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A general method is proposed for constructing conduction-band
wave functions in nonperiodic monovalent metals and alloys. The
method is a cellular approximation in which it is assumed that
the lattice potential can be considered to be spherically symmetric
within ellipsoidal cells centered on the individual ions. It is shown
that the resulting wave functions are correct, within this approxi-
mation, to first order in a parameter which corresponds to the
wave number in a perfect crystal. In the case of a strained metal
in which the strains vary slowly in space the method takes a form
analogous to the deformation-potential formalism, but contains a
term which is first order in the derivatives of the strain.

The individual ionic potentials enter the procedure through
parameters which are evaluated and tabulated for all of the alkali
and noble metals. These parameters correspond to deformation-
potential constants when that approximation is valid.

The general procedure is written in a form which is convenient
for treating electron scattering, and the case of point defects is
discussed. In particular, the influence of the lattice distortion on
the scattering is considered in some detail.

The scattering of electrons by stacking faults is discussed, and
some of the features of scattering by lattice vibrations in solid
and liquid metals are considered.

I. INTRODUCTION

HE determination of electronic wave functions
in nonperiodic structures has been most widely

considered within the framework of scattering calcu-
lations. The customary procedure consists of considering
a periodic structure in which a perturbation has been
introduced. The particular approximation which is
made in treating the scattering then depends upon the
nature of the perturbation which is introduced. There
has been no single method which is applicable, for
example, both to slowly varying strains and to the
presence of foreign atoms. In cases in which interference
between two such effects is important, there has been
considerable uncertainty in the results. Furthermore
there have been no methods which are suitable for
treating cases in which the deviation from periodicity
is very large, such as it is in the immediate neighborhood
of an interstitial atom, or as it is in a liquid metal.
Thus it is desirable to have a single method for calcu-
lating wave functions in a wide variety of situations, and
a method which is applicable when the periodicity is
completely lost.

Two possible approaches to this problem come to
mind: the wave function might be constructed in terms
of localized functions which overlap to some extent; or
the system might be divided into cells and functions
determined in each cell could be matched on the cellular
boundaries. Difficulty is encountered in pursuing the
first method if atomic orbitals are used, since these are
very poor approximations to the conduction-band
wave functions in a metal. On the other hand, Wannier
functions are not sufficiently well localized and sums
of overlap terms do not converge well. Thus it would

appear that a new set of localized functions would be
needed if the problem were to be approached in this

way. A cellular method would appear at first to be
difficult because the matching of the wave function
from cell to cell would .seem formidable even if a
suitable approach were found to construct the wave

functions within each cell. It will turn out, however,

that boundary conditions will arise in a natural way
and will not be difFicult to apply.

The wave functions in each cell will be determined
by a generalization of the Wigner-Seitz cellular method'
as extended by Bardeen' and by Hunter and Nabarro. '
Since the functions will be determined only approxi-
mately in each cell, the matching from cell to cell will

also be approximate.
Only a part of the physical problem will be treated

in detail. We consider the problem of calculating the
eigenstates of a given Hamiltonian which does not have
the periodicity associated with a perfect lattice. There
are terms in the Hamiltonian which are due careful
consideration in the nonperiodic case; for example, the
self-consistent screening problem should be treated in
detail. Here a self-consistent potential will be intro-
duced formally, and general features of the screening
will be discussed, but the detailed form will be con-
sidered only in the Fermi-Thomas approximation. The
effects of correlation will be included only in a crude
manner by assuming that the electron in a cell sees an
ionic rather than an atomic potential; thus all conduc-
tion-band electrons but the one under consideration
are excluded from the atomic cell. The accuracy of the
method as applied to a physical problem will, of course,
depend upon the accuracy of the approximations used
to treat these various effects.

II. DERIVATION OF THE METHOD

We wish to solve for the eigenstates of a Hamiltonian
H appropriate to a nonperiodic structure; i.e., we seek
solutions of the one-electron Schrodinger equation,

It will be convenient to look briefIy at the cellular
solution for the periodic lattice first. We shall see that

E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);46, 509
(1934).

~ J. Bardeen, J. Chem. Phys. 6, 367 (1938).
3 S. C. Hunter and F. R. N. Nabarro, Proc. Roy. Soc. (I ondon)

A220, 542 (1953).
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wave functions proposed by Bardeen diagonalize the
assumed Hamiltonian to first order in wave number and
are therefore solutions of the Schrodinger equation in
that approximation. We shall then see how these
solutions might be generalized to the nonperiodic case
and show that these solutions diagonalize the non-
periodic Hamiltonian in the same approximation. This
approach serves to motivate the choice of solutions for
the nonperiodic case and to clarify the assumptions
which are made. The validity of the method depends
om/y upon the fact that the solutions we choose diagonal-
ize the Hamiltonian.

1. Periodic Lattice

In a periodic lattice, wave functions may be written
in the usual Bloch form P,=uq(r) exp(ik r) Th. en
u~(r) can be constructed approximately according to
the Wigner-Seitz cellular method' as extended by
Bardeen. ' Two major assumptions are made in this
method.

(a) Spherical approximation. It is as—sumed that
the potential seen by an electron within an atomic cell
is spherically symmetric and is appropriate to the ion in
that cell. In addition, the atomic cells are approximated
by spheres in the following way: from the fact that
the functions 1~(r) must have the translational periodic-
ity of the lattice, certain boundary conditions upon
N~(r) at the cell surfaces are obtained. In this method,
the boundary conditions are applied at a spherical
surface of volume equal to the cell volume rather than
on the true cell surface. This assumption restricts us to
spherical energy surfaces in the band.

(b) Expansion in wave number The w.
—ave functions

are found to first order and the energy to second order
in kr„where r, is the radius of the atomic sphere. kr,
is equal to about two at the Fermi surface in mono-
valent metals. Thus it is not clear at once that this
expansion is valid. We note, however, that in the
empty-lattice limit; that is, as the ionic potential
becomes smail, u~(r) becomes constant and our solu-
tions are exact. Thus the expansion may be justified as
an expansion from the free-electron limit or as the
restriction to a single parabolic band. The expansion
should be good in cases in which the band-edge wave
function, No(r), is flat over much of the cell. This
assumption is particularly appropriate in the alkali
metals.

The solutions given by Bardeen are of the form

Nk(r)e'"'=——/NO(t)+n(r)ik rje'~'.

The boundary conditions on I&, which are applied on
the sphere, are that the even term, uo(r), have vanishing
normal derivative and that the odd term, v(r)ik r,
vanish. These solutions diagonalize the Hamiltonian
approximately:

(P,,HP, ) =0 to first order in k for i&j;
Q, ,HiP;) =E; to second order in k.

