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Effect of the Imprisonment of Resonance Radiation on Excitation Experiments
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8'estinghouse Research Laboratories, Pittsburgh, Pennsylvania

(Received February 28, 1958)

The theory of the imprisonment of resonance radiation developed by Holstein and by Bieberman is
applied to the analysis of experimental measurements of excitation cross sections for the resonance (n 'P)
states of helium. The transport equation for the density of atoms in the resonance state is solved numerically
for the case of a thin sheet of exciting electrons between parallel plane electrodes. The fraction of the reso-
nance atoms producing visible radiation is then calculated for parallel plane geometry and estimated to
within five percent for cylindrical geometry with an axial electron beam. Predictions of the theory are
compared with the available experimental data for helium. The theory shows that at the helium pressures
commonly used {10 ' to 10 ' mm of Hg) the observed visible radiation may easily be a factor of ten greater
than that expected when imprisonment effects are neglected. As a result, the cross sections for the excitation
of the n'P states given in the literature are much too large. For example, our analysis of the available
experimental data suggests that the cross section for excitation by electrons to the 3 'P state of helium at
100 electron volts is 3&(10 ' cm2 instead of 4)&10 '7 cm as given in the literature.

I. INTRODUCTION

'HE object of this paper is to apply the theory of
the imprisonment of resonance radiation devel-

oped by Holstein' ' and by Bieberman' to the analysis
of experimental measurements of the excitation cross
sections for resonance states of atoms. We will be
concerned with those resonance states which can radiate
to one or more excited states as well as to the ground
state of the atom. Because of the large number of
atoms in the ground state in an excitation experiment,
the radiation emitted in a transition to the ground state
will be absorbed and re-emitted many times before
reaching the wall of the tube. The resultant increase
in the effective lifetime of the excited state against
radiation to the ground state, known as the "imprison-
ment of resonance radiation, " results in an increase in
the probability that an excited atom will decay to a
lower "nonresonant" excited state with the emission of
visible or infrared radiation. The (1snp)'E states of
helium are examples of this class of excited states and
have been studied by a number of experimenters. ' '
In general, the experimental arrangement consists of

' T. Holstein, Phys. Rev. 72, 1212 (1947). Experimental
confirmation of the theory of the decay of resonance radiation is
given by Alpert, McCoubrey, and Holstein, Phys. Rev. 76, 1257
(1949); Holstein, Alpert, and McCoubrey, Phys. Rev. 85, 985
(1952); and A. V. Phelps and A. O. McCoubrey, Bull. Am.
Phys. Soc. Ser. II, 3, 83 (1958).' T. Holstein, Phys. Rev. 83, 1159 (1951).The values of gL, (koL)
and gR(koR) given in Fig. 4 are some 30% larger than those
given in this reference. The difference results from the use of a
more accurate E(kop) function. Note that the coeScient A in
Eq. (5) could include any volume destruction process for the
resonance states, e.g. , collisional de-excitation.

'L. M. Bieberman, J. Exptl. Theoret. Phys. U.S.S.R. 17, 416
(1947).' J. H. Lees, Proc. Roy. Soc. (London) A137, 173 (1932).

5O. Thieme, Z. Physik 78, 412 (1932); W. Hanle and W.
Schaiiernicht, Ann. Physik 6, 905 (1930).

'H. S. W. Massey and E. H. S. Burhop, E/ectronic and Ionic
Impact Phenomena (Oxford University Press, London, 1952),
Chaps. II and III.

7H. S. W. Massey, Handbuch der Physik (Springer-Verlag,
Berlin, 1956), Vol. 36, p. 325; and R. G. Fowler, Handbuch der
Physik (Springer-Verlag, Berlin, 1956), Vol. 22, p. 209.
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an electron beam passing along the axis of a short
cylindrical collision chamber. We will assume that the
optical system is designed to allow a determination of
the total radiation emitted in a thin slab perpendicular
to the axis of the electron beam. ' Although the imprison-
ment of resonance radiation was shown by Lees and
Skinner' to result in a spreading of the spatial distri-
bution of excited atoms in the collision chamber and a
variation in the observed excitation cross section with
pressure, Heddle' was the first to show how one could
take into account empirically the effects of imprison-
ment on the measured cross sections.

