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The correlation between nuclear deformation and the resonance width of photonuclear reactions is
discussed. The general trend of the nuclear deformation is in good agreement with the predictions of
Marumori, Suekane, and Yamamoto, and the existence of the correlation is clarified. The calculation
assuming the splitting of the resonance and a constant width for spherical nuclei agrees qualitatively with
experiments, but quantitatively the calculated values are too low, especially for strongly deformed nuclei.
For light nuclei the quantatitive calculation has little meaning, but a similar correlation is found for them.
The mass-number dependence of the resonance width is discussed qualitatively; it turns out that the vari-
ation of this width arises from various causes and is not a simple function of mass number. A discussion of
the nuclear shape in the highly excited state (~20 Mev) is given, and it is shown that this nuclear shape
may not be very different from the shape in the ground state.

I. INTRODUCTION

HOTONUCLEAR reactions have been studied
extensively for the past several years. The observed
mass-number dependence of the resonance energy is in
agreement with the theoretical predictions!-? of Gold-
haber and Teller® (hereafter denoted as GT) or of
Steinwedel, Jensen, and Jensen* (hereafter denoted as
SJJ). The systematics of the resonance width has also
been studied experimentally,!? and it has been found
that the values of the resonance width are small at
magic numbers and large in the intermediate regions.?
Since this behavior is quite similar to that of the
nuclear quadrupole moment, it was proposed by the
author® and independently by Danos® that this fluc-
tuation of the width might be explained by nuclear
deformation. If we assume that the resonance splits
into two parts due to the deformation, we can calculate
the value of this splitting from the quadrupole moment.
The calculated results® agreed fairly well with experi-
ments. However, in this calculation we should have
used intrinsic quadrupole moments obtained from
Coulomb excitation instead of the quadrupole moment
from spectroscopic experiments. Therefore the results
of the previous note® should be taken rather quali-
tatively.

Recently, many experiments on Coulomb excitation
have been performed,” giving us sufficient data to
study the systematic variation of nuclear deformation.
Moreover, the resonance width has now been measured
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for rare-earth nuclei.! These nuclei have very large
resonance widths and their cross-section curves show
the possible existence of a splitting into two peaks.

Therefore we have extended the calculations of our
previous note® using intrinsic quadrupole moments,
and the collective model of GT? or SJJ.* This type of
calculation of splitting has also been performed® by
using the independent-particle model as discussed by
Wilkinson.10

In Sec. IT we summarize the experimental data on
intrinsic quadrupole moments. Our values agree fairly
well with the calculations of surface rigidity by
Marumori, Suekane, and Yamamoto.!* In Sec. III we
investigate the correlation between nuclear deformation
and the resonance width. In Sec. IV the calculation of
the splitting is carried out and the results are compared
with experiments. In Sec. V we give a qualitative dis-
cussion about light nuclei (Z<21), for which the
quantitative calculation has little meaning. In Sec. VI
we comment concerning the mass-number dependence
of the resonance width. In Sec. VII the validity of our
model is discussed qualitatively. In the last section we
summarize our results.

II. NUCLEAR SHAPE AND INTRINSIC
QUADRUPOLE MOMENT

Bohr and Mottelson'? showed that the spectroscopic
quadrupole moment, Q, was given by
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where Q, is the quadrupole moment due to the particle
outside a core and Q, is the quadrupole moment due to
the surface deformation. Furthermore it was shown!?
that

Qs=P(2)Qs, 2

where Q, is the intrinsic quadrupole moment, which is
related to the “classical shape” of the nucleus. The
projection operator P is a function of x, the parameter
of the coupling strength between particles and the
surface. P(x) is given by Bohr and Mottleson for weak
coupling (w), intermediate coupling (7), and strong
coupling (s). Therefore, if we know Q and the value
of x, we can calculate Qp. We can also obtain Qo directly
from the experiments on Coulomb excitation.

If we do not have any data on Coulomb excitation
for even-even nuclei, we shall make use of the data on
the first excited states®® of such nuclei to calculate the
value of Qo. However, it is well known that the value
of Qo obtained from the energy of the first excited level
is several times larger than the value of Qo from Cou-
lomb excitation. Therefore we normalize the former to
nuclei for which the data on Coulomb excitation are
known, and determine the approximate value for other
nuclei. The values obtained in this way are marked
with a superscript “e” in Table I.

The value of Qo determined from Q depends upon #.
The coupling strength x can be determined by the
following method: we introduce a quantity, F(E2),
defined by the ratio of the observed electric quadrupole
transition probability, B(E2)ebs, to the single-particle
value, namely

F(E2)=B(E2)obs/ B(E2)s.p.. 3)
For B(E2)s.,. we use the following estimate”:
B(E2)s5.=3X1075443X 10~ cm?*. )

We define the strength of the coupling in the following
way:

(1) Weak coupling (w):
Qobngs.p.;
(2) Intermediate coupling (3):

Qobs = 2—3Qs.p .
or

or F(E2)=1.

or Qobngconf, or 1<F(E2)§10!

MobsEMs.p. DUt Hobs=ZHcont-

Here p is the magnetic moment and “conf’’ means the
values obtained by configuration mixing.!!:14.15
(3) Strong coupling (s):

Qobu>>Qs.p.: or Qob;g?éQconf, or F(E2)>>10,
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or
ﬂobs#ﬂconf-

Of course, these criteria are rather arbitrary.
Finally, we calculate the nuclear eccentricity, here
defined by!®

e= (R1—Ry)/Ry, (5)

where R; and R, are the longer and shorter axes of a
spheroidal nucleus, respectively, and R, is the radius
of a spherical nucleus with the same volume. The
relation between Qo and e is

e= SQ(]/ (4ZR02) (6)

Throughout this paper we shall take Ro=(1.5)%4%
X107 cm.

The results for stable nuclei (Z=21) are listed in
Table I. Light nuclei will be discussed in Sec. V.

III. CORRELATION BETWEEN NUCLEAR ECCEN-
TRICITY AND RESONANCE WIDTH OF
PHOTONUCLEAR REACTIONS

In order to show that there exists a correlation
between the nuclear eccentricity and the experimental
resonance full width at half-maximum of the cross
section for photon absorption, we plot these two
quantities in Fig. 1.

Since the deformation of the nucleus seems to be
affected more strongly by neutrons than by protons,
we draw the graph as a function of neutron number.

It was shown by Morinaga!” and Johansson!® that
the (y,p) reaction was sometimes several times to ten
times larger than the (v,7) reaction for nuclei of 4 $40.
Therefore, for such light nuclei the approximation of
taking only the width of the reaction which emits
neutrons might not be good. However, for the heavier
nuclei shown in Fig. 1, this approximation is expected
to be fairly good.

The experimental uncertainty of the width is assumed
to be =1 Mev; while the uncertainty in e is estimated
to be from 20 to 309, of its value.

IV. SPLITTING OF THE RESONANCE
DUE TO DEFORMATION

(a) Approximate Calculation

Figure 1 clearly shows that a correlation exists
between Qo and the resonance width I'. The discrep-
ancies at neutron number N <50 might be due to the
contribution of the (v,p) reaction.

