enclosed in square brackets are taken from reference 11.
1 Wolicki, Fagg, and Geer, Phys. Rev. 105, 238 (1957).
j G. F. Pieper and N. P. Heydenburg, Bull. Am. Phys. Soc. Ser. II, 2, 69

(1957}.
& Senitzky, Rabi, and Perl, Phys. Rev. 98, 1537 (1955).
& K. Murakawa, Phys. Rev. 100, 1369 (1955).

, P. H. Stelson and F. K. McGowan, Bull. Am. Phys, Soc. Ser. II, 2, 69
(1957).

& K. Murakawa, Phys. Rev. 98, 1285 (1955).
& N. P. Heydenburg and G. M. Ternmer, Phys. Rev. 95, 861 (1954).
& G. M. Temmer and N. P. Heydenburg, Phys. Rev. 98, 1308 (1955).
& Snyder, Fagg, Wolicki, Bondelid, and Dunning, Phys. Rev. 100, 1299

(1955).

& P. B.Sogo and C, D. Jeffries, Phys. Rev. 99, 613 (1955).However, they
obtained the ratio of Q between La»S and La»9 and, assuming that Q (La»9)
=0.9 &(10 24 crn2, they reported Q(La»8) =2.7 X10 24 cm2. Here we take

the recent data for Q(La»9) (reference f); therefore Q(La»8) =0.7 )&10-24
cm2.

a See reference 7.
4 Simmons, Van Patter, Famularo, and Stuart, Phys. Rev. 97, 89 (1955).
u N. P, Heydenburg and G. M. Temmer, Phys. Rev. 104, 981 (1956).
+ D. R. Speci-, Phys. Rev. 101, 1725 (1956).
~ H. Mark and G. T. Paulissen, Phys. Rev. 100, 813 (1955).
x E. D. Klema and R. K. Osborn, Phys. Rev. 103, 833 {1956}.
& Values for natural isotopes.
a K. Murakawa and T. Kamei, Phys. Rev. 105, 671 (1957); Gerold Luhrs,

Z. Physik 141, 486 (1955}.
aa P. H. Stelson and F. K. McGowan, Phys. Rev. 99, 112 (1955).
bb McClelland, Mark, and Goodman, Phys. Rev. 97, 1191 (1955).
«Value taken from reference bb and normalized to W182.
dd Davis, Divatia, Lind, and Moffat, Phys. Rev. 103, 1801 (1956).
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FIG. 1. Correlation between the nuclear eccentricity e and the photonuclear resonance width F. Crosses are eccentricities listed in
Table I. Open circles are observed resonance widths for nonmagic nuclei; closed circles are for magic nuclei. (See Table IV.}Dashed
and solid curves are for eccentricity and for resonance width respectively. Arrows indicate the magic numbers: the solid one is for
neutrons and the dashed one is for protons. The dotted straight line indicates the intrinsic width, F0, which is taken in this paper as
4. Mev. The uncertainty of the resonance width is assumed to be 1 Mev; the uncertainty of the eccentricity is from 20 to 30%% of its
value.

mass number, and its dependence is

~ R —o 0- g—e/3

e= i, GT modep

=1, 8JJ model4

expel iments

(b) Hydrodynamical Calculation

We now examine whether Eq. (10) is exact in the
SJJ model. 4 According to the SJJ model, 4 the density

(7) of nucleons is
p„=p„'+ri(r, t),

p„=p„rt(r, t). —

If the nucleus is a spheroid, the resonance splits into
two parts; we apply the GT modep to a prolate"
nucleus. The two frequencies Ei and E2, corresponding
to oscillations along the longer and shorter axes re-
spectively, are

t fr2wRsspq t'ts

Z, =i —
I =—40R;1,

(»(2sr/3)R, R spm j
2srRtRsp p'k

i
=40Rs-&,

&»(2sr/3)RtRsspm j
where all notations except R1 and R2 are the same as
those in reference 3.

The value of the splitting, AE, is given by

h&=&s—&r=40Ro I(-'e) =-'ezo.