This procedure has been generalized by Hunter and
Xabarro' to the case in which the atomic cells are
approximated by ellipsoids. The appropriate boundary
conditions are satisfied on the ellipsoid (to first order
in the ellipticity) by constructing the even term in I&
from up(r) and a d function and by constructing the
odd term in uq from v(r)ik r and an f function. This
does not introduce any new assumptions, but enables
us to improve upon the spherical approximation in
cases in which the cells are elongated or flattened.

We note that within the Bardeen approximation a
more general eigenstate of the periodic crystal may be
constructed by taking linear combinations of states of
the same energy; i.e., states with wave number of the
same magnitude. This is most conveniently done if
nj, is rewritten in equivalent form by replacing v(r)ik r
by n(r)r V. We designate the new form of N~ by 11.
Then U. is formally independent of k and we may add
degenerate states by simply adding the exponentials.
The most general state of a particular energy has the
for111

Q=Uq =P&o(r)+v(r) r. Vgq,

where y satisfies V'p= —k'q.

2. Nonperiodic Lattice

This suggests how the procedure may be generalized
to nonperiodic lattices. The function U may be con-
structed as a differential operator in the above way
in each atomic cell. q then will satisfy an appropriate
differential equation within each cell such that the
eigenstate energy is obtained in each cell. The major
assumptions will be essentially the same as those for
the periodic lattice:

(a) E/li psoidal approximation The spheri. —cal ap-
proxirnation has been generalized to an ellipsoidal
approximation without the necessity for further
assumptions. However, in nonperiodic structures it
may be more difficult to construct cells which are well
approximated by ellipsoids than it is in periodic
structures; thus the cellular approximation may be
cruder in this case.

(b) Expansion in mane number. The expansion in-
wave number becomes an assumption that p be slowly
varying in each cell in the sense that exp(ik r) was
assumed to be slowly varying in the Bardeen approxi-
mation. This assumption may become more question-
able in the case of nonperiodic structures4 since, in the
case of a strong perturbation, the energy of an electron
may be profoundly modified and fairly rapid variations
in p may be required. In the case of an impurity, for
example, the Fermi energy of an electron in the solute
metal may lie very far from the Wigner-Seitz energy
corresponding to the impurity metal. In such a case
the use of band-edge wave functions in the impurity
cell would be very crude. Thus the validity of this

'The author is indebted to Dr. Melvin Lax for pointing this
difficulty out to him.
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assumption must be tested in each region of the crystal
for the conditions which are appropriate there.

It should also be pointed out that in Bardeen's
calculations the properties studied depend on a/l of
the electrons in the band, whereas scattering depends
on only those electrons at the lop of the filled region
of the band. Thus in metals in which the band becomes
nonparabolic at large wave numbers, the validity of
the expansion in wave number is not so well justified
in scattering problems as it is in the problems treated
by Bardeen.

One further question arises immediately. In the
periodic case boundary conditions upon uI, at the cell
surfaces arose from symmetry conditions which do not
apply to the nonperiodic case. It is not clear that these
boundary conditions remain appropriate now. This
reflects the fact that there is no longer a unique way
to separate the wave function into factors. It will be
most convenient to apply the same cellular boundary
conditions to uk, which fixes the way the separation is
done, and then to determine what boundary conditions
this places on the function p. These conditions on y
will become clear when we require that the functions
diagonalize the Hamiltonian. It will be noted then that
these conditions are consistent with the requirement
that p be slowly varying withe the cells.

Thus if we can verify that the functions Up satisfy
the conditions

(Up;, HQp, ) =0 to first order in V q for i', (1)

(Uy;, IIUp;) =F, to second order in Vp, (2)

we will have shown that these functions are solutions
of the nonperiodic Hamiltonian in essentially the same
approximation that the functions given by Sardeen
are solutions of the periodic Hamiltonian.

We will now write down the proposed solutions
explicitly and show that they do in fact diagonalize
the Hamiltonian. The generalization of u~ as given in
the ellipsoidal approximation to a dif'ferential operator
U proceeds in the same way that it does in the spherical
approximation. We obtain our proposed solutions
directly from the expressions given by Hunter and
Nabarro:

y=Uv = (U+xg.) v
—(U+xg2)r «+giF.+gaF' (3)

U, g&, g2, and g3 are spherically symmetric functions
satisfying the s-, p-, d-, and f-radial Schrodinger
equations:

h 1 t9 - 8 5' l(l+l)—r' g i+—&rg—i+- g&= &ogi.
2m r2 8r Br 2m r2

r~ is the radius of a sphere of volume equal to the cell
volume. The subscript 6 indicates that rg depends
upon the dilatation of the cell in question.

P~, y, and F„are p-, d-, and f-angular functions,
respectively, to first order in the derivatives of p and
to first order in the shear strains (or in the ellipticity).
Thus the boundary conditions are to be satisfied only
to first order in the ellipticity of the cell. Coordinate
axes may be taken along the principal axes of the
ellipsoid, and principal strains e&, ~2, and e3 may be
defined. Thus the ellipsoid is given to first order in
e;by

x] X22 X 2

+ + =r~'
1+2ei 1+2e2 1+2e,

(6)

The angular functions are written down.

I' ~ Q p 2Xt'd, 3 xl Bp+ 2 —(«—3~)
r 5 i-& r Bxi

2)rg 3 x) 0y2 ( —l~)— (9)
5 && r Bx)

The dilatation 6 is given by 6= ei+e2+ e3. The param-
eter P is given by

gi

g g&"
(10)

The boundary conditions, which are the same as
those used by Hunter and Xabarro, are the following:

(a) The normal derivative of the zero-order tin
derivatives of p7 solution, (ej/etc) (U+gg2), is to vanish
on the ellipsoid to firs't order in the shear strains.

(b) The magnitude of the first-order Pin derivatives
of p7 term in P, —(r Vq) (U+xg2)+giP„+g3F„, is to
vanish on the ellipsoid, to first order in the shear
strains.

That these conditions are satisfied by f may be
verified using Eqs. (5) through (10), provided that
the normalization of the p, d, and f terms is deter-
mined from the following relations:

eo is chosen by the Wigner-Seitz condition; i.e., it is
the energy of the s function satisfying the boundary
condition

eI U(r)

82U

ter
(12)

=0
The normalization of the s term remains at our disposal.
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(Up, HUi ) = (Up)*HUi dr.
al

(13)

The integration is to be performed over the entire
crystal. The Hamiltonian is assumed to have the form

H= ( As/2m—)Vs+Vr+Vs. (14)

Vz is the ionic potential, which is spherically symmetric
in each cell. Vz is any slowly varying potential which
may occur. In particular, it will include a self-consistent
screening potential. Ke assume that Vq varies suK-
ciently slowly over the cell that it may be considered
constant in each cell.