This correlation can be explained by the splitting of
the resonance. The resonance energy of dipole vibration
(hereafter denoted as E,) decreases with increasing

16 This definition of eccentricity is different from the previous
one (reference 5). In reference 5, e= (R:2—Rs?)¥/R1. The relation
between these two definitions is: &=e(6+¢)/(3-+4e).

17 H, Morinaga, Phys. Rev. 97, 1185 (1955).

185, A. E. Johansson, Phys. Rev. 97, 1186 (1955).
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TasLE 1. Various quantities related to nuclear deformation. Items enclosed in parentheses represent assumed or uncertain values.
Column 1: Nucleus studied. Column 2: ground state spin, 7. Column 3: observed value Qobs of the spectroscopic quadrupole moment.
The data are taken from the review article of Blin-Stoyle,? unless otherwise stated. Column 4: single-particle value Qs.p. of the spectro-
scopic quadrupole moment. Column 5: the value Qcont calculated from configuration mixing.? ¢ Column 6: intrinsic quadrupole moment
Qo calculated from Qps for the case of intermediate coupling. Column 7: intrinsic quadrupole moment Qo calculated from Qops for the
case of strong coupling. Column 8: intrinsic quadrupole moment Q, from experiments on Coulomb excitation. Column 9: enhancement
factor F(E2) defined by Egs. (3) and (4). Column 10: single-particle value us.n. of magnetic moment. Column 11: calculated value
Meons Of magnetic moment using configuration mixing.¢ Column 12: observed value pons 0of magnetic moment taken from the table of
Blin-Stoyle.® Column 13: coupling strength between extra particles and the surface determined as weak (w), intermediate (), or strong
(s) by the criteria in the text. Column 14 : nuclear eccentricity e calculated by Eq. (6). Qo is taken from the Coulomb excitation measure-
ments, if available. Otherwise Qo is taken from the spectroscopic value Qobs With the coupling strength listed in column 13.

) ) 3) 4) ) (6) ) 8) ) (10) 1) 12) (13) (14)
Q (1072 cm?) Q0(1072¢ cm?) m
Nucleus I obs s.D. conf inter. strong Coul. F(E2) s.p. conf obs Coupling e
21SC2448 7/2 5.79 4.74 4,76 s
22 Ti2446 0 e ces . 0.75¢ 11 e ce. ces s 0.23
Tizst? 5/2 e (>0.924) 210 —0.8 K (>0.28)
Tissts 0 ) .. e 0.564 6.0 . o . i 0.17)
Tizt® 7/2 . —-191 —0.58 -1.1 s
Tizg80 0 e e . (0.52¢) “4.9) i (0.16)
23V 2750 ) 27 K
Vgt 7/2 0.3+0.2 —0.02 —0.03 0.42 0.68 (>0.39) 34 5.79 5.02 5.15 iors (0.18) (s)
24Cr2650 0 .. ..
Crasb? 0 cee e cen (0.76¢) (13) . . Z (0.19)
Crgt8 3/2 S —1.91 —0.49 —0.47 Z
Crsob4 0 (1.00¢) (16) - s (0.23)
25Mn3o% 5/2 0.3+0.15¢ 0.08 e 0.35 0.76 1.26d 320 4.13 3.47 s 0.29
26Feqsst 0 Cee Ce. . (0.77¢) 12) . e N (0.16)
Feaobt 0 1.00d 15 s 0.21
Feab7 1/2& e v e >1.00d 15 —191 404 0.05 s 0.21
Fej,t8 0 N L (1.02¢) (15) N s (0.21)
27C0325° 7/2 0.5+0.2 0.08 0.19 0.55 0.99 5.79 4.10 4.65 tors 0.10 (z)
[0.30]> 0.19 (s)
28N i30%8 0 . Ve (0.73¢) (11) i (0.15)
Nis260 0 Ce. . . (0.77e) (12) . . . 7 (0.16)
Niszabt 3/2) —-191 -0.03 ~0 Z
Nisz462 0 (0.760) (11) e .. i (0.16)
Nisett 0 e AN e (0.78e) (13) N AN . iors (0.16)
29Cu 3463 3/2 —0.16 —0.06 —-0.11 —0.17 —0.90 (—1.034) 6.5 3.79 2.17 2.23 7 (0.03)
Cues 3/2 —0.15 —0.06 —0.11 —0.15 —0.84 (—0.964) 5.5 3.79 2.30 2.38 i 0.03
30Zn3a64 (V] “en . e 1,044 14 s 0.19
Zngete 0 0.93d 11 s 0.16
Zngs7 5/2 e e 18 1.37 0.81 0.88 s
Zngss 0 . . e (1.00e) (14) s 0.17
Znye™ V]
31Gasgs® 3/2 0.23 0.05 0.15 0.25 0.98 3.79 1.58 2,02 s 0.16
[0.2078
Gago” 3/2 0.15 0.05 0.15 0.13 0.50 3.79 1.82 2.56 s 0.08
[0.14]0
32Gess™ 0 . . —0.99d 10 s 0.15
Geyo™ 0 —1.264 18 e s 0.19
Geu™ 9/2 —0.2 . —0.43 —0.22 —-0.37 > —1.494 450 -191 -1.72 —0.88 s >0.21
Gesz™ V] e e —1.584 27 s 0.23
Geus?® ] e .. —1,524 24 cee N N s 0.23
33A84278 3/2 0.32 0.06 0.18 0.36 1.46 (>1.20)d 90 3.79 2.21 1.44 5 >0.17
1.54
34Seq0™ 0 . . cee 1.45d 23 s 0.17
Seq276 V] v . e 2.074d 44 e s e s 0.27
Sess”? 1/2 e e N (>2.08)¢ 43 0.64 . 0.53 s >0.27
Seus™8 0 e AN v 1.89d 36 . . s 0.24
Ses80 0 e e . 1,524 22 s 0.20
Seus8? ] 0.754 5.2 H 0.09
35Brag? 3/2 0.33 0.06 0.19 0.41 1.92 (>1.62)1 3.79 2.55 211 s 0.16
191
Bryg®t 3/2 0.28 0.06 0.19 0.34 1.62 (>1.81)i 3.79 2.52 2.27 s 0.13
191
8Kr8 0 N e e 2.9 83 s 0.36
Kru® 0 e N e 1.7 29 s 0.21
Kraed? 0 . e v 0.9i 8.8 . Ce . 1 <0.12
Kra8 9/2 0.15 . 0.28 0.19 0.28 —-191 -0.83 —0.97 s 0.02
Kragt 0 . . e 0.75i 5.6 e . H <0.08
Krgo8 0 e Ve N
1R b4g88 5/2 0.31k 0.07 . 0.34 0.66 0.86 1.32 1.35 1 0.04
Rbso8? 3/2 0.15k 0.05 [0.17]n (0.14) 0.38 3.79 2.79 2.75 s 0.02
3sSr4684 0
Srys8é 0 . e (0.76¢) (5.1) i (<0.08)