In the second section of this paper we will derive the
relationship between the experimentally measured
intensity of radiation emitted in transitions between
excited states and any given distribution of the density
of excited atoms. The Holstein-Bieberman theory will
then be used to find an equation for the spatial distri-
bution of the excited atoms. In the third section we
will solve for the excited atom density and the fraction
of emitted "visible" radiation for the case of parallel
plane geometry. In the fourth section we will obtain
maximum and minimum values for the fraction of
radiation appearing as visible radiation for infinite
parallel plane and cylindrical collision chambers. These
limiting values can be used to analyze experiments for
which the exact density distribution has not or cannot
be found. In the last section some of the predictions of
the theory are compared with published experimental
data.

II. THEORY

The measured quantities in an excitation experiment
are the intensity of radiation in a given spectral line

J. H. Lees and H. W. B. Skinner, Proc. Roy. Soc. (London)
A137, 186 (1932).

D. W. O. Heddle, Warren Conference Report on Physics of
Ionized Gases, University of Birmingham, July, 1954 (unpub-
lished), p. 41. The author states (private communication) that
the experimental data should be regarded as preliminary and that
the final cross sections for the 5016A line are roughly twice the
values given.
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IMPRISONMENT OF RESONANCE RADIATION 1363

emitted from the tube, the electron current through the
tube, the gas density, and the dimensions of the electron
beam and the collision chamber. The rate of visible
photon emission per unit length of electron beam, J,I„ is

J,s ——A, s N(r)da,

where A j& is the transition probability per unit time for
the experimentally observed line, n(r) is the density of
excited atoms at the point f, and da is an element of
area perpendicular to the electron beam. The rate of
production of excited atoms per unit length by direct
excitation" is

I

R,= p(r)da= 1VQ,I/—e,

where E is the gas density, Q, is the excitation cross
section for the jth state, p(r) is the rate of production
of excited atoms per unit volume, I is the electron
current, and e is the electronic charge. In this discussion,
we are concerned with the fraction of the excited atoms
which result in visible photons, i.e.,

f;k= J,s/R;=A, s e(r)da p(r)da.
J

The quantity f,s will vary from a small number of the
order of 10 ' at low gas densities to a value as large as
unity at high gas densities. It is often convenient to
discuss the experimental results in terms of the apparent
cross section, Q, s, for the production of a particular line.
The apparent cross section is defined by the equation

Q,,=eJ,,P I,
and is therefore related to the total cross section" by

jl = jI j~

If we designate the sum of the Einstein coeKcients
for all lines other than the resonance line by A and that
for the resonance line by p, the density of excited states,
N(r), satisfies the Boltzmann transport equation' '

p(r)+y e(r')G(~ r r'~)dv' —pm(r) —Ae(r) =—0, (5)

where p(r) is the rate of production of excited atoms
per unit volume and G(~r—r'~) is the probability that
the radiation emitted by an atom at r' will be absorbed

'0 Here we have neglected the effects of cascading from higher
states and the transfer of excitation. When these effects are not
small, one must solve an involved set of coupled differential
equations. Because of these effects, the theoretical and experi-
mental spatial distributions can be compared only under ideal
conditions. See Sec. V for a calculation of the effects of the
transfer of excitation on the apparent cross section, Q;q. Fortu-
nately, the effects of cascading are generally small and can be
taken into account without solving the coupled equations (refer-
ence 6).

by an atom at r. The second term gives the rate of
absorption at r while the last two terms give the rate of
emission at r. Over much of the range of gas densities
and tube sizes of interest, the second and third terms
nearly cancel. Because of the slow decrease in G(

~

r—r'
~ )

with
~

r—r'~ for this problem, Eq. (5) cannot be reduced
to a diffusion equation, nor can one define a mean free
path for the photons. "

The dependence of the quantity G(
~

r—r'
~ ) upon the

distance ~r—r'~ and the density of absorbing atoms
depends upon the details of the spectral line. In general, '
G(p) = (1/47rps)dT(p)/dp, where T(p) =J' „e(v)e 'si" dv

and p= j r —r'
~

. Here T(p) is the probability that the
radiation emitted by an atom will travel a distance p
before absorption, e(v) and k(v) are the frequency-
dependent coefFicients of emission and absorption, and
v is the frequency of the radiation. Holstein has evalu-
ated T(p) for large p in the cases of Doppler, ' impact,
and statistical broadening. ' He assumes, as does Bieber-
man, that the spectral distribution of emission and
absorption are identical and discusses the significance
of the assumption in detail. Bieberman' has treated the
Doppler case for all values of p. As discussed by Hol-
stein, ' the analysis presented here is not valid when
natural broadening is important.