It will be convenient first to consider the integral (13)
performed over a single unit cell, keeping only terms to
second order in the derivatives of p and to first order
in the shear strains. The calculation, which is somewhat
long, yields a result analogous to that obtained by
Hunter and Nabarro:

i't' Vs(p i't'p(d)
(Uq, HUp) o—— ee(D) — n(A)

2m 2m+

Q2 ql)

X 2 («—-'s~) +Vs (Uq, Uq)o. (1&)
/A&2

es(d, ) is found from the Wigner-Seitz condition. rr(A)
and p(A) are given for any atomic cell by

(a) Diagonal E/ements of the Hamiltonian

It is now possible to construct the diagonal elements
of the Hamiltonian with respect to any function Uy.
The diagonal element (2) may be written

Then if E is the same in every cell, Eq. (19) may be
summed over all cells and, subject to the normalization
of Uio in the entire crystal, we obtain for each function
p satisfying (18) in every cell, the Eq. (2).

f

(Uv', HUvv) =Er (U~')'Uv idr

to first order in V' p. Thus to verify that the off-diagonal
matrix elements vanish, we need simply to show that
the functions Uio, are orthogonal to first order in Vio.
Using the form of Uit from (3), we see that to first
order in V y and to first order in the ellipticities,

t' U'(ra)
~(Uq, )*Up,dr= ' q,*p;dr,

7

where y is the parameter defined by Bardeen,

(20)

(21)

Values of U(ra) and of y are to be defined for each cell.
Within each cell the io; satisfy Eq. (18),' which may be
rewritten as II'q;=E;p;. Since both B' and E; are
real, we may use this to rewrite the integral in (20).

(0) Off-Di agonal Etements of the Hamittonian

It can be seen by letting H operate on U~t, as given in
(3), that to first order in Wit in any cell, HUiti, =E,Uiti, ,
where E; is determined from (18). The matrix element
(1) becomes

4
~(~) "U'd. = r, U'(r,)——

~e
Sx p"&

+— (2giUr+r'Ugi')dr; (16)

t U'(r )a
pi pj~~ =

7 E.-—E2

f 16rr (g i (ra)
P(A) ~ U'dr= ra'U(r&)l —gi'(ra) I

15 (r, )
16'-

+ (r'gi' rgi) gsdr hra— —
15 ~p

r'giU'dr . (17)

A2
'

A2

e,(~)— n(~) V' — p(~)
2m 2m

X P (ei—-'s6) +V, it=Eq& (18)
Bxi'

within the cell, (15) may be written

(Uq, HUq) o= E(Uq, Uq )o. (19)

p is the quantity /mmdefisned by Hunter and Nabarro.
It is seen that if y satisfies the equation

Thus the matrix elements connecting nondegenerate
states vanish if

t U'( ) I
U'(a)

p,H' p,+dr = ip, +H'q id 7. (23)
7 7

Matrix elements connecting degenerate states can be
made to vanish by taking suitable linear combinations.

H' may be inserted in (23) and terms on the left-hand
side which contain derivatives may be integrated by
parts twice in each atomic cell. The left-hand side is
found to be equal to the integral on the right plus
surface integrals which are to be added for all atomic

' Up to this point we have been concerned with the evaluation
of the integral in the individual cells, which we have discussed to
first order in Vp. The fact that (20) will vanish depends upon the
variation of the y; over the entire crystal, so we must now use the
precise prescription by which we will determine the q;.
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cells. These may be written

~V' ~

~d~t.
t9x~ Bx~

dSi is the component of the surface element (treated
as a vector) along the xi direction. We now select
boundary conditions such that the integration over
each portion of surface is exactly canceled by the
integration over the same portion but performed in the
adjacent cell. This will be achieved if U(rz) is taken
the same in every cell, if p is continuous across cell
boundaries, and if

p
p —y—(ei——',Z) ei

gg~

is also continuous across cell boundaries. e~ is the
component of a unit normal to the surface along the x~

direction. This may be more conveniently written in a
coordinate system with one axis (the x, axis) normal
to the matching surface. Thus the quantity

(24)

is to be continuous across the matching surface.
The details of the matching procedure remain

obscure. It is seen, however, that if the state of strain
in adjacent cells is the same (the case treated by
Bardeen and by Hunter and Nabarro), q is matched
smoothly. Furthermore, if adjacent cells dier in size,
but not in shape, a discontinuity in 8 p/Bx, is introduced
which just cancels the change in the normal derivative
of 11 at the cell surfaces.

Thus the method which has been proposed generates
functions Up, which diagonalize the assumed Hamil-
tonian to first order in the generalized electronic wave
number, and is therefore a first-order method for
constructing wave functions in a nonperiodic lattice.
The method consists of solving for a function p accord-
ing to Eq. (18) in all regions of uniform strain (such
regions may be single atomic cells) and matching at
surfaces between regions of different strain or com-
position according to specified rules. Because only a
limited set of functions are included, the diagonalization
is not complete; that is, a one-band approximation has
been made.

3. Deformation-Potential Approximation

A further approximation may be made in cases in
which the strain is slowly varying; that is, a
deformation-potential method. Then an added curva-
ture of cp appears in the cells, rather than discon-
tinuities in the slope at the cell surfaces.

(~ p
y I

-S,,+—(,,—-,'aS,,) ~
=8&. (25)) ax,

Here «0, Vs, y, n, p, and e;, are to be considered to be
slowly varying functions and p and V p are everywhere
continuous. This is analogous to the form obtained by
Hunter and Xabarro, but contains the extra term which
is first order in the derivatives of p and of the
parameters n, y, p, and e,, Ft may be verified that this
term makes the operator in (25) Hermitian. Hunter
and Nabarro noted that their perturbing operator was
not Hermitian and that their symmetrization procedure
was not unique.

III. PERTURBING OPERATOR

In order to treat a scattering problem, it is convenient
to construct a perturbing operator; that is, to cast (18)
into the form of a simple free-electron Schrodinger
equation with an operator playing the role of a perturb-
ing potential.