Sre¥? 9/2 . [6:14]1' —-191 -—-0.68 -—1.1
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TaBLE 1.—Continued.
1) 2) 3) 4) 5) ©) ) (®8) ) (10) (11) 12) 13) (14)
Q (1072 cm?) Qo(1072% cm?) m
Nucleus I obs s.p. conf inter. strong Coul. F(E2) s.p. conf obs Coupling e
Srpo88 0 (0.58¢) 3.0) cee i (<0.05)
39 Y5089 1/2 —0.26 —0.14
40Z150%0 0 . (0.55¢) (2.8) e o w (<0.05)
Zrs 5/2 [—0.0831 -191 -0.8 —1.91 w
Zrs2®? 0 0.9m 6.0 i <0.09
Zrse 0 i
Zrge®® 0
11N b52% 9/2 —0.20 —0.13 —0.33 (0.12) —0.24 6.79 6.60 6.16 (i orw) 20.01
5.71
12Mogo®2 0 (0.71e) (4.1) s (<0.06)
Mos2% 0 1,704 23 co. e e s 0.17
Moss%® 5/2 (>1.434) 95 —191 -035 —091 s (>0.13)
—1.08
Moss® 0 1.764 23 .. co. - s 0.17
Moss®? 5/2 -191 +0.05 —0.93 s
—0.65
Mose® 0 1.644 20 s 0.16
Moss!t® 0 2.574 47 s 0.24
1aRus2% 0
Rusa®® 0 co.
Russ® 5/2 (1.45)d 70 —1.91 s 0.12
Rugel®® 0 1,734 22 e s 0.15
Rus1 5/2 (>1.94)d (23) —1.91 s 0.16
Russ! 0 2.514 44 s 0.21
Rueo!® 0 3.224 71 - e s 0.27
15R 55108 1/2 2.30 —0.26 —0.10 s 0.20
1sPd 56102 0 A
Pdsst® 0 2.14 31 - L - s 0.17
Pds105 5/2 (2.0)» —191 —045 —0.57 s 0.17
Pdgot08 0 2.44 39 s 0.19
Pde2108 0 2.8d 51 s 0.23
Pde4l10 0 3.24 60 o .. s 0.27
a7Age0107 1/2 2.0a 24 —0.26 -0.11 s 0.16
Age210? 1/2 2.2a 28 —0.26 —0.13 s 0.17
43Cd 58108 0
Cdeot8 0
Cdea10 0 2.02d 31 e e - s 0.15
Cdea!! 1/2 2.2d 30 —-191 —0.49 —0.59 s 0.16
Cdea112 0 2.14d 28 e L. . s 0.16
Cdest13 1/2 2.9d 70 —191 -0.77 —0.62 s 0.21
Cdes!4 0 2.354 33 s 0.17
Cdest16 (1] e . e 2.494 36 Ce e el s 0.19
49Ines!1® 9/2 1.14 0.16 0.41 1.10 1.93 6.79 5.62 5.49 s 0.14
Ines!!5 9/2 1.16 0.16 0.42 1.12 1.97 6.79 5.59 5.50 s 0.14
50Sne2!12 0
Sne4llt 0
Sngs!1s 1/2 —-191 -0.73 —0.92 z
Sneggllé 0 1.32m 10 e e e 7 <0.09
Sner1? 1/2 —-191 -—1.18 —1.00 i
—0.50
Snes!t8 0 1.37m 11 RN e A i <0.09
Snegll? 1/2 —191 —-0.95 —1.05 i 0.09
Snyo!20 0 1.41m 11 i 0.11
Snzpl22 0 1.42m 11 i 0.11
Snzal2 0 1.38m 10 i 0.09
51Sbro!2 5/2 —0.5 —0.13 —0.26 —0.58 —1.27 4.79 3.49 3.36 s 0.08
Sbyzl2 7/2 =07 —0.15 —0.39 —0.73 —1.35 1.72 2.49 2.55 s 0.08
52 Tes!20 0 2.35¢ 31 s 0.15
Tezol22 0 2.174d 26 e Lo Ve s 0.13
Ten1? 1/2 0.7)a —191 -0.82 -0.74 %) (0.04)
Terz!2t 0 1.974 21 e . . s 0.12
Terzs12s 1/2 2.1a —191 —0.60 —0.89 s 0.16
Teza26 0 1.79d 17 s 0.11
Teze!28 0 1.674 15 s 0.09
Tezs130 0 S C. R 1.614d 13 PN N e s 0.09
5al74127 5/2 —0.69 —-0.14 —0.31 —0.97 —1.80 4.79 3.04 2.81 s 0.10
saXerol2t 0
Xegol28 0 (2.48e) 32)
Xergl28 0 (2.33¢) (28) e L s 0.13
Xerst2® 1/2 —191 40.14 —0.78 s
—1.10

—0.46
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TABLE I.—Continued.
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1) 2) @A) ) ) 6) (7) ®) ) (10) (11) (12) 13) (14)
Q (1072 cm2) Q0(1072% cm?2) M
Nucleus I obs s.p. conf inter. strong Coul. F(E2) s.p. conf obs Coupling e
Xezgldo 0 e . (2.07¢) (22) . S o s 0.12
Xemtdt 3/2 —0.12 —0.26 —0.20 —0.72 1.15 0.48 0.70 s (0.11)
0.70 assumed

Xersld? (1] (1.84e) a7) s 0.11

Xegoldt 0 (1.49¢) (11) s 0.08

Xesa136 0 L . (1.29¢) @8) .. . 7 0.07
55Csr3l88 7/2  —0.003 —0.11 1.72 2.10 2.58 (w) ~0

2.42
2,75
s6Baz4130 0 ce

Bazs®2 0 (1.52) 11) s 0.09

Bazgist 0 (1.70¢) (14) . .. . s 0.11

Bagyss 3/2 1.15 0.94 0.83 (s) 0.12

Baso!36 0 (1.60¢) (12) N L. L s 0.09

Bag137 3/2 1.15 0.95 0.94 iors

Bag138 0 . (1.260) 7) i 0.08
srLag s 5 (0.7)r (0.05)

Lags139 7/2 0.23t 0.16 0.44 1.72 1.88 2.78 w ~0

2.19
58Cerst3t 0

Cesol38 0

Cesga140 0 (1.19¢) (6) i 0.07

Cegql42 0
soPraaiel 5/2 —0.01! —0.14 —0.30 479 453 4.0 @)  (~0)

[—-0.35] 3.95
soN ds2142 0 . e 0.88s 3.4 . . . i 0.04

Ndsst4d 7/2 ~1 1.4 21 —-191 —0.84 -1.0 z 0.08

Ndss# 0 1.33s 7.7 i 0.07

Ndgsts 7/2  ~1 1.4 2.1 —191 —1.05 —0.65 i 0.08

—0.64

Ndgs!46 0 1.58s 11 i 0.08

Ndsgsl48 0 2,63t 29 s 0.13

Ndgo%0 0 4.80¢ 96 s 0.24
62Smgaled 0

Smagst4? 7/2 0.72 1.03 1.54 —191 —1.00 —0.76 (s) 0,08

: —0.60
Smugs48 0 2.241 27 e s 0.11
Smg149 7/2 0.72 1.03 1.54 -191 -—1.21 —0.64 s 0.08
—0.81