The case of combined Doppler and impact broadening
for large p has been considered by Walsh" and by
Bieberman and Gourevitch. "It is assumed that in the-

range of interest the spectral distribution of the
absorption coefficient is given by"

k((o) =kpLexp( —o~')+a/v4'),
where

X'Ã g2 7
&o= )

8x'~ gy 'vo

(6)

to =Ave/vp, vp= (2kT/M)&, and a= (y+yv)X/4rrvp. Here
kp is the absorption coefficient of the center of the
Doppler-broadened line, ) is the wavelength, E is the
density of atoms in the ground state, g2 and g& are the
statistical weights of the upper and lower states, Av is
the frequency as measured from the center of the line,
k is Boltzmann's constant, T is the gas temperature,
3f is the mass of the gas atoms, and y„ is a pressure-

. broadening coefFicient approximately equal to the fre-
quency of collisions between excited atoms and normal
atoms. ' Equation (6) is valid only for a&(1. Because of
natural broadening, the derived values of T(p) are
useful only for p(&v, +4s.'X 'vpip s exp( —o~ s), where
cp is the frequency at which e(co)e &"i"& is a maximum.
At large values of kpp the results for T(p) are the same
as those obtained by Holstein for the impact-broadening
case. At small values of kop and a=0, we use the

"P.J. Walsh (private communication).' L. M. Bieberman and I. M. Gourevitch, J. Exptl. Theoret.
Phys. U.S.S.R. 20, 108 (1950l.

"A. G. C. Mitchell and M. W. Zemansky, Resonance Radiation
and Excited Atoms (The Macmillan Company, New York, 1934),
p. 323.
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the electron beam is confined to a sheet of thickness 8

located midway between infinite parallel plane elec-
trodes separated by a distance L. In this case the
density is a function only of a single coordinate s.
Fortunately, the other coordinates are easy to eliminate.
Thus, Bieberman shows that for a Doppler-broadened
line,

l I I
10

I

k,p
10 102 ko e 'dt

exp (—2aP)des, (7)

Fie. 1. Transmission function for Doppler- and impact-broad-
ened radiation. This function gives the probability that a photon
will travel a distance of k0p without absorption. It is assumed
that spectral distribution of the emission probability and the
absorption coefficient are the same.

relation T(kop) =1 A. y(kpp) where A& is the absorption
factor, 3, defined by Mitchell and Zemansky, " for
+=1.Figure 1 shows the values of T(kop) obtained for
various values of a using Walsh's formula. Using the
relation @=X'/4vrvo+Xko/4'" for the resonance state, '
we 6nd that for ko(10' and the e 'P states of helium
(n&3), a&3X10 '. Since p&1 cm and accurate values
of T(kop) will be required only for kop&10', pressure-
broadening effects will be neglected in our calculations
of f,I,. At high gas densities, pressure-broadening effects
make significant contributions to the quantity (1 f,I,)—
for all states and to f;I, for the 2 'I' state. At helium
densities above about 10" atom/cc and below about
10'8 atom/cc, our present analysis cannot be applied
to the 2'P state because of large natural-broadening
effects.

Equation (5) has been solved numerically in two
cases. Bieberman considered the situation in which the
production term, p(r), was due to a beam of resonance
radiation incident on an absorbing gas contained be-
tween infinite parallel planes. He calculated the re-
sultant spatial distributions of the excited-atom density
for values of koL(10, where L is the separation between
plates. Siewert" has examined the same problem for
large koL and a somewhat more complicated geometry.
An equation similar to Eq. (5) has been obtained by
Holstein, ' and solved by Walsh" from a consideration
of the escape of resonance radiation when there is an
appreciable probability of de-excitation to the ground
state of the atom by collisions with electrons, in addition
to the production of resonance atoms by electron
excitation. Walsh calculated the two lowest eigen-
functions and then applied perturbation theory to find
the resultant spatial distribution and rate of loss of
resonance atoms.

III. PARALLEL PLANE EXCITATION TUBE

In this section we will solve for the spatial distribution
of excited atoms and the values of f, ~, which result when

14 R. Siewert, Ann. Physik 17, 371 (1956).
' P. J. Walsh, Phys. Rev. 107, 338 (1957).

where p=
~
s—s'~. Holstein shows that for large p

where T(p) is approximated by T(p) =a /p . The
values obtained by applying Holstein's approximate
formula agree well with those tabulated by Bieberman
for values of kop) 1, provided that one allows values
of m greater than unity.