I.et o.p and happ be the values of n and 6p appropriate
to the normal material (6=0). Then if ko is the magni-
tude of the wave vector to be associated with an
electron outside of the region of a scattering center, the
energy may be written E=6 po+Q o'hk'o2/ns. Equation
(18) may be rewritten

where

—A2 A2

Pp+ (HD+Hs+ Hs) q = kp'p;
2ns

eo —Epo h kp ( Ap)
+

u 2m E u)
—h'p 8'

Hs —— P (e(——',6)2' & Bx~

Hs= Vs/~

(26)

(27)

(28)

(29)

It is seen that p satisfies a free-electron Schrodinger
equation in each cell with perturbing operators which

In order to see how to do this, we rewrite the quantity
(24) as g,«;,Bq/Bx; S. ince q is to be continuous across
the boundary, Bq/Bx, for jNi is also continuous. Thus
the matching of the quantity (24) simply introduces a
change in the normal derivative given by «,,8(8&/Bx,)
= —P, 4;,Bp/Bx, to first order in the change in «;, .
To first order in the derivatives of ~;; and to second
order in the derivatives of q, it is equivalent to spread
this change in 8 p/Bx, over a region of length equal to the
interatomic distance; i.e., to add a curvature given by

Kg;8 p/BxP = Qg' (BK~r/Bx~) (8 p/Bxg') .

Thus Eq. (18) may be modified to include the efFect
of the matching approximately. We obtain

h p 8
(~0+ Vs) v

——
2m ~7 Bg
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are determined from (27), (28), and (29). Boundary
conditions are to be applied at cellular surfaces such
that p and the quantity (24) are continuous.

In order to determine the operators (27) and (28),
once the atomic cells are specified, it is necessary to
know eo, u, and p as a function of the cell size for the
monovalent metal in question. The parameter p is
also needed in order to perform the matching. All of
these parameters depend upon the ion-core potential
and are obtainable by the quantum-defect method or
by direct integration of the Hartree field. These
calculations have been made for all of the alkali and
noble metals and are described in the appendix.
Using these calculated parameters, the quantities
entering the perturbing operator and the matching
conditions were determined and tabulated in Table I.

HD is a simple scalar which vanishes in the normal
material and which depends upon the electron energy.
It is written, for the Fermi energy, to second order in
the dilatation in the following dimensionless form:

(mr '/A')HD=Ed. +E 6'+0(6').
Here r, is the radius of an atomic sphere in the normal
material for the metal in question. E& and E2 are
given for the various metals in Table I. In treating
impurities, an additional term in HD arises due to the
difference in coo and 0,0 in the two metals. This term
may be calculated directly from (27) using parameters
discussed in the appendix.

u/y, which enters the matching condition, is written
to second order in the dilatation in the form

n/y = A p+A, A+ A 2&'+0 (g') .

Ao, A~, and A~ are given in Table I.
Finally, P is calculated for 6=0. Though it would be

surprising if any of these values were in error by as
much as 0.1, the percent error in the smallest values
might be rather large. The fact that the values are
generally small (with the exception of gold) and the
fact that they tend to increase with increasing atomic
number (with the exception of lithium) seems estab-
lished. This is in marked contrast to the results of
Hunter and Nabarro, who obtained a value p=m/m„-
= —1.116 for copper by using a square-well approxi-
mation to the ion-core potential.

IV. SCATTERING BY POINT DEFECTS

The scattering center will be considered to be
spherically symmetric in the case of point defects.
That is, the cell of the vacancy, interstitial, or impurity
is a sphere surrounding the defect. The nearest
neighbors, then, lie in a spherical shell surrounding this,
and having volume equal to the sum of the volumes
of the near-neighbor cells. Similarly, spherical shells

may be constructed for the more distant neighbors.
Since H~ and Hq are scalars, it is a consistent approxi-
mation to treat them as spherically symmetric and
constant in a shell consisting of equivalent atoms;

TABLE I. Interaction constants for monovalent metals.

Ap At A2

Li 1.28 —0.61 0.678 0.411
Na 0.68 0.14 1.000 0.210
K 0.81 0,42 1.020 0.215
Rb 0.89 —0.21 1.051 0.253
Cs 0,80 0.68 1.097 0.199
CU 1.57 —1.34 0.994 0.277
Ag 1.65 —0.81 1.051 0.326
Au 1.82 —0.93 1.247 0.343

—0.281—0.056—0.101—0.047
+0.037—0.147—0.103—0.072

0.191—0.006
0.069
0.080
0.272
0.087
0.260
0.720

the forms (27) and (29) are unchanged. H~, on the
other hand, is a tensor and simply writing its spacial
dependence as spherically symmetric automatically
introduces a variation over the shell. Thus H~ must
be treated by a deformation-potential approximation
within each cell.

—O'P ( 8' 1 8' 1 8' )
HE=

2m ax' 2am' 2am, ')

(Ber er) 8
+I +3—

I

~~&1 +1 ~ ~+1- &2=&3=op
(30)

where e„=&i~—-,'6 is a general function of r. The
derivatives with respect to the x; may be written in
terms of derivatives with respect to the spherical
coordinates and if the angular dependence of p is
written as a spherical harmonic (as will be done later),
we obtain finally

—0' p 8' e, cj e„l(l+1) Be„B
Hs=——.„+2——+ + —. (31)

2m nz Br' r Br 2r' 8r Br

We may now treat e„as a slowly varying function of r,
continuing use of the deformation potential, or we
might set it constant in each shell and apply suitable
boundary conditions at the shell surfaces in the spirit
of the cellular method. We will proceed with the latter
point of view, but will note that the term in Be„/Br
(which vanishes in the cellular method) must be

1. Spherical Approximation

We consider the deformation potential as applied
to a single shell. The quantities ep, VB, cL, y, and P do
not vary within the shell since only Hz is to be con-
sidered in the deformation-potential approximation.
The Eq. (25) is written down for a Cartesian coordinate
system centered on the defect and all terms are evalu-
ated on an axis (the x& axis). For spherically symmetric
strains e~~

—3A= —2(e22 —sA) = 2(e33 3A) on this
axis and the only nonvanishing first derivatives of
these strains are the derivatives with respect to x~.
On this axis c&~=ega=e3~=0, but cje]2/BS2=8egy/Bxa
=3(eu —36)/2m~, the other derivatives vanish. The
resulting deformation-potential equation is rewritten
in the form (26) and we obtain
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retained when the deformation-potential approximation
is used for the radial dependence.