Smssls® 0 3.131 41 s 0.15

Smgo!52 0 5.57i 127 s 0.27

Smgslst 0 e e e 6,711 182 . .. e K 0.32
s3Eusst! 5/2 1.2 0.16 0.36 3.4 4,79 3.6 3.6 s 0.15

Eugol 5/2 2.5 0.16 7.1 7.1u 4.79 1.6 s 0.32
84Gdgs!5? 0 (4.00) (110) e e s 0.17

Gdgot® 0 e v N 6.5 179 e ces e s 0.29

Gdo1156 3/2 1.1v . e 6.9 6.8u —0.31 K 0.29

Gdg2!58 0 ce. e 71w 200 oes cee . s 0.32

Gdg3?57 3/2 1.0v e 6.3 6.2u —0.38 s 0.28

Gdosl58 0 7.7u 231 .ee coe s 0.35

Gdogt60 (1] o 9,7u 361 e e e s 0.44
65 Tboal®® 3/2 8.7u 0.12 1,5+0.4 s 0.37
s6Dyg0158 0 . “ee .o s

Dyg2158 0 e oo . .o s

Dyyql60 0 e e 7.1x 193 e e oo s 0,29

Dygsttl 3/2) s

(5/2)
Dygs!2 0 . e 7.9% 236 eee eee .o s 0.34
Dysis  (3/2) s

(s/2)

Dygstts 0 . . 9.2x 315 ess e ves s 0.39
7H 095165 7/2 2 0.18 42 7.6u 213 s 0.31
esErgal2 0 . eee P PR s

FErgsl64 0 7.3x 198 P P cee s 0.29

Erggttt 0 e . .es (7.3¢) (195) .o ves ees s 0.29

Ergl67 7/2 10.2 .. 0.70 21.9 —-1.91 —0.5 s (0.29)

3.5)f (7.5)

Er100!68 0 . (7.557)s (208) . s (0.29)y

Er10217 V] A . e s
oTmiot®  1/2 (6.16) 2.79 —0.2 s (0.24)
70 Y bog!68 0 s

Ybioo! 70 0 7.1x (178) . . s 0.27
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TABLE I.—Continued.

) 2) @A) 4) ) ©6) (7) ®8) ) (10) (11) (12) 13) (14)
Q(10-% cm?) Qo(1072 cm?) »
Nucleus I obs s.p. conf inter. strong Coul. F(E2) s.p. conf obs Coupling e
Ybi1o!7 1/2 0.64 0.5 0.45 s
Yhio2!72 V] . Ce . s
Ybua®  5/2 39 10.9 1.37 —0.7 s
Ybuan 0 (6.93v)s + s 0.25)y
Ybios!76 0 N
71Lu104l78 7/2 3.9 0.18 0.74 8.1 8.5u 1.72 2.4 2.9 s 0.32
Lu1ost7?s >7 8.0 (~10) 4,2 s (0.37)
72Hf 102174 0 s
Hf 104176 0 . e R 7.98a .. s 0.29
Hf 105177 7/2 3.0 R . 6.4 8.9u —1.91 s 0.33
Hif 106178 0 e N L. 7.9bb s 0.29
Hf 10117 9/2 3.0 - 5.5 8.3u s 0.31
Hf 105180 0 . R e 7.92a ce A e s 0.29
73Ta108!8 7/2 2.7 0.20 0.65 5.6 6.7bb 1.72 2.6 2.1 s 0.22
74W 106180 0 (8.0¢) 210 s (0.28)
Wost82 0 7.6 ... ce cen s 0.27
Wiggt83 1/2 (6.9bb,co) 0.64 Ce 0.1 s (0.24)
Wieldt 0 6.7 N 0.24
Wipp186 0 ‘e . . 5.9x 109 A L . s 0.21
75Re110185 5/2 2.8 0.18 0.39 5.0 7.7 4.7vb 4.79 3.19 3.17 s 0.16
Re11187 5/2 2.6 0.18 0.40 4.6 7.1 4.3bb 4.79 3.17 3.20 s 0.15
7608108184 0 s
Os110188 0 (5.6¢) (104) s 0.19
Os111187 1/2 s
Os112188 0 o . e (5.32) e s 0.18
Os115!8 3/2 0.6 A 1.0 3.7 0.7 s 0.12
Os114190 0 (5.0¢) s 0.17
Os116192 0 . . . (3.9¢) (45) . . . s 0.13
77lrngd® 3/2 1.0+0.5 0.14 0.40 1.5 5.9 5.3dd 0.12 0.44 0.17 s 0.17
Iryie1% 3/2 1.0+0.5 0.14 0.40 1.5 59 3.44d 0.12 0.44 0.17 s 0.11
78Pt11190 0 .. . . s
Ptua 0 (2.52¢) (19) . cee . iors 0.08
Pttt 0 2.4bb 17 . .. . i 0.08
Pti195 1/2 3.2bb 0.64 0.61 z 0.11
Pt1151% 0 1.7vb 8.7 e . ce i 0.05
Pt120198 0 . e . 1.4bb 5.8 .. A .. i 0.03
79Au 118197 3/2 0.6 0.14 0.29 0.8 3.5 2,688 18 0.12 0.45 0.14 iors 0.08
0.29
soH 116196 0 (2.2¢) i 0.07
Hg1s!98 0 2.2dd 14 . L. i 0.07
Hg11% 1/2 1.64d 0.64 0.50 i 0.05
Hg120200 0 e 2.4dd . R . 7 0.08
Hgi2120 3/2 0.450 0.75 2.7 —191 -0.51 —0.56 iors 0.07
Hgi20202 0 2.2dd i 0.07
Hgiz4204 0 i
81T 1122208 1/2 1.68e 2,79 1.44 1.61 i 0.04
Tl124208 1/2 1,488 2.79 1.43 1.63 i 0.04
82Pb12920¢ 0 1.58a i 0.04
Pbi24206 [ 1.028a e e i 0.03
Pbi125207 1/2 0.69aa 0.64 0.59 w 0.01
Phbi126208 0 . (~0) ~0
33B1126209 9/2 —0.4 —0.30 —0.53 2.62 3.30 4.08 w ~0
[—0.55]s
90Thiyp22 0 Cae 5.7dd 76 N s 0.13
92U 142284 0 e (6.3¢) 1) e e s 0.15
U432 7/2 (~8) (8.45) a7) 9.7s —-0.8 s 0.23
U428 0 AN 6.9d4d 108 e s 0.16