Equation (9) holds for the GT model, if the deformation
is not very large.

More generally, if we assume EO~RO ", we might
expect appr oscssnately

thE/Eo sM. ——(10)
'4 E. G. Fuller and E. Hayward, Phys. Rev. 101, 692 (1956).~ The calculation for an oblate nucleus is quite similar to that

described here.

tEJ nP—(P—1)——A —h'P+
dg d$ P—1

J=0, (13)

where $ is a variable which is related to the shape of
the spheroid. A and nz are constants, and h= —,'ak, where
a is the distance between foci of the spheroid, given by
a= 2(SQp/2Z) &.

The boundary condition for J is

(dJ/dg) 4,=0, (14)

where s= 1/». (e is the eccentricity used in the previous
note. ")

s' P. M. Morse and H. Feshbach, 3fethods of Theoreticat Physics
(McGraw-Hill Book Company, Inc. , New York, 1953}, pp.
1502-1505.

Here, Poo (P„o) is the original density of Protons
(neutrons) and rt is the change in the density. If we put
tf =gp (r)e'"', gp satisfies the Helmholtz equation

drip+ I'tort =0.

Here, k is the wave number of dipole vibration. For a
spherical nucleus, SJJ use the boundary condition
(clap/clr) zp= 0.

For a spheroidal nucleus, we write Eq. (12) in
spheroidal coordinates" and take the radial part
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Nucleus

53I74
73Ta 108

23Mn30'5

0.10
0.22
0.29

0.09
0.18
0.24

0.90
0.82
0.81

TABLE II.Results of hydrodynamical calculation of the splitting
of the resonance. The second column is the value calculated from
Kq. (10) by putting a = 1.The third column is the value obtained
from hydrodynamical calculation. The fourth column is the ratio
of these two values.

Nucleus

Ca~
Sr88
Y89
Zr
Zr9x
Zr92
Pb208
Qi209

20
38
39
40
40
40
82
83

20
50
50
50
51
52

126
126

~0
(0 05) s

&0.09b
~0
~0

F,b (Mev)

4.2
4.0
3.8
4.3
50'
5.5
4.5~
4.1

TABLE III. The widths Of spherically symmetric nuclei.

where the prime over the summation indicates that
only even values of n are included if (l—m) is even and
only odd values of n are included if (l—m) is odd. The
quantity d„(h

~
ml) is the coefficient of expansion and is

tabulated by Stratton et al.22 The difference of eigen-
values between jere(h, z) and je»(h, z) gives the value
of the splitting.

Numerical calculations for three nuclei are shown in
Table II.

The ratio e of the value of the hydrodynamical
calculation of DE//Ee to that of Eq. (10) with n= 1 is
about 1—e; therefore we shall use the following formula:

(DE/Es) aqua
= e(1—e).

(c) Comparison with Experiments

(16)

In Eqs. (9) and (16), we use the experimental values
e and Eo to obtain the value of DE. If we further assume
that the widths of the two split resonances remain the
same as Fo for a spherical nucleus, we And the value of
the width F of a deformed nucleus:

r=r,+xi'. (17)

AF is the increase of the width due to deformation and
is now approximated by aF=aE.

We determine Fo from the observed resonance widths
for spherical nuclei. Table III shows that these widths
for spherical nuclei are about 4 to 5 Mev. Therefore we
tentatively assume that

Fo= 4.2 Mev. (18)

This we shall call the ietriesic width. Using Table I
and Eqs. (9), (16), (17), and (18), we calculate the
value of the width F. The results are listed in Table

22Stratton, Morse, Chu, and Hutner, E/liptic Cylinder and
Spheroidal 8"ave Functions {John %iley and Sons, Inc. , New York,
1941); Stratton, Morse, Chu, Little, and Corbat6, Spheroidal
8'axe FNnctions {TheTechnology Press of Massachusetts Institute
of Technology and John VAley and Sons, Inc. , New York, 1956).

The solution of Kq. (13) is given by"

(l m)f)$2 1qm/2

~(k) =je -(V)=
(l+m) ~ & P

(n+2m)!P' i"+"—'d (h
~
ml) j (h$), (15)

n!