Now that the operators have been written in
spherically symmetric form we may separate the wave
equation by writing y(r)=pp&(r)V& (8,&), where the
V& (8,&) are spherical harmonics. An equation for the
radial part, y&(r), may then be obtained from (26):

1 8 8 2m
apl (HD+HE+HE) Pl

A

t(t+1)
q ( = —kp' ppi. (32)

HD and Hs are given by (27) and (29), respectively,
and HE is given by (31) (with Be„/Br=0).

The matching function (24) may be written

t3

Ep p )Br'

and the matching conditions become

(33)

ing area is given by~

A= (4ir/kps) Qi (3+1) sin'(8i —Bi~,).
Furthermore, the incremental resistivity per atomic
percent of scattering centers may be written in terms
of the scattering area and we have

hp= (4prh/100e'kp) Q i (/+1) sin'(8i —Bi+i).

The value of the coefFicient preceding the sum is 3.8
microhm centimeters per atomic percent for copper.

(b) Born Approximation

An approximate formula for the phase shifts may be
obtained using the Born approximation. The partial
integration must be performed separately in each shell
since the 6nal wave function has discontinuous deriva-
tives at the shell surfaces. This yields extra terms and
the Anal result is

(1—E,)(kpr, )' 1 BjP(kpr)

2 kp Bt' r&

2mkp p"
rj'&(kpr) (HD+HE+Hz)j &(kpr)dr. (34)

A' ~p

Here the plus signs represent values just outside of a
shell surface and the minus signs represent values just
inside. E is the ratio of n/y+Pe„/y defined inside the
surface to that de6ned outside.

It should be verified at this point that (23) is satisfied
by the operator represented by (32) in conjunction with
the boundary conditions (33), and thus that this
mixture of cellular and deformation-potential methods
is consistent. Note that in doing this one must multiply
Eq. (32) by cr in order to get it in a form in which the
operator IJ' is explicitly independent of p&. As it
stands IID depends upon q ~ through kp'.

(a) Asymptotic Behavior

Radial wave functions will be found in accordance
with Eq. (32), with boundary conditions (33) being
applied on the shell surfaces. At large distances the
radial wave functions approach the form'

toi —+ sin(kr+hi ,'trr)/r, —-

where 1 denumerates the angular momentum of the
states, and the b~ are phase shifts which are to be found
and which will determine the scattering.

Since the scattering is described entirely in terms of
the asymptotic forms, and since in this single-band
spherical model the asymptotic forms are identical
to the free-electron forms, we may carry over the free-
electron formula for the scattering area; i.e., the scatter-

' See, for example, L. I. Schiff, QNantum Mechanics |,'McGraw-
Hill Book Company, Inc. , New York, 1949), p. 104.

The index j denumerates the shell surfaces. E; is the
parameter entering (33) defined for the jth shell
surface. Thej t(kpr) are sPherical Bessel functions.

Use of the Born approximation simpli6es the calcu-
lations somewhat and the errors introduced are not
large, as long as the phase shifts are small. This simplifi-
cation will be made in calculating the contribution of
II~ since the phase shifts arising from this term are
small. The phase shifts arising from H~ may be quite
large, on the other' hand, and this contribution will be
determined by solving (32) exactly with the calculated
JIg).

Next, the three terms in the perturbing operator
will be considered individually. The eGect of B~ will
be discussed in terms of impurity scattering, since in
many such cases, the other terms may be neglected.

2. Monovalent Impurities

If the e8ects of strain and of screening are neglected,
the atomic sphere associated with a substitutional
impurity atom is simply the atomic sphere of the
substitutional site in the normal material and the
perturbing operator is simply II~. HD is a scalar which

may be determined for the impurity atom as described
in Sec. III, and which vanishes in the remainder of the
crystal. The matching parameter E in Eq. (33) becomes
simply the ratio of n/y defined inside the surface to that

'This form was derived by L. M. Roth Lthesis, Radcliffe
College, 1956 (unpublished)g directly from a relation given by
K. Huang LProc. Phys. Soc. (London) 60, 161 (1948)g.

8 Reference 6, p. 164.
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outside. The general solutions of the Eq. (32) in the
impurity cell and in the normal material are'

and
Cojt(kr),

C&gcosB~ j~(kor) —sin8&ni(kor)],

respectively. The j& and e& are spherical Bessel func-
tions. Only solutions which are regular at r=0 have
been included in the impurity cell. k is to be determined
from the equation

A'k'/2m+Ho = Ask ss/2ns

If the interior and exterior solutions are matched on
the cell surface according to (33) the following ex-
pression for 8~ is obtained:

x2 (x) x2 (x)
xjP(x) —R

- "i(x) j~(x)—
tan8)=

-xj, (x) xj, (x)-
'

1+xjt(x)n((x) —R
—j~(*) jt(x)—

where x=kr„x=kr„and R is the ratio of n/y in the
impurity cell to that outside.

This is precisely the form found by Roth. ' The
results obtained by applying this to the noble metal
alloys were in fair agreement with experiment (within
30%%uq) except for the case of Cu in Ag and Ag in Cu, in
which cases the results were too small. The discrepancy
in these two cases can presumably be explained by the
inclusion of the effect of elastic strain. The method
showed a considerable improvement over the Mott"
square-well method.

3. Effects of Shear

Since, as was mentioned in Sec. III, the interaction of
the electrons with shear is generally quite small, it is
reasonable to treat the eGects of shear in the Born
approximation. It will also be convenient to make a
deformation-potential approximation, which should be
satisfactory for obtaining a range of magnitude. We
will calculate the phase shifts associated with the strain
field surrounding a point imperfection such as a vacancy,
an interstitial, or an impurity.

The displacements of neighbors to a point imperfec-
tion fall oG as 1/r at large distances; i.e., in the elastic
range. These displacements may be conveniently
written as u~ ——A (a'/r')r, where a is the lattice distance
(a unit cube edge. ) This corresponds to e„=—2Aa'/r'.
It is clear, on the other hand, that the shear strain to be
associated with the central cell is zero; thus we assume
e,=0 for r&r„and e,= —2Aa'/r' for r)r, . Because
there is a discontinuity in e„at r=r„ the matching
term associated with that surface must be retained.

'L. M. Roth, thesis, Radcliffe College, 1956 (unpublishedl.
Portions have been published: Bull. Am. Phys. Soc. Ser. II, 2,
58 (1957);Bull. Am. Phys. Soc. Ser. II, 2, 214 (1957).' N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281. (1936).