a R. J. Blin-Stoyle, Revs. Modern Phys, 28, 75 (1956).
b See reference 11.
¢ See reference 14,
d G, M, Temmer and N. P. Heydenburg, Phys. Rev. 104, 967 (1956).
e Data calculated from the first excited states. See reference 13.
t K. Murakawa (private communication).
& G, Trumpy, Nature 176, 507 (1955).
b Values enclosed in square brackets are taken from reference 11.
i Wolicki, Fagg, and Geer, Phys. Rev. 105, 238 (1957).
(1;5%.)1?' Pieper and N. P. Heydenburg, Bull. Am. Phys. Soc. Ser. II, 2, 69
k Senitzky, Rabi, and Perl, Phys. Rev. 98, 1537 (1955).
1 K. Murakawa, Phys. Rev. 100, 1369 (1955).
a ms% H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc. Ser. 11, 2, 69
957).
n K. Murakawa, Phys. Rev. 98, 1285 (1955).
o N. P. Heydenburg and G. M. Temmer, Phys. Rev. 95, 861 (1954).
» G. M. Temmer and N. P, Heydenburg, Phys. Rev. 98, 1308 (1955).
a sssst;yder, Fagg, Wolicki, Bondelid, and Dunning, Phys. Rev. 100, 1299

r P, B, Sogo and C. D. Jeffries, Phys. Rev. 99, 613 (1955). However, they
obtained the ratio of Q between La38 and La!® and, assuming that Q(La39)
=0.9 X10"2 cm?, they reported Q(Lal38)=2.7 X1072 cm? Here we take
the recent data for Q(Lal¥®) (reference f); therefore Q(Lal38)=0.7 X102
cm?2,

s See reference 7.

t Simmons, Van Patter, Famularo, and Stuart, Phys. Rev. 97, 89 (1955).

u N, P, Heydenburg and G. M. Temmer, Phys. Rev, 104, 981 (1956).

v D. R. Speck, Phys. Rev. 101, 1725 (1956).

w H, Mark and G. T. Paulissen, Phys. Rev. 100, 813 (1955).

x E, D, Klema and R. K. Osborn, Phys. Rev, 103, 833 (1956).

¥ Values for natural isotopes.

s K, Murakawa and T. Kamei, Phys. Rev. 105, 671 (1957); Gerold Luhrs,
Z. Physik 141, 486 (1955).

aa P, H, Stelson and F. K. McGowan, Phys. Rev. 99, 112 (1955).

bb McClelland, Mark, and Goodman, Phys. Rev. 97, 1191 (1955).

ce Value taken from reference bb and normalized to W82,

dd Davis, Divatia, Lind, and Moffat, Phys, Rev. 103, 1801 (1956).
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Fic. 1. Correlation between the nuclear eccentricity e¢ and the photonuclear resonance width I'. Crosses are eccentricities listed in
Table I. Open circles are observed resonance widths for nonmagic nuclei; closed circles are for magic nuclei. (See Table IV.) Dashed
and solid curves are for eccentricity and for resonance width respectively. Arrows indicate the magic numbers: the solid one is for
neutrons and the dashed one is for protons. The dotted straight line indicates the intrinsic width, I'y, which is taken in this paper as
4.2 Mev. The uncertainty of the resonance width is assumed to be 1 Mev; the uncertainty of the eccentricity is from 20 to 309, of its

value.

mass number, and its dependence is

EO o« Ry e A——nl3’

n=3%, GT model®
(M
=1, SJJ model*
=31—1, experiments.l:21

If the nucleus is a spheroid, the resonance splitsinto
two parts; we apply the GT model® to a prolate?
nucleus. The two frequencies E; and E,, corresponding
to oscillations along the longer and shorter axes re-
spectively, are

( F2mwRo?p oh? 3
e(2r/3)RiR2pm

2rRiRopoh? \}
E,= (——-——-——— 40R,}
e(2r/3)R1R2om

where all notations except R, and R, are the same as
those in reference 3.
The value of the splitting, AE, is given by

AE=E;— E;=40R;} (%8) = %eEo. (9)

Equation (9) holds for the GT model, if the deformation
is not very large.

More generally, if we assume Eo« Ry", we might
expect approximately

AE/Ey=ne. (10)
1 E, G. Fuller and E. Hayward, Phys. Rev. 101, 692 (1956).

2 The calculation for an oblate nucleus is quite similar to that
described here.

(b) Hydrodynamical Calculation

We now examine whether Eq. (10) is exact in the
SJJ model.* According to the SJJ model,* the density
of nucleons is

pr=p"+1(1,0),
pn=pa"—n(1,0).

(11)

Here, p,° (p.%) is the original density of protons
(neutrons) and 7 is the change in the density. If we put
n=no(r)e™?, no satisfies the Helmholtz equation

Ano+k=0. (12)

Here, % is the wave number of dipole vibration. For a
spherical nucleus, SJJ use the boundary condition
(a‘no/af) R0= 0.

For a spheroidal nucleus, we write Eq. (12) in
spheroidal coordinates® and take the radial part

m2

d aJ
Je-0=]-[a-rer -0 a9
d¢ at £-—1

where £ is a variable which is related to the shape of
the spheroid. 4 and m are constants, and 2= }aek, where
a is the distance between foci of the spheroid, given by
a=2(5Q0/2Z)%.

The boundary condition for J is

(dJ/d§)4=.=0, (14)

where z=1/e. (e is the eccentricity used in the previous
note.!6)

21 P, M. Morse and H. Feshbach, Methods of Theoretical Physics
(M%Graw-Hill Book Company, Inc., New York, 1953), pp.
1502-1505.
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TaBiE II. Results of hydrodynamical calculation of the splitting
of the resonance. The second column is the value calculated from
Eq. (10) by putting »=1. The third column is the value obtained
from hydrodynamical calculation. The fourth column is the ratio
of these two values.

Nucleus (AE/Eo)n r
53174127 0.10 0.09 0.90
73Ta105!8! 0.22 0.18 0.82
25Mn 3058 0.29 0.24 0.81

The solution of Eq. (13) is given by %

. (=m)t =1y
J(®) = o) = (l+m)!( - )

(n+2m) !

" nim(BE), (15)
n!

X irtmtd, (1| mi)

where the prime over the summation indicates that
only even values of # are included if (/—m) is even and
only odd values of # are included if (/—m) is odd. The
quantity d,(%|ml) is the coefficient of expansion and is
tabulated by Stratton ef .22 The difference of eigen-
values between jeio(4,2) and jei(h,z) gives the value
of the splitting.

Numerical calculations for three nuclei are shown in
Table II.

The ratio # of the value of the hydrodynamical
calculation of AE/E, to that of Eq. (10) with =1 is
about 1-e; therefore we shall use the following formula:

(AE/E())SJJ=€(1—€). (16)

(c) Comparison with Experiments

In Egs. (9) and (16), we use the experimental values
e and E, to obtain the value of AE. If we further assume
that the widths of the two split resonances remain the
same as I'o for a spherical nucleus, we find the value of
the width I" of a deformed nucleus:

I'=T¢AT. 17)

AT is the increase of the width due to deformation and
is now approximated by AT'=AE.