& This value is obtained from the first excited level; therefore, it should
not be considered accurate.

& Average value for Zr» and Zr94. The value for Zr» may be less than this.
e The value of Q0 for this isotope is unknown, but a recent experiment

shows that the magnetic moment is very close to the single-particle value.
This seems to indicate that the deformation is very small {seeTable I, refer-
ence 1).

d The value for the natural isotopes. The main contribution is supposed
to be from Pb2«, Pb2o7, and Pb203 and the eccentricities are 0.02, 0.01, and
about 0, respectively.

IV. The quantity 0. is the maximum cross section for
neutron emission.

As seen in Table IV, the agreement with experiment
is fair, if we consider the uncertainties of F„l,and F,b, .
(For the former it would be about &0.5 Mev and for
the latter it is usually about &1 Mev. ) The experi-
mental variation of o /A is also suggestive, because
the narrower width F,&, usually corresponds to the
larger o /A. LSometimes, however, we fmd disagree-
ments, which might be due to the effects of (y,p)
reactions, or of neutron multiplicity. ) The relation
between I',b, and o /A can be explained by the sum
rule" that the integrated cross section is proportional
to A. Since j'odE oI', small I' c.orresponds to large
o /A.

Table IV shows that for most of the nuclei, F,.„(r.„.
For some strongly deformed nuclei the disagreement is
outside the uncertainties estimated above. Therefore
we arrive at the following conclusion.

If the nucleus is not deformed strongly, we might
expect that our present calculation assuming the
splitting of the resonance can explain the experimental
results. However, at least for strongly deformed nuclei,
we cannot explain the experimental data by using only
the idea of splitting. We must take into account the
broadening of the intrinsic width Fo itself.

From Table IV the Quctuation of Fo might be about
0.5—I Mev if the nuclei are not so strongly deformed.
Note added in proof New meas. u—rements of p are in
good agreement with our calculation: e.g., Eu'" has a
larger width than Eu'" and their cross sections have
different shapes (cf. their deformations in Table I). The
author is indebted to Dr. Katz and Dr. Cook for sending
him their experimental data.

V. LIGHT NUCLEI (Z(21)

In the above discussion we omitted light nuclei, since
the collective model may not apply so weB to them and
the contribution of the (y,p) reaction is usually sig-

s' J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).
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TABLE IV. Comparison of calculated value of the width and experiments. (The intrinsic width, I'0, is assumed to be 4.2 Mev. )

Nucleus

2oCa2o40

23V28

24Cr2852
25Mnsp55
28Fe2854

Fesp"
27Co325g

28Ni3o58
Ni32~

2g Cu34
Cusp'5

3pZn34
320e3s"

Ge 76

33AS4275

35Br44'
Q r4681

37Rb5p87

38Sr48"
87

Sr5,ss

3g&5oso

4pZ1 50
Zr51g1
Zr52g2

41Nb52gs

42M O50

45Rh5s"'
47Agoo"'

Ag62109

4ggn68
5pSn"
51Sb70"'

Sb 123

53~74

57La82

5sCe"
62Sms2'44
82SmI
85Tbg4'"

Ho 165

ssEr~
7pYb~
73Talos
7gAu118
82Pb"
83~I126

gp Th142232

g2UI41233

U, 4323S

g4Pu 145'"

r p
0.11 (~)
0.18 (s)

(&0 19e)
0.29

(0.16')
0.21
0.10 (i)
0.19 (s)

((0 15a)
(&0 16')

0.03
0.03

&0.19
0.15
0.23

&0.17
0.16
0.13
0.02

(&008 )
(&0.08)
(&0.05)
(-0)
(~p)
(&0.06)
(&0.09)

0,01
( &0.06)

0.20
0.16
0.17
0.14

&0.10
0.08
0.08
0.10

(~.05)
( 0.10)
(-0.1s)

0.37
0.31
0.29
0.27
0.22

&0.08
&p
~p

0.13
(0.15)
0.16
(0.17)