The remainder of the crystal is to be treated in the
deformation-potential approximation. We may now
substitute (31) into (34), retaining only terms which
depend upon the shear strains. 1—E. is determined to
first order in e„.Ke obtain finally

2A (ka)' 1
p jp

cl 2x ~x xs

18"( 1 Bjp l(i+1)
+ j, — ———+ j o',x. (35)

x ax' x' ax 2x'

Here kr has been replaced by x and kr, by x,. The
calculation of the 8& is facilitated by using the following
recursion relation which may be derived from (35)
using the properties of the j&.

A(ka)s P
—

jP (t—1)'
&t t+ (&+1)'—+ j ~ t'—

h+1 2n 3+1 x' x'

j~j~—t
+2li~' 4t +—ji P I

x ) .,
The resulting phase shifts are given by B =s+0.2135,
8t ——+0.0436, Bs———0.0012, 8s———0.0007, h4 ———0.0001,
for a close-packed metal, where each is to be multiplied
by A (ka)'P/a for the particular case in question.

We may expect the shear strains to be largest in the
case of an interstitial atom. For interstitials in copper,
Huntington" has calculated A to be about 0.04. We
may insert the other parameters for copper and deter-
mine a resistivity per interstitial arising from this
e6ect alone. We obtain Ap=0.021 microhm-cm per
atomic percent. This is quite small, and we may
conclude that, at least in copper, this effect will be
unimportant unless the phase shifts arising from the
other terms in the perturbing operator are quite small.

4. EGects of Screening

Use of the ionic potentials in each cell may not be
sufhcient for determining the wave functions in a
nonperiodic structure since charges may tend to
accumulate in the region of a disturbance. These would
give rise to long-range Coulomb fields unless they were
properly screened. For this reason a self-consistent
screening potential V~ was introduced in formulating
the method. We shall now consider some general
features of the screening of a spherically symmetric
center. We shall first determine the accumulation of
conduction electrons in the region, and then shall
consider the entire center.

(a) Condgction Etectrons

Friedel" has shown that number of electrons in a
free-electron gas which are accumulated in the region

» H. B.Huntington, Phys. Rev. 91, 1092 (1953);Acta Met. 2,
554 (1954).' J. Friedel, Phil, Mag. 43, 153 (1952), see Appendix.
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Similarly we may write down (36) for a different
function q ~' with a different parameter kp'. This
equation is multiplied by p&*, the complex conjugate
of Eq. (36) is multiplied by op&' and the two are
subtracted.

np(k—p kp' )—ooi*oo&'.

This is divided by p and integrated over a large volume.

pM
np(ko' —kp"))—

p

Within each shell we integrate the left-hand side by
parts.

A 6r ~P~ ~g~ ri
4m —+p— r'p(' —r'q (*

P J Bf p r+
f p& g&= —np(kp' —kp") )' dr.

7

The expression on the left is to be evaluated at r= 0,
at r equal to a large radius M, and at all shell surfaces.
However, by virtue of the boundary conditions (33),
terms evaluated at the inside of each shell surface just
cancel those at the outside. The r=0 term vanishes
also, so we are left with only the value at the upper
limit. Ke now let kp' approach kp. To first order in
kp' —kp, we obtain

r2

kpyp Bk Br
r'q (* ——— dr. (37)

Oker „=gg

of a spherically symmetric perturbation may be written
in terms of the phase shifts evaluated at the Fermi
surface according to the following formula:

e= (2/or) P( (2t+1)8(.

A parallel proof may be made for the case of a conduc-
tion band in the framework of the approximations
which have been made here.

Equation (32) may be rewritten by multiplying
through by o., writing out the operators explicitly, and
rearranging terms. We find that within each shell, q ~

satisfies the equation

1 8 ( Booi) 2'
Cn+pp, j——

I
r'

I

—(o—o pop+—&s) o i
r'ar & ar)

o„ l(t+1)—n —p— pod
———npkp'(p(. (36)

2 r2

I
Note the form of the normalizing integral (20) with

U(r,) the same in every cell.]This may be substituted
in the left-hand side of (37). We obtain

M+ ——sin2(kM+8( ——,'hr)
M' Bk 2k

f
d7-.

The integral on the right gives the fraction of the
electron which lies within the radius 3f. The corre-
sponding equation in the absence of the perturbation is
subtracted from this and the expressions are summed
over all occupied states. The right-hand side becomes
the total number of extra electrons in the region. The
left becomes a sum over t of an integral over k. LThe
number of states of angular momentum quantum
number t between k and k+dk is 2 (2l+1)M'dk/or. $ The
oscillating term is dropped and we obtain

~= (2/or) Qg (2l+1)b(. (38)

The Friedel sum rule retains the same form within the
framework of the approximations made here.

(b) Entire Certter

In order to consider the screening problem, we again
construct a large sphere surrounding the imperfection
site. Unless the total charge enclosed in this sphere
vanishes, the imperfection has not been properly
screened. We construct the scattering center step-by-
step to determine the total charge.

Before the imperfection is introduced the total ionic
charge exactly cancels the total charge of the conduc-
tion electrons within the sphere. If a vacancy, an
interstitial, or a polyvalent ion is introduced at the
imperfection site without distortion of the other ions
or the conduction electrons, an integral number of
electronic charges, Qr, are added. For vacancies
Qr= —e, for interstitials Qr ——+e.

If now, the lattice is allowed to relax, the ionic
displacements at large distances are radial and may be
written er, =A a'/r', where r is the radial distance to the
ion in question. Thus the total ionic charge displaced
i+ward across the sphere is given by Qr'= —4orM'(Aa'/
M')e/Q= —4orAa'e/0, where 0 is the atomic volume.
Upon using Huntington' s" values for A, this gives Qr'
=+0.44e for vacancies in copper and Qr' ———2.0e for
interstitials. Clearly this is an important term in the
ionic charge of an imperfection. Blatt" has analyzed
the implications of this term on the resistivity of dilute

1'Vacancies: H. B. Huntington and F. Seitz, Phys. Rev. 61,
315 (1942); interstitials: reference 11."F.J.Blatt, Phys. Rev. 108, 285 (1957) and (to be published).

I et the radius of the crystal be 3f'. Thus M'))M))r, .
The asymptotic form for the normalized functions p&

is given by
t' yp ) 'sin(kr+h) ——,'tor)

&2orM') r



CELLULAR M ETHOD FOR WA VE FUN CTIONS 23

alloys of the noble metals, and has found that it gives
rise to a dependence of the resistivity of the alloy upon
the location of the solute atom in the periodic table.

The displacement of the conduction electrons due to
the scattering operator Ho+Ha may be found using
the Friedel sum rule, (38), where the phase shifts are
calculated from HD+Hs. We call this contribution Qo.