Our problem now is to solve the equation

p-', koL

p(s)+& n(s')E(~s —s'~)dh' —&n(s) —An(s) =0. (9)
J—ykpI

In this case,

f,g A, I, n(s)ds—— t'~()d. (10)

Following Bieberman's second method of solution, ' we
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Fio. 2. Theoretical normalized excited atom density and
visible intensity distribution for the helium 3 'I' state and parallel-
plane geometry. These results will also apply to any excited state
for which A/y= 0.024, provided that the parameter NL is replaced
by the parameter k0L. Starting with the upper curve, the values
are k0L~ ~, koL= 200, 20, and 2, and k0L~O, respectively.

&(ls—s'I) =J G(p)d*'dy'

mu„mT (p)
, (g)

2 (m+1)p"+' 2 (m+1)p
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can write the integral equation as a system of algebraic
equations as follows:

Complete tmprisonment

where I'= (y+A)/y, P,=p(s,)/y,

p (2m+&) I/2q

l(F
I I II I I I ll

id' ill I

Cd

I I I II I I I II I I I I

IO 4'
k L

and m= Ii lI.—The above solution gives values of e
at q points separated by a distance of L/q. The end

points are located at a distance of L/2q from the
absorbing walls at s= &L/2.

Figure 2 shows plots of An(s) L/ J'p(s) ds as calculated
for the 3 'P state of helium" for o/L=0. 2 and various
values of NL (q=20). These curves are plotted such
that the ordinate is proportional to the visible radiation
intensity which would be observed to originate from a
thin slab at s, if the gas density were changed and the
total rate of production of excited atoms kept constant

by varying the electron current. For the limiting values
of JUL=0 and EL= ~, the spatial distribution of
excited atoms is the same as the spatial distribution of
the electrons, i.e., constant between s=&8/2. At the
low-density limit the resonance radiation reaches the
wall of the tube without absorption. At the high-

density limit the resonance radiation is absorbed so

strongly that the atoms radiate to a lower excited state
before the resonance radiation can reach a point
appreciably outside the production region. At inter-
mediate gas densities the density of resonance atoms
outside the production region is appreciable as observed

by Lees and Skinner. ' Calculations of m(s) were also
made for 8/L=0. 1 and 0.3. When normalized to the
same total production, the density near the walls was
found to be very nearly the same as in Fig. 2, while

the extent of the high-density region near the center
changed with o/L in such a way as to keep the total
area under the curve essentially constant. The solid
curve of Fig. 3 shows the values of fss, s vs ksL obtained

by integration of the curves of e(s). The values of fso16

computed for 8/L=0. 1, 0.2, and 0.3 were equal to
within 1%.

IV. MAXIMUM AND MINIMUM VALUES OF f;s

In this section we shall obtain limiting values for the
fraction of the excited atoms producing visible photons.

"The values of Agp16 and p used are those used by Heron,
McWhirter, and Rhoderick, Proc. Roy. Soc. (London) A234, 565
(1956).The values of pg obtained by subtracting A 5pI6= 1.35)&10
sec ' from the values of 1/v measured in this paper show the
same variation with kpR as shown in our Fig. 5, but seem to
require an effective radius 40% larger than the actual radius.
Reflection of the resonance radiation at the quartz wall is not a
satisfactory explanation for this discrepancy since the measured
reflection coefficient for 600A radiation is 7.5% and would lead
to approximately the same percentage change in pg. See P. R.
Gleason, Proc. Natl. Acad. Sci. U. S. 15, 551 (1929).

FIG. 3. Theoretical curves of the fraction of the excited helium
3 P atoms which emit visible photons in parallel-plane geometry.
The points indicated by circles (Q) are those obtained by inte-
gration of curves such as shown in Fig. 2. These results apply to
any state for which A/y=0. 024. For the helium 3'P level,
EJ = 1.9X10"kpL at 300'K.

Since these limits can be computed for both cylindrical
and parallel plane geometries, we can make use of a
comparison of the limits with the exact value in the
parallel plane case in order to arrive at a reasonably
accurate value of f,& for cylindrical geometry. Such a
procedure is the best we can do, since we have been
unable to reduce Eq. (5) to the form of Eq. (9) in the
cylindrical case. In addition, these limits can be used
to calculate values of f,& for analyzing data where the
parameters, or even the differential equation, differ
from those considered so far.