We determine I', from the observed resonance widths
for spherical nuclei. Table III shows that these widths
for spherical nuclei are about 4 to 5 Mev. Therefore we
tentatively assume that

T'v=4.2 Mev. (18)

This we shall call the inirinsic width. Using Table I
and Egs. (9), (16), (17), and (18), we calculate the
value of the width I'. The results are listed in Table

2 Stratton, Morse, Chu, and Hutner, Elliptic Cylinder and
Spheroidal Wave Functions (John Wiley and Sons, Inc., New York,
1941); Stratton, Morse, Chu, Little, and Corbaté, Spheroidal
Wave Functions (The Technology Press of Massachusetts Institute
of Technology and John Wiley and Sons, Inc., New York, 1956).
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TasLE III. The widths of spherically symmetric nuclei.

Nucleus yA N e Tobs (Mev)
Ca® 20 20 ~0 4.2
Srse 38 50 (0.05)» 4.0
Y 39 50 3.8
Zr® 40 50 ~0 4.3
Zrt 40 51 5.0°
Zr® 40 52 <0.09> 5.5
Pp28 82 126 ~0 4,54
Bize 83 126 ~0 4.1

» This value is obtained from the first excited level; therefore, it should
not be considered accurate.

b Average value for Zr® and Zr%. The value for Zr%2 may be less than this.

¢ The value of Qo for this isotope is unknown, but a recent experiment
shows that the magnetic moment is very close to the single-particle value.
This 1s)eems to indicate that the deformation is very small (see Table I, refer-
ence 1).

d The value for the natural isotopes. The main contribution is supposed
to be from Pb26, Pb207, and Pb28 and the eccentricities are 0.02, 0.01, and
about 0, respectively.

IV. The quantity o, is the maximum cross section for
neutron emission.

As seen in Table IV, the agreement with experiment
is fair, if we consider the uncertainties of T'¢g. and Tops.
(For the former it would be about 0.5 Mev and for
the latter it is usually about =1 Mev.) The experi-
mental variation of ¢,/A4 is also suggestive, because
the narrower width T'e,s usually corresponds to the
larger o.,/A. [Sometimes, however, we find disagree-
ments, which might be due to the effects of (v,p)
reactions, or of neutron multiplicity.] The relation
between I'eps and o,/4 can be explained by the sum
rule® that the integrated cross section is proportional
to 4. Since f'odE~0o,I', small T' corresponds to large
on/A.

Table IV shows that for most of the nuclei, I'cate <T'ops.
For some strongly deformed nuclei the disagreement is
outside the uncertainties estimated above. Therefore
we arrive at the following conclusion.

If the nucleus is not deformed strongly, we might
expect that our present calculation assuming the
splitting of the resonance can explain the experimental
results. However, at least for strongly deformed nuclei,
we cannot explain the experimental data by using only
the idea of splitting. We must take into account the
broadening of the intrinsic width T itself.

From Table IV the fluctuation of I'y might be about
0.5—1 Mev if the nuclei are not so strongly deformed.
Note added in proof—New measurements of I' are in
good agreement with our calculation: e.g., Eul® has a
larger width than Eu'® and their cross sections have
different shapes (cf. their deformations in Table I). The
author is indebted to Dr. Katz and Dr. Cook for sending
him their experimental data.

V. LIGHT NUCLEI (Z<21)

In the above discussion we omitted light nuclei, since
the collective model may not apply so well to them and
the contribution of the (v,p) reaction is usually sig-

% J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).
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TasBirE IV. Comparison of calculated value of the width and experiments. (The intrinsic width, Iy, is assumed to be 4.2 Mev.)

AT Toale om/A
Nucleus e Ey(obs) GT SJJ GT SJJ Tobs (mb) Reference
20Cag® ~0 19.3 ~0 ~0 4.2) 4.2) 4.2 0.4) a
23Vs® 0.11 (3) 18.7 1.0 1.8 5.2 6.0 5.8 1.7 b
0.18 (s) 1.7 2.8 5.9 7.
24Cras5? (<0.19¢) 17.5 (<1.7) (<2.7) (5.9 (<6.9) 5.8 2.0 d
25Mn3¢%® 0.29 18.4 2.7 3.8 6.9 8.0 8.8 1.8 b
ssFeqs® (0.16°) 18.7 1.5) (2.5) (5.7) 6.7) 6.3 or 6.9 1.2 aore
Fejy8 0.21 18.0 1.9 3.0 6.1 7.2 6.1 1.3 a
27C032% 0.10 (2) 16.9 0.8 1.4 5.0 5.6 5.4 2.2 a
0.19 (s) 17.3 1.6 2.6 5.8 6.8 8.4 1.3 b
28Nigo5® (<0.15%) 18.5 (<1.4) (<2.4) (<£5.6) (<6.6) 5.6 0.9 a
Ni;p%0 (<0.16°) 16.0 (<1.3) (<2.2) (<5.5) (<6.4) 4.0 1.6 d
20Cu34% 0.03 18.1 0.5 1.0 4.7 5.2 5.5t 1.6 .es
Cusg® 0.03 18.6 0.6 1.1 4.8 5.3 (6.0) 2.3 d
s0Zn34% <0.19 18.7 <18 £2.8 <£6.0 <70 7.9 or 6.0 19 aorg
52Ges™ 0.15 20.0 1.5 2.6 5.7 6.8 (=6.5)k 18 g
Geyy't 0.23 18.9 2.2 34 6.4 7.6 (29.5)r 3.2 g
33A84278 >0.17 17:3 >1.5 >24 >5.7 >6.6 9.0 0.8 b
35Bras” 0.16 18.0 1.4 24 5.6 6.6 6.0 2.8 a
Bry®! 0.13 18.0 1.2 2.0 5.4 6.2 8.0 1.6 a
37Rb5087 0.02 17.5 0.2 0.4 44 4.6 6.0 2.6 a
33514558 (<0.08°) 15.9 <0.6 <13 <48 <5.5 5.0 1.9 i
Sre%7 (<0.08) 15.8 <0.6 <1.2 <4.8 <5.4 5.3 1.7 i
Sr5®® (<0.05) 16.3 <0.4 <0.8 <4.6 <5.0 4.0 2.3 i
30Y 50% (~0) 16.3 (~0) (~0) (4.2) (4.2) 3.8 2.2 i
40Zr50% (~0) 15.8 (~0) (~0) (4.2) (4.2) 4.3 2.2 i
Zrs,* (£0.06) 16.5 (£0.5) (1.0 (£4.7) (£5.2) 5.0 2.2 i
Zrso% (<0.09) 16.9 (<0.8) (L1.5) (<5.0) (<5.7) 5.5 2.1 i
11Nbs5s% 0.01 17.0 0.1 0. 43 44 6.1 or 6.8 2.1 aorb
12Mo050%? (<0.06) 18.7 (<0.6) (<£1.2) (<4.8) (<£5.4) 6.0 1.5 a
15Rhg503 0.20 16.5 1.7 2.7 5.9 6.9 8.9 2.0 b
7Ageo'"” 0.16 16.3 1.3 2.2 5.5 6.4 9.2 1.9 a
Age'® 0.17 16.5 1.4 2.3 5.6 6.5 9.2 2.9 a
19Ingg!t® 0.14 15.0 1.1 1.8 5.3 6.0 5.5 or ~5.0 3.7 aorj
505N <0.10 17.0 <0.9 <15 <5.1 <5.7 6.0 24 1
51Sbyo!2! 0.08 14.8 0.6 1.2 4.8 5.4 (4.8) 5.6 a
Shyo128 0.08 14.8 0.6 1.2 4.8 5.4 (4.8) 29 a
5374127 0.10 %gg 0.8 1.5 5.0 5.7 8.0 3.0 1
. 6.6 3.5 a
s1Lags!® ~0 13.8 ~0 ~0 ~4.2 ~4.2 5.7 ~4.3 b
15.5 7.0 2.7 1
Cek (~0.05) 16.0 (0.8) (1.6) (5.0) (5.8) 5.0 3.0 1
625mga!4 (~0.10) 17.3 ~0.9 ~1.6 ~5.1 ~35.8 6.8 (0.9) g
62Smk (~0.15) 16.0 ~1.2 ~2.1 ~54 . ~6.3 7.5 2.7 1
65 Thoyl59 0.37 16.5 3.1 4.0 7.3 8.2 8.0 24 1
67H 04168 0.31 15.0 2.3 3.3 6.5 7.5 13.0 1.9 1
sErk 0.29 17.0 2.5 3.5 6.7 7.7 13.5 2.1 1
70Y bk 0.27 16.0 2.2 3.2 6.4 7.4 10.0 2.6 1
73Ta108!® 0.22 16.5 1.8 2.8 6.0 7.0 7.0 34 1
79AU11517 $0.08 13.0 0.5 1.0 <47 5.2 5.0 or 6.3 3.0 lora
s2Pbk 20 14.0 20 20 24.2 4.2 4.5 3.8 1
83Bi126%? ~0 13.2 ~0 ~0 ~4.2 ~4.2 4.1 3.0 b
90 Thi142?2 0.13 14.5 0.9 1.6 5.1 5.8 5.6 or 6.0 3.5 m or n
92U 141233 (0.15) 14.0 1.1 1.8 5.3 6.0 6.0 7.2 n
Ug6?8 0.16 13.8 1.1 1.9 53 6.1 6.6 4.1 b
94P11452% (0.17) 13.6 1.1 1.9 5.3 6.1 6.3 6.6 n

