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Center-of-Mass Motion in the Nuclear Shell Model

H. J. LIPKIN
Department of Physics, The 8'eismann Institlte of Science, Rehovoth, Israel

(Received January 20, 1958)

The methods for treating center-of-mass motion in the nuclear shell model are reviewed. The existence of
inherent difficulties of principle is pointed out for any method which attempts to remove center-of-mass
effects from a shell-model wave function without considering the relation of the she]l-model wave function
to the Hamiltonian of the real nucleus.

I. INTRODUCTION
' T is now well known that center-of-mass motion is
- - not properly treated in the nuclear shell model. The
shell model Hamiltonian is not translation-invariant
and the shell-model wave functions are not eigenfunc-
tions of the total linear momentum. A number of
attempts have been made to develop formalisms for
treating center-of-mass motion rigorously within the
framework of the shell model' '; however, difficulties
of principle are encountered when these methods are
applied to any case other than the simple harmonic
oscillator shell model.

The principal difficulty is that the "removal of spuri-
ous center-of-mass eRects from a given shell-model
wave function" is in general not a we/i deftned-problem
Oed has eo usque solutioe. A variety of methods can
be proposed for "projecting out a translationally in-
variant part" of the shell-model wave function. These
methods all consider a single individual wave function
at a time and do not take into account any properties
of the real nuclear Hamiltonian other than translation
invariance. DiRerent methods lead to different results
in all cases except that of harmonic oscillator wave
functions where all methods seem to be equivalent.
There seems to be no basis a priori to choose between
these methods. An understanding of which method (if
any) gives correct results will probably come only with

a better understanding of why the shell model works

at all for nuclei; i.e., with the introduction of some con-

nection between the shell-model wave function and the
real nuclear Hamiltonian.

Another difficulty encountered in these methods is

that the translationally invariant wave functions ob-

tained from diRerent shell-model wave functions are

not generally orthogonal to one another.
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II. CENTER-OF-MASS FLUCTUATIONS

A wave function describing a real nucleus should be
an eigenfunction of the total momentum operator
describing center-of-mass motion as a plane wave. This
is not the case for shell-model wave functions, which
must therefore describe some other kind of center-of-
mass motion. To investigate the kind of center-of-mass
motion which shell-model wave functions do describe,
we can calculate expectation values of powers of the
coordinate and the momentum of the center of mass
using these wave functions. The results show that the
position of the center of mass Quctuates about the
origin of the coordinate system and that neither the
amplitude nor the kinetic energy of these fluctuations
can be considered as small. In fact, the latter is of the
same order of magnitude as the energy of the particle
excitations in the nucleus. These fluctuations are not
present. in real nuclei and their dynamical eRects must
be removed if the shell-model wave functions are to be
used for calculating properties of real nuclei.

In the harmonic oscillator shell model it is possible
to describe these Quctuations in a simple way. The
center of mass, instead of moving as a free particle,
moves as if it were "tied by a spring" to the center of
the potential; i.e., like a particle in a harmonic oscillator
well. Elliott and Skyrme' have pointed out that this
leads to two spurious eRects not present in a real nu-
cleus: 1.For every state of internal motion of the system
there exists a spectrum of higher excited states of
center-of-mass oscillation in an oscillator well, 2. In
states where the center-of-mass oscillator is in its lowest
state there is a zero-point motion of the center of mass.
They have classified all states in which the center of
mass is excited as "spurious states" which should be
rejected and they have given a prescription for eliminat-
ing the dynamical eRects of the zero-point motion.

In all cases other than that of the harmonic oscillator
potential the problem is much more complicated and
the question arises whether it is at all possible to remove
the dynamic eRects of center-of-mass motion in an
unambiguous way. We shall see that this is not possible
except in the case of the harmonic oscillator.

III. CONSTRUCTION OF MOMENTUM
EIGENFUNCTIONS

Let us now examine how one might remove center-
of-mass effects from a shell-model wave function. For
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is a wave function independent of X for any arbitrary
choice of the function G(X). The methods which have
been proposed for treating center-of-mass motion are
all based upon prescriptions for constructing zero-
momentum wave functions. These prescriptions are
usually stated in terms of the particle coordinates in

the laboratory system, rather than in terms of the
coordinates (X,q ). They therefore appear to be quite
different from one another and from the relation (3).
However, when the shell-model wave functions are
written in terms of the coordinates (X,q ), it becomes
evident that each prescription is equivalent to a rela-
tion of the type (3), with some particular choice for
the function G(X). For example, the prescription used
in the method of generator coordinates, 7

ps(q )=J~gsM((X —a), q )da, (4a)

is clearly equivalent to taking G(X) = I in Eq. (3). The

each state of internal excitation of a real nucleus there
is a continuous "translational spectrum" of states all
having the same internal structure and a diferent total
momentum. Since it is only the internal structure which
is of interest in nuclear spectroscopy, nothing is lost
by considering only a single state in each translational
spectrum, namely that corresponding to a total linear
momentum zero. We shall therefore consider how to
construct a function of total momentum zero from a
shell-model wave function.