An upper limit of f,& is obtained by first integrating
Eq. (5) over the volume of the collision chamber. This
procedure takes advantage of the fact that most of the
emitted resonance radiation is reabsorbed within the
collision chamber and so drops out of the integrated
equation leaving only the radiation absorbed external
to the gas in the collision chamber. Solving for f,s, we
obtain the expression

~f~(r')d" f.*~G(l r—r'I) ~v
A+

fr&(r)dv
(12)

Here we have made use of the fact that the integral of
G(l r—r'I) over all space is unity, i.e.,

(13)

where the integrals are evaluated over the volumes
internal to and external to the collision chamber. An

upper limit of f,s is obtained when the second term in
the denominator of Eq. (12) is made smaller than the
true value. Since G( I

r—r'
I ) decreases with increasing

Ir—r'I this is accomplished by replacing G(lr —r'I) by
G(lrl), i.e., the value of G which is appropriate for
excited atoms located at the center of the collision
chamber. With this assumption, we obtain

fp, , =Ass/(A+ps), (14)

where s= f, ,G(lrl)dv and is to be evaluated at all

points outside the collision chamber. Figure 4 shows
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FIG. 4. Imprisonment coefficients for parallel-plane and cy-
lindrical geometries for a Doppler-broadened line. The subscript
L refers to the parallel-plane geometry and the subscript E
refers to cylindrical geometry. The coefFicient s is the probability
that radiation emitted from the center of the tube will reach the
wall without absorption. The product of the coeKcient g and the
resonance transition probability 7 is the decay constant for
resonance radiation distribution spatially in the fundamental
decay mode, so long as pg))A. For smaller pg, the decay constant
is kg+A. A comparison of Figs. 1 and 4 shows that the s and g
coefficients are within a factor of two of T(kpp), where p is R or
L/2 for cylindrical and parallel-plane geometries, respectively.

the values of s calculated for parallel plane and cy-
lindrical geometry for the 3 'I' state of helium. Figure
3 shows a comparison of f,s, with the "exact" value.

A lower limit to f, i, is obtained by assuming that the
spatial distribution of the production term and, there-
fore, the excited atoms, is the same as that of the
fundamental decay mode obtained by Holstein. Walsh"
shows how the spatial distribution of the fundamental
mode varies with kpL. In this limit, Eq. (5) becomes

so that

where yg is the decay constant characteristic of the
fundamental decay mode. It should be noted that
Eq. (15) does not give a true minimum for f,s, since a
production term which is relatively larger near the
walls will lead to smaller f;s values. However, this
lower limit should be satisfactory for most experiments,
since the electron current is concentrated near the
center of the tube. Holstein shows how to determine g
from T(kpp) by using a variational technique. "Figure
4 shows the results of an application of this technique
to the calculation ot gr, (kpL) for plane parallel geometry
using Bieberman's G(kpp) function. Figure 3 shows a
comparison of f;s; with the exact value. Figure 4
also shows values of ger(kpR) for large kpR obtained by
using Eq. (5.33) of reference 2. At kpR(2 our curve of
gz(kpR) is an. estimate based on the gr, (kpL) curve and
is believed to be correct to better than 10%. Rather
than calculate f, and f;„,we can calculate an e(Iective
f, i, using the average value of s and g instead of s in
Eq. (14). In the case of parallel plane geometry, Fig. 3,
the value of fspis calculated in this way agrees with the
exact value to within about 5%.
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FIG. 5. Fit of theory to measured cross section for the production
of the 5016A line of helium by 100-ev electrons. Thieme's experi-
mental point is shown by a circle (O). As discussed in the text,
Lees' points are multiplied by three and shown by triangles (&).
Equation (4) was fitted to the experimental data by using the
average of gs and ss from Fig. 4 to calculate f;i,(kpR), an effective
radius of 0.75 cm, and a cross section of 3.3&(10 ' cm' for the
direct excitation of the 3 'I' state.

' R. Wolf and W. Mauer, Z. Physik 115, 410 (1940). See also
reference 6, pp. 428—31. The data of reference 16 support our
belief that the cross section for excitation transfer from the 3 'I'
state to the 3'D and 3'D states is small, since the observed
decay of 3 'I' density is accounted for by radiation alone.