Z0(obs)

19.3
18.7

17.5
18.4
18.7
18.0
16.9
17.3
18.5
16.0
18.1
18.6
18.7
20.0
18.9
17;3
18.0
18.0
17.5
15.9
15.8
16.3
16.3
15.8
16.5
16.9
17.0
18.7
16.5
16.3
16.5
15.0
17.0
14.8
14.8
16.5
15.2
13.8
15.5
16.0
17.3
16.0
16.5
15.0
17.0
16.0
16.5
13.0
14.0
13.2
14.5
14.0
13.8
13.6

GT

~p
1.0
1.7

(&1.7)
2.7

(1.5)
1.9
0.8
1.6

(&1.4)
(&1.3)

0.5
0.6

1.5
2.2

&1.5
1.4
1.2
0.2

&0.6
&0.6
&0.4

(~p)
( 0)
(&o.5)
( &0.8)

0.1
(&0.6)

1.7
1.3
1.4
1.1

&0.9
0.6
0.6
0.8

(o.8)
~0,9

3.1
2.3
2.5
2.2
1.8

&0.5
&p
~p

0.9
1.1
1.1
1.1

sJJ
r 0

1.8
2.8

(&2.7)
3.8

(2.5)
3.0
1.4
2.6

(&2.4)
(&2.2)

1.0
1.1

&2.8
2.6
3.4

&2.4
2.4
2.0
0.4

&1.3
&1.2
&0.8

(~p)
( 0)
(&1 o)
(&1.5)

0.2
(&1.2)

27
2.2
2.3
1.8

&1.5
1.2
1.2
1.5

(1 6)
1.6

4.0
3.3
3.5
3.2
2.8

&1.P
&0
~p

1.6
1.8
1.9
19

GT

(4 2)
5.2
5.9

(&5.9)
6.9

(5.7)
6.1
5.0
5.8

(&5.6)
(&5.5)

4.7
4.8

&6.0
5.7
6.4

&5.7
5.6
5.4
4.4

&4.8
&4.8
&4.6

(4.2)
(4.2)

(&4.7)
((5.0)

4.3
((4 8)

5.9
5.5
5.6
5.3

&5.1
4.8
4.8
5.0

(5.0)
r 51

7.3
6.5
6.7
6.4
6.0

&4.7
&4.2
~4.2

5.1
5.3
5.3
5,3

+oaIo
sJJ

(4.2)
6.0
7.0

(&6.9)
8.0

(6.7)
7.2
5.6
6.8

(&6.6)
(&6.4)

5.2
5.3

&7.p
6.8
7.6

&6.6
6.6
6.2
4.6

&5.5
(5.4
(5.0
(4.2)
(4.2)

(&5.2)
(&5.7)

((5.4)
6.9
6.4
6.5
6.0

&5.7
5.4
5.4
5.7

~4 2

(5 8)
~5 8

6.3
8.2
7.5
7.7
7.4
7.0

&5.2
&42
~4.2

5.8
6.0
6.1
6.1

1'obs

4.2
5.8

5.8
8.8

6.3 or 6.9
6.1
5.4
8.4
5.6
4.0
5.5'

(6.0)
7.9 or 6.0

(&6.5)h

(~9 5)"
9.0
6.0
8.0
6.0
5.0
5.3
4.0
3.8
4.3
5.0
5.5

6.1 or 6.8
6.0
8.9
9.2
9.2

5.5 or ~5.0
6.0

(4.8)
(4.8)
8.0
6.6
5.7
7.0
5.0
6,8
7.5
8.0

13,0
13.5
10,0

7,0
5.0 or 6.3

4.5
4.1

5.6 or 6.0
6.0
6.6
6.3

om/A
(mb)

(0 4)
1.7

2.0
1.8
1.2
1.3
2.2
1.3
0.9
1.6
1.6
2.3
1 9
1.8
3.2
0.8
2.8
1.6
2.6
1 9
1.7
2.3
2.2
2.2
2.2
2.1
2.1
1.5
2.0
1.9
2.9
3.7
2.4
5.6
2.9
3.0
3.5
4.3
2.7
3.0
(0.9)
2.7
2.4
1.9
2.1
2.6
3.4
3.0
3.8
3.0
3.5
7.2
4.1
6.6

Reference

d
b

aore
a

b

d
~ ~ ~

d
a or g

b

a

I
1
I
I
1

I
1

a or b
a
b

aorj
1

a
a
1

a
b
1

1

1

1

1

1

1

1

1or a
1

b
morn

b
n

See reference 1.
b See reference 2.