Finally, there is a displacement of the conduction
electrons by the unknown screening potential VB,
this contribution is written Q8. The requirement that
the total charge vanish (Qr+Qr'+Qc+Qs 0) ——in
conjunction with (38) gives a normalization condition
upon Vq. In order to determine the form of Vq, the
distribution of the charge Qr+Qz'+Qo must be known,
whereas the calculation just described gives only the
total charge.

As a first approximation we might assume that the
excess charge is distributed in proportion to the excess
ionic charge density as defined in each cell by e(8Z —6)/
PQ(1+6)j.Here BZ is the difference between the ionic
charge in the cell and that in the normal monovalent
metal; 6 is the dilatation; and 0 is an atomic cell
volume. Then in the Fermi-Thomas approximation, the
screening potential in each shell may be written

kn-e e '" e~"
Vs= po+A +8

q' qr qr

where po is the excess charge density in the shell. A and
8 are to be evaluated in each shell such that Vg and
V'Vz are everywhere continuous and Vz vanishes at
infinity. The screening parameter q is defined by'~

q'= 4nte'k/eh'a.

For normal copper this gives qr, =2.58. It may be noted
that Vz may not be slowly varying within each shell
as assumed in Sec. II. However, it is not rapidly
varying in the sense that the ionic potential is, and this
approximation may be suitable when Vq does not make
a large contribution to the resistivity.

V. OTHER SOURCES OF SCATTERING

1. Dislocations

The method is directly applicable to nonspherical
centers, such as dislocations. The major difficulty in
treating dislocations, however, is the lack of knowledge
of the details of the core. Once a suitable model of the
core is available, it will be possible to treat the scatter-
ing using the cellular method. A deformation potential
method is suitable only for treating the strain field, and
it appears that this is an unimportant contribution to
the scattering. " In the case of screw dislocations in
particular, the contribution of the strain to the scatter-
ing in copper would be reduced by a factor of about
170 from that calculated by Hunter and Nabarro' if

' This form was given by I . M. Roth, reference 9.
W. A. Harrison, J. Phys. Chem. Solids (to be published).

the value of P of Table I were used rather than the
value determined by the square-well method.

2. Stacking Faults

There has recently been interest in the scattering
by a stacking fault. Two pieces of evidence have been
proposed" as indicating .that this scattering is ap-
preciable: first, it has not been possible to understand
the increase in resistivity due to cold work in terms of
the calculated resistivities to be associated with
dislocations; second, a calculation of the scattering by
stacking faults by Seeger" yielded a reQectivity of the
order of one half. The experimental evidence appears
inconclusive since there has not been a satisfactory
treatment of the scattering by the core, and since this
contribution to the scattering may be expected to be
of the right order of magnitude to produce agreement. "
The reQectivity calculation appears to be questionable
inasmuch as the lattice potential was treated as a
first-order perturbation in the scattering calculation;
but to obtain a first-order matrix element, one must
use wave functions which are of zero order in the lattice
potential; i.e., free-electron functions. Since free-
electron functions give a vanishing matrix element for
scattering, a consistent first-order procedure gives
vanishing reflectivity. The second-order perturbation
procedure has not been done, and it is not evident that
it will give a nonvanishing result.

Both 6 and e~ vanish for all cells in the neighborhood
of the stacking fault, so none of the parameters entering
the determination of q nor the matching of y change;
hence, the cellular method yields vanishing reAectivity.
This simply means that any scattering by a stacking
fault Inust come from terms in the wave function of
lower symmetry than those considered here. It is
concluded that the reQectivity should be very small.

3. Lattice Vibrations

For the case of scattering by long-wavelength
phonons, the assumptions leading to Eq. (25) are
justified and use of the deformation-potential formalism
is suitable. Furthermore, it is reasonable to treat this
eGect in the Born approximation. A complete analysis
has not been made, but a few features of the method
are apparent and will be discussed brieQy.

(a) Long Wavelength Longitud-ina/ Phonons

In the limit of long-wavelength phonons, we may
neglect terms containing the derivatives of the strain.
Thus the deformation-potential Eq. (25) becomes
identical to (18) and the interaction may be discussed
in terms of the perturbing operators of Eq. (26).

Neglecting, for the moment, the effect of HE, we
note that HD+Hs is a scalar interaction. In the long-
wavelength limit the net potential must be such as to

"A. Seeger, Can, J. Phys. 34, 1219 (1956).
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bring about screening of the ionic charge accumulated
in regions of compression. If HD+Hs is calculated in
the Fermi-Thomas approximation to erst order in the
dilatation, it is found that Hn+Hs=2Ertt/3, where
Er ——h'ko'/2m. Thus the interaction is independent of
FID in this approximation.

II~, on the other hand, does not shift the average
energy of the conduction electrons at any point, and
therefore does not affect the screening. The ionic
displacements associated with a longitudinal phonon
may be written uI. ——(o/o) exp(io r). It is seen that
ei~=D; ~22= &33=0, where the x~ axis is taken along o.
Thus HE becomes (l't'P/2mn) (6/3) (2ki' —k~ —k3'). This
may be written PErh/3—n in the case of small-angle
scattering where e is perpendicular to k. The
total interaction becomes simply HD+H g+Hs
=3~($——,'(P/a))EFQ. It is seen that the interaction
with shear reduces the small-angle scattering by
longitudinal phonons. We may expect the interaction
to be correspondingly enhanced in the case of umklapp
process. However, owing to the smallness of P (see
Table I), this effect would be relatively unimportant
except in the case of gold.

(b) Lortg Wavelength -Transverse Phonorts

The ionic displacements associated with a transverse
phonon may be written uz, =~ exp(ie r), where ~ is
perpendicular to cr. If we take the x~ axis along e, and
the x2 axis along ~, we see that only e» is nonvanishing.
Thus the only perturbing term contains a factor of
6]gk]k2. In the limit of small"angle scatteIlng kg= 0
so this term does not contribute. In umklapp processes,
on the other hand, this term will not necessarily vanish.

(c) Short Wavelength -Phortons

It is appropriate to consider short-wavelength
phonons in terms of a cellular method. However,
difficulty is encountered in constructing cells. A
reasonable picture would consist of having the cells
unchanged and moving the ions oG center. In the
cellular method as developed here cells were always
centered upon the ion. The procedure could presumably
be readily generalized to include such a distortion, but
that has not been done.