V. APPLICATION OF THEORY TO EXPERIMENT

A direct comparison of our theory with experimental
data is dificult since most of the measurements of
apparent cross sections have been carried out in
geometries which are neither parallel-plane nor cy-
lindrical. Because of this, there is little point in com-
paring our calculated distribution of excited atoms
with that observed by Lees and Skinner. Fortunately,
our theory shows that the f;s curves have almost
exactly the same shape for parallel-plane and cylindrical
geometries. This suggests that we analyze the experi-
mentally determined cross-section data for any geome-
try using either theoretical curve and Eq. (4), and then
comment as to whether the inferred effective dimension
of the collision chamber is reasonable. Figure 5 shows
such a fit ot Eq. (4) to the experimental data obtained
by Lees4 and by Thieme' for the cross sections for the
production of 5016 A radiation at various gas densities.
The points shown for Lees are the measured values
multiplied by 3. This factor is necessary to bring into
agreement the two sets of peak values of excitation
cross sections for the e '5 and e '5 states. These states
were chosen for comparison since they are least apt to
be pressure-dependent as a result of the collisional
transfer of excitation from the e 'I' and e 'D states. ' "
The correction factor was applied to Lees' data, rather
than Thieme's, since this resulted in good agreement
with the unpublished measurements of Heddle. ' The
adjustable parameters in the theory are the effective
collision-chamber radius and the total cross section for
the direct production of atoms in the 3 'I' state, i.e.,
Q; of Eq. (4). The efFective radius used to calculate the
theoretical curve of Fig. 5 was 0.75 cm. The collision
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chamber in Lees' tube was about 4 cm in diameter and
0.8 cm in length. If Thieme s collision chamber is the
same as that used by Hanle and Schaffernicht, ' as is
commonly assumed, ' the dimensions are about 10%
larger than those in Lees' tube and the difference can
be neglected in this analysis. In view of the small ratio
of length to diameter in these collision chambers as
compared to the infinite cylinder assumed in our theory,
we can make only the qualitative remark that an
intermediate value for the effective diameter is reason-
able. The excitation cross section obtained by the
approximate analysis of Fig. 5, i.e., 3.3X10 "cm', is
considerably smaller than the value given in the
literature, ' 4X10 "cm', and is in good agreement with
the prediction of theory" i.e., 3.8X10 "cm'. In the
above analysis we have neglected the effects of the
transfer of excitation. We believe that this effect is
small for the 3'P' level, although the effect on the
apparent cross section for the high e'P levels is very
large 8,9,17

As our second example, we will consider the apparent
increase with helium density in the cross section for the
production of metastables observed by Dorrestein. "
The circles in Fig. 6 show the experimentally determined
metastable excitation cross section" at 100 electron
volts. The lower solid line shows the sum of the Q, s
values for transitions ending on the 2'S metastable
state as calculated using Eq. (4) under the assumptions
that (a) the cross sections for direct excitation to the
n 'I' states at 100 electron volts, Q(e 'E), vary inversely
as the third power of the principal quantum number, "
(b) production of metastables between the collision
chamber and the detector is negligible, and (c) the
effective radius of the collision chamber is equal to the
actual radius, i.e., 1 cm. In order to make the slope of
the lower solid line equal to that of the line drawn
through the experimental points, the total cross section
for the excitation of all singlet states except the 2'S
state was assumed to be 1.3X10 " cm'& with 10'%%uo of

"See reference 6, Fig. 80(a) and Sec. 3.521. D. R. Bates et al. ,
Trans. Roy. Soc. (London) A243, 93 (1950)."R. Dorrestein, Physica 9, 447 (1942), Fig. 1. Following L. J.
Varnerin, Jr., Phys. Rev. 91, 859 (1953), and H. D. Hagstrum,
Phys. Rev. 96, 336 (1954), we have assumed that both metastable
states of helium have the same eSciency for the production of
electrons at the platinum surface. On the basis of Meir-Leibnitz'
measurements LZ. Physik 95, 499 (1935)j, we have taken the
eKciency of electron production by metastables to be 0.20,
whereas Dorrestein used 0.24 for the triplet metastable and 0.40
for the singlet metastable.' Dorrestein's apparent metastable cross sections at 100 electron
volts were corrected for loss of metastables by scattering by
assuming that the decrease with pressure in the apparent cross
section for 27-ev electrons is due to scattering. The production of
metastables from the resonance states should be negligible at this
low electron energy. The low apparent cross section for metastable
scattering is reasonable in view of the large metastable collector.
See R, F. Stebbing, Proc. Roy. Soc. (London) A241, 270 (1957).