Data calculated from the first excited states.
d J. Goldemberg and L. Katz, Can. J. Phys. 32, 49 (1954).
+ J. H. Carber and K. H. Lokan, Australian J. Phys. 10, 312 (1957).
& The average value of the results of several authors.
& deSonza Santos, Goldemberg, Pierona, Silva, Borello, Villaca, and

Lopes, Acad. Brasil. Cienc. 27, 437 (1955).
h These values were not listed in the original paper (reference g), since

their experiments did not cover high energy and they could not measure
the half-width. The values listed in the table were obtained by linear
extrapolation of their cross-section curves, so the actual values of the widths
would be somewhat larger than these.

' P. F. Yergin and B. P. Fabricand, Phys. Rev. 104, 1334 (1956).
I Bogdankevich, Lazareva, and Nikolaev, Zhur. Eksptl. i Teoret. Fiz. 31,

405 (1956) Ltranslation: Soviet Phys. JETP 4, 320 (1957)g." In reference 8 the experiments were performed for natural isotopes.
I See reference 8.

Lazareva, Gavrilov, Valuev, Zatsepina, and Stavinsky, Proceedings of
the Conference of the Academy of Science of the U. S. S. R. on the Peaceful
Uses of Atomic Energy, Moscow, July 1-5, I%55, Session of the Division of
Physical and Mathematical Sciences (Akademiia Nauk, S.S.S.R., Moscow,
1955) t English translation by Consultants Bureau, New York, 1955j, p. 217.

n Katz, McNeill, LeBlanc, and Brown, Ckn. J. Phys. 35, 470 (1957).

ni6cant. However, qualitatively the same tendency is
expected to appear also for light nuclei.

The cross section of Be' has three peaks and one of
them is regarded as a giant resonance. The latter has a
large width (7 to 8 Mev), '4 which might be due to the

"R.Nathans and J. Halpern, Phys. Rev. 92, 940 (1953).

nonsphericity of this nucleus. C" has a similar cross
section, "which could be explained in the same way.

The measurement of fine structure in the cross

s~ Cook, Penfold, and Telegdi, Phys. Rev. 104, 554 (1956);
B. C. Cook, Phys. Rev. 106, 300 (1957).
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TABLE V. The energies of the 6rst excited states of even-even
nuclei of A &40 and their resonance widths.

Nucleus

6CP
sos16

1pNe1p~
12Mg12
12Mg14 '

14S&14'

16S16
16S1s
1SA22
2pCa2p~

AB1 (Mev)

4.44
6.05
1.63
1.38
1.84

1.8
2.25
2.13
1.46
3.8

I' (Mev)

4.2
3.4
6.6
7~8
2.5 (y,ls)
2 5 (v,p)
3.5
4.5
4.0
8.5
4.2

Reference

b
b
c
d
e,f
e,f
g
g
g
c
g

a 4E& is taken from reference 13.
b J. H. Carber and K. H. Lokan, Australian J. Phys. 10, 312 (1957).
e See reference 35.
d R. Nathans and P. F. Yergin, Phys. Rev. 98, 1296 (1955).
e Katz, Haslam, Goldemberg, and Taylor, Can. J. Phys. 32, 580 (1954).
f However for Mgmg there is another experiment, according to which the

cross section is quite diferent. Therefore the values listed here are doubtful
$P. F. Yergin, Phys. Rev. 104, 1340 (1956)j.

& See reference 1.

section" shows that the number of breaks for Li or
F" is less than that for C" or 0".This also might be
due to the nonsphericity of Li7 or F".