The essential features of the problem become evident.
if the shell-model wave function ltsM is expressed in
terms of coordinates of the particles in the center-of-
mass system instead of in the laboratory system. We
can thus write fsM as a function of the center-of-mass
coordinate X and a set of relative coordinates q . Since
the coordinates of the particles relative to the center
of mass are not all independent, the q must be a set of
independent functions of these relative coordinates and
the number of the q" will be just 3A —3 if the number of
particles in the system is A. The exact definition of the

q is rather messy in practice but it is sufficient for our
purposes to note that they can be defined in principle.
Thus

lpsM =QSM(X)q ) . (&)

We now wish to construct from lt'sM a function po
having total momentum zero: its must satisfy the
relation

Pgo ———i7id)t o/8 X=0. (2)

This simply means that pp should not depend upon X,
but only upon the relative coordinates q . We therefore
wish to remove the dependence upon X from the shell-

model wave function Ps M. This can be done in a variety
of ways. For example,

its(q )=)" G(X)fsM(X, q )dX (3)

prescription used by Gartenhaus and Schwartz, '

Po(q ) =lim exp[ —iA(P X+X P)/2]gsM(X, q ) (4b)

appears to be very different from Eq. (3). However,
noting that

exp/ i—A(P X+X P)/2$&sM(X, q ) =it sM(Xe s,q ),
we see that the relation (4b) is equivalent to taking
G(X) =8(X) in Eq. (3).

It is evident that in general the functions fs(q ) cor-
responding to different choices of the generating func-
tion G(X) will be quite different. Since there seems to
be no reason, a priori, to choose a particular G(X),' we
see that the problem of "removing center-of-mass
effects" from a given shell-model wave function is not
uniquely defined.

A second difhculty inherent in the definition of zero-
momentum wave functions by a relation of the type (3)
is that the set of all wave functions g s(q~) corresponding
to a complete orthonormal set of shell-model wave
functions must be a redundant set. Two zero-momentum
wave functions Ps corresponding to two orthogonal
shell-model wave functions will in general not be
orthogonal. The redundance is evident, since the rela-
tion (3) eliminates 3 degrees of freedom from the system
without reducing the number of wave functions. This
redundance may not cause difficulty in calculations of
diagonal matrix elements of operators, such as electric
or magnetic moments. However, one can question the
meaning of oG-diagonal matrix elements between two
wave functions which may not be orthogonal to one
another.

IV. HARMONIC OSCILLATOR SHELL MODEL

The one case which has been treated simply and suc-
cessfully by all methods is that of harmonic oscillator
wave functions. The simplicity results from the separ-
ability of center-of-mass motion in the harmonic
oscillator case"' which allows the shell-model wave
functions to be written in the form

lt' M(»q )=J'(X)v(q ),
where the functions E(X) and y(q ) constitute two

' In the treatment of rotational states in nuclei, certain problems
are encountered which are analogous to the treatment of center-
of-mass motion (translational states). It is therefore possible to
carry over some of the arguments in this treatment directly to the
rotational case by substituting the words "rotation" for "transla-
tion, " "angular momentum" for "linear momentum, " "collective
angular coordinate" for "center-of-mass coordinate, etc." An
important difference between the two cases, however, is that the
collective coordinate is not Nniqlely de ned in the rotational case.
Thus, in using relations of the type 3) to generate functions of
zero angular momentum, the choice G(X)=1 has the particular
feature of being independent of the choice of collective coordinate
X.The method of generator coordinates therefore allows the rota-
tional problem to be treated without explicitly de6ning a collective
coordinate. It is not clear whether this is an advantage or a dis-
advantage t H. J. Lipkin, Proceedings of the Rehoooth Conference
on XNctear Structlre (North-Holland Publishing Company,
Amsterdam, 1958)j, p. 144.
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independent sets of orthonormal functions. It is evident
that a separable function of the type (5) will always
give the same zero-momentum wave function in the
relation (3) regardless of the fornt of the getMratittg fttec
tt'orat G(X) (apart from a constant factor which has no
significance since the functions Ps(q ) are not normal-