e See reference 1.

b See reference 2.

¢ Data calculated from the first excited states.

d J. Goldemberg and L. Katz, Can. J. Phys. 32, 49 (1954).

e J, H. Carber and K. H. Lokan, Australian J. Phys. 10, 312 (1957).

t The average value of the results of several authors.

g deSonza Santos, Goldemberg, Pierona, Silva, Borello, Villaca, and
Lopes, Acad. Brasil. Cienc. 27, 437 (1955).

b These values were not listed in the original paper (reference g), since
their experiments did not cover high energy and they could not measure
the half-width. The values listed in the table were obtained by linear
extrapolation of their cross-section curves, so the actual values of the widths
would be somewhat larger than these.

nificant. However, qualitatively the same tendency is
expected to appear also for light nuclei.

The cross section of Be® has three peaks and one of
them is regarded as a giant resonance. The latter has a
large width (7 to 8 Mev),* which might be due to the

2 R. Nathans and J. Halpern, Phys. Rev. 92, 940 (1953).

iP, F, Yergin and B. P. Fabricand, Phys. Rev. 104, 1334 (1956).

i Bogdankevich, Lazareva, and Nikolaev, Zhur. Eksptl. i Teoret. Fiz. 31,
405 (1956) [translation: Soviet Phys., JETP 4, 320 (1957)].

k In reference 8 the experiments were performed for natural isotopes.

1 See reference 8.

m Lazareva, Gavrilov, Valuev, Zatsepina, and Stavinsky, Proceedings of
the Conference of the Academy of Science of the U. S. S. R. on the Peaceful
Uses of Atomic Energy, Moscow, July 1-5, 1955, Session of the Division of
Physical and Mathematical Sciences (Akademiia Nauk, S.S.S.R., Moscow,
1955) [English translation by Consultants Bureau, New York, 19557, p. 217.

n Katz, McNeill, LeBlanc, and Brown, Cein. J. Phys. 35, 470 (1957).

nonsphericity of this nucleus. C®® has a similar cross
section,® which could be explained in the same way.
The measurement of fine structure in the cross

2 Cook, Penfold, and Telegdi, Phys. Rev. 104, 554 (1956);
B. C. Cook, Phys. Rev. 106, 300 (1957).
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TABLE V. The energies of the first excited states of even-even
nuclei of 4 <40 and their resonance widths.

Nucleus AE; (Mev)s T (Mev) Reference
6Ce? 4.44 4.2 b
80510 6.05 34 b
mNelom 1.63 6.6 c
12Mg1224 1.38 7~8 d
12Mg 126 1.84 2.5 (y,n) ef
2.5 (v,p) ef
14511428 1.8 3.5 g
szm” 2.25 4.5 g
16S1% 2.13 40 g
13A224° 1.46 8.5 (o
20Cag® 3.8 4.2 g

& AE, is taken from reference 13.

b J, H. Carber and K. H. Lokan, Australian J. Phys. 10, 312 (1957).

°© See reference 35.

d R, Nathans and P. F. Yergin, Phys. Rev. 98, 1296 (1955).

e Katz, Haslam, Goldemberg, and Taylor, Can. J. Phys. 32, 580 (1954).

t However for Mg?® there is another experiment, according to which the
cross section is quite different. Therefore the values listed here are doubtful
[P. F. Yergin, Phys. Rev. 104, 1340 (1956)].

¢ See reference 1.,

section?® shows that the number of breaks for Li’ or
F2 is less than that for C'2 or O, This also might be
due to the nonsphericity of Li” or F,

1Na;.® is a famous exception to the shell model and
its Q is fairly large. Its T, 6.0 Mev,! is also rather large
for this region. ;)Ney:# is also an exception to the shell
model, which might be related to the large resonance
width of Ne?, (See the later discussion and Table V.)
13Al14* has a large Q. The width for neutron emission
from Al is not so large,! but measurements® of the (vy,y)
cross section show that the total resonance width might
be large.

According to the analysis of magnetic moments by
Bohr and Mottelson,’? P# is deformed much more
strongly than F¥, The I of F¥ is fairly large, 5.6 Mev,?
showing that it is deformed; while for P I' has the
large value of 10.2 Mev,? which is consistent with the
prediction of Bohr and Mottelson that P% has about
the same deformation as rare-earth nuclei. Si® may be
similar to P3L.