~1Na1223 is a famous exception to the shell model and
its Q is fairly large. Its I', 6.0 Mev, ' is also rather large
for this region. 10Ne11" is also an exception to the shell
model, which might be related to the large resonance
width of Ne". (See the later discussion and Table V.)
$3Al&4s7 has a large Q. The width for neutron emission
from Al is not so large, ' but measurements" of the (y,y)
cross section show that the total resonance width might
be large.

According to the analysis of magnetic moments by
Bohr and Mottelson" P" is deformed much more
strongly than F".The F of F"is fairly large, 5.6 Mev, "
showing that it is deformed; while for P" F has the
large value of 10.2 Mev, ' which is consistent with the
prediction of Bohr and Mottelson that P" has about
the same deformation as rare-earth nuclei. Si" may be
similar to P".

For even-even nuclei Table V lists the energies of the
erst excited states, " hE~, together with the widths.
Small values of AE1 correspond to large deformations,
and therefore to large widths. This relation proves to
be true except for Mg" and Si". For Mg" the dis-
crepancy is explained in a footnote to Table V. For Si"
it may be due to the contribution of the (y,p) reaction.
It is interesting to compare A" and Ca". They have the
same mass number, but the widths are quite diferent,
in good agreement with the diGerence in values of AE1.

VI. COMMENT ON THE MASS-NUMBER DEPENDENCE
OF THE RESONANCE WIDTH

The resonance width F has been believed" to de-
crease with increasing mass number, A. Several authors

2'Montalbetti, Katz, Haslam, Horsley, and Cameron, Phys.
Rev. 95, 464 (1954);J. Goldemberg and L. Katz, Phys. Rev. 95,
471 (1954).

2~ Ferguson, Halpern, Nathans, and Vergin, Phys. Rev. 95, 776
(1954).

tried to explain this trend, but all of them failed except
Wildermuth. ""However, as we have seen, the actual
data on the resonance widths are not so simple. Clearly
a strong Quctuation is observed. For spherical nuclei,
the width Fa does not decrease with A, but is rather
constant. I' may even increase with A, as suggested by
the following argument.

One of the reasons for damping of the resonance is
the collision of the particles, as Wildermuth has already
discussed. ' The probability of collision between par-
ticles belonging to di8erent levels is, roughly speaking,
inversely proportional to the level spacing. Therefore,
the higher the level density the larger is the intrinsic
width. Using this idea, we could explain the discrepancy
between the observed values and the calculated values
in Table IV, because the level density becomes higher
for nonmagic nuclei. "However, according to this idea
the intrinsic width must increase with A, because the
level density increases with A. In fact, the calculations
of intrinsic widths by Fujii-Takagi" and Fujita" show
a tendency to increase with increasing A.

Another important reason for the damping of the
resonance is the coupling of dipole vibration to surface
oscillation. Preliminary calculations of Reifman'4 and
Soga et al.'~ show that this is a decreasing function of
A. Therefore we arrive at the following conclusion.

The mass-number dependence of the resonance width
may be a superposition of two competing tendencies,
which results in a roughly constant intrinsic width, r„
for spherical nuclei (about 4 to 5 Mev). In addition to
this, the Quctuation of Fo due to the change of level
density between closed shells and the increase of the
apparent width due to the splitting, 5F, are super-
imposed. The resultant width, F, shows a very com-
plicated behavior.

3A&q
Es=—,'&co'P = P.

4ero
(19)

2s K. Wildermuth, Z. Naturforsch. 10a, 447 (1955).
29K. Wildermuth and H. Wittern, Z. Naturforsch. 12a, 39

(1957).
~ The validity of his treatment is not too clear, but if we are

satisfied with a rough estimate of the intrinsic width, it might be
justi6ed, (Concerning this point the author is greatly indebted to
Dr. Wildermuth for private communications. )' This point is also suggested by J. Fujita (private communi-
cation).

s2 S. Fujii and S. Takagi, Progr. Theoret. Phys. (Japan) 14, 405
(1955).