(d) Liquid Metals

It may be remarked that this analysis would not
change appreciably in a treatment of small-angle

scattering in liquid metals. The method is not sensitive
to the detailed symmetry of the cells, so one need only
determine the atomic cell volume from the density and
construct the phonons in the liquid metal. This is
consistent with the known properties of the noble
metals, which do not change volume greatly upon
melting: the change in resistivity can be very well

understood solely on the basis of the change in phonon
energies 's

VI. CONCLUSIONS

A cellular method has been proposed for constructing
one-electron wave functions for a nonperiodic mono-
valent metal. The factor which corresponds to the
exponential in the periodic case must satisfy a particular
differential equation in each cell, as well as specific
matching conditions at all cell surfaces. The potential
seen by the electrons was assumed to be spherically
symmetric within ellipsoidal cells centered on the metal
ions and the ellipticity of these cells was treated as
small. It was shown that the proposed functions are in
fact solutions of the corresponding Hamiltonian to
first order in the electronic wave number (as generalized
to nonperiodic structures).

The form which this method takes in the case that
the strains are slowly varying was also written down.
It was seen that there is a term which depends upon
the spacial variation of the strains which does not occur
in the deformation potential of Hunter and Nabarro,
and that this term is necessary if the Hamiltonian is
to be Hermitian.

The procedure for constructing the wave functions
depends upon the lattice ions through certain param-
eters which are obtainable from the quantum defect
method or from integration of the Hartree field. These
parameters were calculated for the alkali metals and
the noble metals. These constants become the
deformation-potential constants in the deformation-
potential approximation.

The cellular method was used to construct wave
functions in crystals containing a single point im-
perfection and thereby to determine the scattering.
It was found that in the absence of shear strains and of
screening e8ects, the method reduces to that of Roth'
for treating monovalent impurities in monovalent
metals.

It was found that shear strains associated with point
imperfections are usually unimportant since the
parameter which determines the coupling of the
electrons with the shear strains is small in all of the
metals considered except gold.

The screening problem was considered in general
terms. It was seen that the ionic charge to be associated
with a point imperfection depends upon the deformation
of the lattice, as well as upon the point imperfection
itself. It was also seen that the Friedel sum rule for
determining the excess electronic charge to be
associated with the singularity remains valid within the
framework of the approximations of this calculation.

It was indicated that application of this method to
stacking faults yields a vanishing reRectivity. This
result was discussed brieRy in relation to considerations
of this problem which have been made previously.

' A. N. Gerritsen, IIandbuch der Physik (Springer-Verlag,
Berlin, 1956), Vol. 19, p. 178.
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The method was not applied to the scattering by
lattice vibrations in detail, but several limiting cases
which give some insight into the problem were dis-
cussed. It was pointed out that a generalization of the
method would probably be necessary if the scattering
by short-wavelength phonons were to be treated
properly. It was also mentioned that if the scattering
of electrons in liquid metals is treated by this method
using a simple model for the liquid, the results are
qualitatively correct.

Calculations by this method of the resistivity of
vacancies and interstitials in copper are currently in
progress. Preliminary results indicate that the resis-
tivity due to a vacancy is of the order of 0.8 microhm
centimeter per atomic percent and that the resistivity
due to an interstitial is somewhat smaller.
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APPENDIX

The parameters eo, n, y, and P must be determined for
the metal under consideration if the perturbing operator
is to be found explicitly. The eo, n, and p are identical
in this treatment to the same parameters defined by
Bardeen. ' The parameter y is given by (21). Bardeen
showed that n, which is given here by Eq. (16), may be
expressed in terms of the logarithmic derivative of the

p function: n= y(h) pi(0) &
where pi(D) = riigi'(rq)/

gi(rq). These parameters have been calculated for three
values of atomic sphere radius for the alkali metals by
Brooks" and for the noble metals by Kambe. "We
obtain values for intermediate atomic cell sizes by
quadratic interpolation with respect to dilatation.

The parameter P is given by Eq. (17). The first
term in the expression for p arises from an integration
over the cell surface. This term was apparently omitted

by Hunter and Nabarro. ' In addition, a transcription
error occurred in the first integral term and the g2 factor
did not appear in their paper.

'~H. Brooks, Phys. Rev. 91, 102' (1953), and unpublished
work which is given by F. S. Harn, in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic Press, Inc. , New York,
1955), Vol. 1, p. 185.

~ K. Kambe, Phys. Rev. 99, 419 (1955).

Equation (17) may be written in terms of the loga-
rithmic derivatives of g& and g2 by performing operations
similar to those used by Bardeen in calculating n.
We obtain

2p U" (2pi
P=—1—Pi'+rg'

~

—1
5 U&p, )'

where p2= r~g~'(r~)/g2(r~).
We shall neglect the variation of p with 6 and

evaluate it for 6=0. Since the boundary conditions are
satisfied only to erst order in the shear strains, it is
consistent to neglect this variation which corresponds
to terms of the order t.,;A.

y and pi are obtained from the interpolated values
of y and n found above. Hunter and Nabarro have
shown that yr'U"/U= (2mr'/3k')Beo/Br, which we may
calculate from the interpolation of eo. Thus only the
logarithmic derivatives of the d functions are needed.

Ham" has calculated the logarithmic derivatives of
the d functions for the alkali metals at the band-edge
energy and at the observed lattice spacing by using the
quantum-defect method. Ham points out that the
interpolation is considerably less reliable when applied
to the d function than it is when applied to the s and

p functions. Absolute errors in p are about equal to the
corresponding fractional errors in P2, i.e., 5(P) =&P2/P~.
The estimated possible errors, 5P2/P2, for K, Rb, and
Cs were less than 0.06. Errors for I.i and Na should be
even smaller.

It seemed advisable to estimate P2 for the noble
metals by integration of the Hartree field since the
extrapolation required in the quantum-defect method
is quite unreliable in these cases. The tabulated Hartree
fields" for the noble metal ions were corrected for the
removal of a single d electron and the addition of a
conduction electron distributed uniformly over the
atomic cells. The resulting field was integrated numeric-
ally for the band-edge energy, eo, to obtain the loga-
rithmic derivative of the d function. It is difficult to
estimate the error entailed in this approach, but an
error of greater than ten percent would seem surprising.

The values of p determined from these various
parameters appear in Table I.

"The author is indebted to Dr. Ham for supplying him with
the results of these calculations, which have not been published.

"Hartree calculations for Cu+, Ag+, and Au+ have been made
by D. R. Hartree, Proc. Roy. Soc. (London) A141, 282 (1933);
M. M. Black, Mem. Proc. Manchester Lit. and Phil. Soc. 79, 29
(1935); and Douglas, Hartree, and Runciman, Proc. Cambridge
Phil. Soc. 51, 486 (1955), respectively.