ized), except for the case where G(X) is orthogonal to
F(X) and the integral vanishes. Furthermore, two
different orthogonal shell-model wave functions will

generate two zero-momentum wave functions which are
either orthogonal or identical, depending upon whether
the internal parts y(q~) of the two functions are the
same or different. The redundance can therefore be
removed simply by rejecting the set of duplicate states
as spurious. This can be done simply by setting G(X)
in (3) equal to the complex conjugate of one of the
functions of the set F(X) in (5), for example, that of
the ground-state wave function. All the "spurious
states" then give zero in the relation (3) since they
contain functions F(X) orthogonal to G(X).

Once the zero-momentum wave functions are con-
structed, expectation values of operators can be calcu-
lated by any of the methods proposed, some being
more elegant or easier to calculate than others. However,
it is clear that for the oscillator case, all methods should

give the same result.
Unfortunately, the harmonic oscillator case is the

only case for which the separability (5) is valid. For
any other case, such as, for example, the harmonic
oscillator potential with an added spin-orbit inter-
action, the center-of-mass motion is no longer separ-
able. Different methods of treating center-of-mass
motion then give diGerent results; diferent zero-
momentum wave functions constructed in any one
method are not orthogonal to one another and there is
no simple way to dehne and to reject "spurious states. "

H=Q, T,+Q;V,, (6)

where T; and V; are the kinetic and potential energy
of the sth particle. If the potential energy g;V, is
expressed in terms of the coordinates (X,q ),

P,V;= U(X,q-),

V. CONCLUSIONS

The general solution of the center-of-mass problem
for the nonseparable case does not seem to be possible
using a relation of the type (3) which defines a zero-
momentum eigenfunction for a given individual shell-

model wave function without regard to the other shell-

model wave functions. To construct an orthonormal
set of zero-momentum wave functions, it seems to be
necessary to treat together the whole set of shell-model
wave functions, or at least a group of several of them.
The particular direction to look for such a treatment is
not at all clear. One way of doing it formally would be
as follows:

Let the shell-model Hamiltonian be

we can define a "translationally invariant potential" by
a relation analogous to (3):

Us(q ) = ~G(X) U(X,q )dX.

The function G(X) and the translationally invariant
potential are of course not uniquely determined. We
can now write down a Hamiltonian,

H'=QtT, +Us(q ). (9)

The Hamiltonian (9) is translationally invariant, and
we can in principle write down all its eigenfunctions
corresponding to a total momentum zero. In this way
we have de6ned an orthonormal set of zero-momentum
wave functions corresponding in some way to the set of
shell-model wave functions. This does not seem to be a
very practical solution, because of the difficulty of
finding the eigenfunctions of (9), which will not be
simple single-particle wave functions.

A striking feature of all these treatments of center-
of-mass motion in the nuclear shell model is that they
only consider the shell-model wave functions and are
completely independent of the form of the Hamiltonian
of the real nucleus. This might be justified on the
grounds that it is known empirically that the use of
shell-model wave functions gives results in reasonable
agreement with experiment and that the only point
considered here is that of the relatively small correc-
tions for center-of-mass motion which do not have any
direct bearing on the justification of the shell model
from first principles. However, it is evident that there
is no unique prescription for making these corrections
without reference to the Hamiltonian of the real nucleus.

One possible approach would be to determine the
function G(X) in Eq. (3) by a variational method which
would minimize the energy as calculated with the
Hamiltonian of a real nucleus using two-body forces."

This assumes that the shell-model wave function is
an approximation to the real wave function, except for
its description of center-of-mass motion. If the relation
between the shell-model and the real wave functions is
more complicated, such as proposed by Brueckner, "
then it does not seem reasonable that the center-of-
mass problem can be separated from the general prob-
lem of justifying the shell model.

» I. Talmi (private communication). (This should not be con-
fused with the variational approach presented in the method of
generator coordinates. ' The latter becomes trivial in the case of
center-of-mass motion and merely requires that the functions
generated be eigenfunctions of the total momentum if the real
Hamiltonian is translationally invariant. }» R. J. Eden, Proceedings of the Rehovoth Conference on XNcLear
Strttctlre (North-Holland Publishing Company, Amsterdam,
1958), p. 3.
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