~ J. Fujita, Progr. Theoret. Phys. (Japan) 16, 112 (1956).
~ A. Reifman, Z. Naturforsch. Sa, 505 (1953)
"Soga, Iishima, and Nogami (private communication).

VII. VALIDITY OF THE MODEL

In the above analysis we always used the value of
Qs in the ground state. We now consider whether the
nuclear shape will be the same in the highly excited
state reached by photon absorption.

For this purpose we evaluate the value of the ampli-
tude of dipole vibration. For the GT model, ' the value
of the amplitude, P, is
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Then we find
$/Ra=1. 5A &. (2o)

This is about 1/13 for A=50, 1/23 for A=100, and
1/35 for A=200. These results agree approximately
with those of Fujii and Takagi" using a more exact
model.

In the SJJ model, ' the value of $ is obviously zero.
Both models agree fairly well with experiment, showing
that the nuclear shape may be about the same in the
ground state and in the excited state.

We now compare the combination of high excitation
energy with small change in nuclear shape, with other
examples of nuclear deformations, for instance surface
vibration or 6ssion. In the latter cases the deformation
is carried out without changing the nucleon density.
In the former case protons are separated from neutrons,
which requires a considerable amount of energy. More-
over, all protons are pushed to one side of the nucleus,
which is energetically unfavorable. Therefore, in photon
absorption the energy used for deformation of the
nucleus may be very small, so that the nuclear shape
would be conserved approximately.

However, as seen in Table I, for nuclei of spin 9/2
(neutron con6guration g9/2) the situation is somewhat
diferent. For Ge", Qo obtained from the spectroscopic

Q is quite different from Qo obtained by Coulomb
excitation. For Kr" and Nb" the same results might be
expected. For proton configurations this tendency is
not so strong (see In"' "'), which supports the con-
clusion that the nuclear shape is determined mainly by
neutrons. "The value of I' for Ge" is very large, and for
Sr"and Nb" it is somewhat larger than the neighboring
values.

From the viewpoint of nuclear structure it is expected
that these nuclei have a small Q in the ground state,
but that the E2 transition probability is fairly large so
that Qo obtained from Coulomb excitation is larger'
In other words, the shape of the excited state is diferent
from that of the ground state. This might explain the
discrepancy between I',b, and F„&, of Table IV for
these strongly deformed nuclei which have go~2 con-
figurations of neutrons.

Therefore we can say that the nuclear shape may not
change appreciably even in highly excited states reached
by photon absorption, in contrast to the large change of
shape in 6ssion; this is an essential difference between

"The author is greatly indebted to K. W. Ford and S. A.
Moszkowski for their explanation of this point.

the usual one-fluid model and the two-fluid model used
in dipole vibration. However, for special nuclei (such
as the g9/2 neutron shell) where the surface tension is
very weak, it might be possible that the nuclear shape
will change appreciably even in relatively low excitation.

VIII. SUMMARY AND CONCLUSIONS

Finally, we draw the following conclusions:

(1) The experimental data on nuclear deformation
agree fairly well with the calculation of Marumori,
Suekane, and Yamamoto, "with few exceptions.

(2) There is little doubt as to the existence of a
strong correlation between the nuclear deformation
and the resonance width of a photonuclear reaction.

(3) The calculation assuming splitting of the reso-
nance and assuming constant intrinsic width, 4.2 Mev,
gives results which agree qualitatively with experi-
ments, but quantitatively the calculated values are too
low. We must take into account also the change (with
A) of the intrinsic width itself.

(4) The mass-number dependence of the resonance
width is very complicated, though for spherical nuclei
it is roughly constant.

(5) The nuclear shape may not change seriously
even in highly excited states. This could be explained
if we take into account the difference between the one-
Quid model and the two-Quid model.

(6) From the above analysis we see that the reso-
nance width of a photonuclear reaction has a strong
relation to the nuclear structure. A careful investigation
of the former in connection with the latter may give
us some information on the relation of nuclear structure
to nuclear reactions.
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