For even-even nuclei Table V lists the energies of the
first excited states,”® AE;, together with the widths.
Small values of AE, correspond to large deformations,
and therefore to large widths. This relation proves to
be true except for Mg? and Si%. For Mg?* the dis-
crepancy is explained in a footnote to Table V. For Si®
it may be due to the contribution of the (v,p) reaction.
It is interesting to compare A* and Ca®, They have the
same mass number, but the widths are quite different,
in good agreement with the difference in values of AE;.

VI. COMMENT ON THE MASS-NUMBER DEPENDENCE
OF THE RESONANCE WIDTH

The resonance width T' has been believed!-? to de-
crease with increasing mass number, 4. Several authors

26 Montalbetti, Katz, Haslam, Horsley, and Cameron, Phys.
Rev. 95, 464 (1954); J. Goldemberg and L. Katz, Phys. Rev. 95,
471 (1954).

(lggF)(erguson, Halpern, Nathans, and Yergin, Phys. Rev. 95, 776
4).
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tried to explain this trend, but all of them failed except
Wildermuth.?8:? However, as we have seen, the actual
data on the resonance widths are not so simple. Clearly
a strong fluctuation is observed. For spherical nuclei,
the width I'y does not decrease with 4, but is rather
constant. I may even increase with 4, as suggested by
the following argument. ‘

One of the reasons for damping of the resonance is
the collision of the particles, as Wildermuth has already
discussed.® The probability of collision between par-
ticles belonging to different levels is, roughly speaking,
inversely proportional to the level spacing. Therefore,
the higher the level density the larger is the intrinsic
width. Using this idea, we could explain the discrepancy
between the observed values and the calculated values
in Table IV, because the level density becomes higher
for nonmagic nuclei.’! However, according to this idea
the intrinsic width must increase with 4, because the
level density increases with 4. In fact, the calculations
of intrinsic widths by Fujii-Takagi*? and Fujita® show
a tendency to increase with increasing 4.

Another important reason for the damping of the
resonance is the coupling of dipole vibration to surface
oscillation. Preliminary calculations of Reifman® and
Soga et al.35 show that this is a decreasing function of
A. Therefore we arrive at the following conclusion.

The mass-number dependence of the resonance width
may be a superposition of two competing tendencies,
which results in a roughly constant intrinsic width, Ty,
for spherical nuclei (about 4 to 5 Mev). In addition to
this, the fluctuation of I'o due to the change of level
density between closed shells and the increase of the
apparent width due to the splitting, AT, are super-
imposed. The resultant width, T', shows a very com-
plicated behavior.

VII. VALIDITY OF THE MODEL

In the above analysis we always used the value of
Qo in the ground state. We now consider whether the
nuclear shape will be the same in the highly excited
state reached by photon absorption.

For this purpose we evaluate the value of the ampli-
tude of dipole vibration. For the GT model,? the value
of the amplitude, &, is

34%p
Ey=iMdw?8?= £,

467’0

28 K, Wildermuth, Z. Naturforsch. 10a, 447 (1955).

( 2 17() Wildermuth and H. Wittern, Z. Naturforsch. 12a, 39
1957).

3 The validity of his treatment is not too clear, but if we are
satisfied with a rough estimate of the intrinsic width, it might be
justified. (Concerning this point the author is greatly indebted to
Dr. Wildermuth for private communications.)

3 This point is also suggested by J. Fujita (private communi-
cation).

(1"25:55.) Fujii and S. Takagi, Progr. Theoret. Phys. (Japan) 14, 405

955).

3 J. Fujita, Progr. Theoret. Phys. (Japan) 16, 112 (1956).

3 A. Reifman, Z. Naturforsch. 8a, 505 (1953)

36 Soga, Iishima, and Nogami (private communication).

(19)
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Then we find
£/Roy=1.54"1 (20)

This is about 1/13 for 4=50, 1/23 for A=100, and
1/35 for A=200. These results agree approximately
with those of Fujii and Takagi®? using a more exact
model.

In the SJJ model,* the value of £ is obviously zero.
Both models agree fairly well with experiment, showing
that the nuclear shape may be about the same in the
ground state and in the excited state.

We now compare the combination of high excitation
energy with small change in nuclear shape, with other
examples of nuclear deformations, for instance surface
vibration or fission. In the latter cases the deformation
is carried out without changing the nucleon density.
In the former case protons are separated from neutrons,
which requires a considerable amount of energy. More-
over, all protons are pushed to one side of the nucleus,
which is energetically unfavorable. Therefore, in photon
absorption the energy used for deformation of the
nucleus may be very small, so that the nuclear shape
would be conserved approximately.

However, as seen in Table I, for nuclei of spin 9/2
(neutron configuration gy/s) the situation is somewhat
different. For Ge™, Qo obtained from the spectroscopic
Q is quite different from Qo obtained by Coulomb
excitation, For Kr®¥ and Nb® the same results might be
expected. For proton configurations this tendency is
not so strong (see In'%15)  which supports the con-
clusion that the nuclear shape is determined mainly by
neutrons.’? The value of T for Ge™ is very large, and for
Sr8” and Nb® it is somewhat larger than the neighboring
values.

From the viewpoint of nuclear structure it is expected
that these nuclei have a small Q in the ground state,
but that the E2 transition probability is fairly large so
that Qo obtained from Coulomb excitation is large.?¢
In other words, the shape of the excited state is different
from that of the ground state. This might explain the
discrepancy between I'ops and I'eaic of Table IV for
these strongly deformed nuclei which have go2 con-
figurations of neutrons.

Therefore we can say that the nuclear shape may not
change appreciably even in highly excited states reached
by photon absorption, in contrast to the large change of
shape in fission; this is an essential difference between

38 The author is greatly indebted to K. W. Ford and S. A.
Moszkowski for their explanation of this point. )
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the usual one-fluid model and the two-fluid model used
in dipole vibration. However, for special nuclei (such
as the go2 neutron shell) where the surface tension is
very weak, it might be possible that the nuclear shape
will change appreciably even in relatively low excitation.

VIII. SUMMARY AND CONCLUSIONS
Finally, we draw the following conclusions:

(1) The experimental data on nuclear deformation
agree fairly well with the calculation of Marumori,
Suekane, and Yamamoto,!! with few exceptions.

(2) There is little doubt as to the existence of a
strong correlation between the nuclear deformation
and the resonance width of a photonuclear reaction.

(3) The calculation assuming splitting of the reso-
nance and assuming constant intrinsic width, 4.2 Mev,
gives results which agree qualitatively with experi-
ments, but quantitatively the calculated values are too
low. We must take into account also the change (with
A) of the intrinsic width itself.

(4) The mass-number dependence of the resonance
width is very complicated, though for spherical nuclei
it is roughly constant.

(5) The nuclear shape may not change seriously
even in highly excited states. This could be explained
if we take into account the difference between the one-
fluid model and the two-fluid model.

(6) From the above analysis we see that the reso-
nance width of a photonuclear reaction has a strong
relation to the nuclear structure. A careful investigation
of the former in connection with the latter may give
us some information on the relation of nuclear structure
to nuclear reactions.
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