2' H. S. W. Massey and C. B.O. Mohr, Proc. Roy. Soc. (London)
A140, 613 (1933). The cross sections calculated for 200 ev are
almost exactly in the ratio of e '. Comparison with experiment
shows the calculated values at 100 ev to be too large relative to
those at 200 ev.
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Fzo. 6. Separation of the helium metastable production observed
by Dorrestein (0) into the metastables produced by direct
excitation and those produced by decay from the resonance states.

this cascading directly to the 2 'P state. ' The approxi-
mate equality of the 2'P and 3'P contributions as
shown by the dashed lines, in spite of the much larger
2'P cross section, is the result of the relatively low
transition probability for the 2 'P —2 'S transition. "
The upper straight line through the experimental
points is obtained by adding to the P Q, s line a con-
stant cross section of 2.2X10 " cm' representing the
direct production of singlet metastables and the total
production of atoms in the triplet states. The analysis
of Dorrestein's data leads to a total cross section for the
excitation of the e 'P states of about 1.2X10 "cm' as
compared to the theoretical value@ of 1.5X10 ' cm.
The derived cross sections for the direct excitation of
the 3 'P' and 5 'P states are 2.2X 10 "cm' and 5X 10 "
cm', respectively. The 3'P value is in satisfactory
agreement with the value of 3.3X10 "cm' suggested
by the analysis of Fig. 5. Unfortunately, the nearly
linear relation between metastable production and the
product of cross section and koR at low densities
means that one could have used a smaller effective
radius and obtained a correspondingly larger excitation
cross section for the 3'P state. ' Thus, Dorrestein's
experiment does not allow us to decide as to the correct
effective radius. However, we feel that the geometry is
suSciently close to cylindrical so that the effective
radius should be very nearly equal to the actual radius
and that the excitation cross sections are approximately
as given. It is important to note that although this
type of experiment does not allow us to separate the

"D. R. Bates and A. Damgaard, Trans. Roy. Soc. (London)
A212, 101 (1949).
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FIG. 7. Theoretical curves showing the effects of imprisonment
and excitation transfer on the variation with gas density of the
fraction of helium atoms in the 5 'I' state which emit the 3613A
line. This calculation was based on an effective radius of 1 cm.

contributions of the various n 'P states, the relatively
high sensitivity with which metastables can be detected
makes measurements possible at low gas densities
where the optical experiments fail.

As an illustration of the application of our theory to
a case in which the effects of the transfer of excitation
are large, we have calculated the apparent cross section
for the production of 3613 A radiation by helium atoms
in the 5 'P state. For the purposes of this illustration
we make the simplification that all of the excitation
transfer is to the 5 'D state and that cascading eGects
are negligible. For these assumptions Eq. (5) becomes

where 0, is the average value of the product of velocity
of the atoms and the cross section for transfer from the
5 'P state to the 5 'D state, e' is the average velocity
times cross section for transfer from the 5 'D state to
the 5 'P state, and n(r) and n«(r) are the densities of
atoms in the 5'P and 5'D states. The equation for
the 5 'D atoms is

po(r) —ADm(r) —n' 1Vrn(r)+ n1Vn(r) =0. (17)

Eliminating m(r), we obtain

pP(r)+pp (r)o+'r ~n(r')G(~ r—r'~)d~'

—$y+Ar+(1 P)nN]n—(r) =0, (18)

where p=n'1V/(AD+n'1V) Since cas. cading is assumed
negligible, the two production terms have the same
spatial distribution and Eq. (18) can be solved by use
of the same procedure as for Eq. (5). Figure 7 shows
the value of f36/3 calculated by using the average value
of s(kpR) and g(koA) to replace the imprisonment terms

f
p~(r)+y n(r') G(

~

r —r'
~ )dn' yn(r)—

A~n(r) n1—Vn (r)+n'—1V m(r) =0, (16)

in Eq. (18). The important thing to note from this
curve is that the apparent cross section for the produc-
tion of the 3613 A radiation at pressures of the order of
that used by Lees (1V=1.5X10" atoms/cc) is never
more than 20% of the total cross section for the 5 'P
and 5 'D states and is almost 6 times the value which
would be observed if there were no imprisonment. In
this calculation we assumed an excitation transfer
cross section approximately equal to the sum of the
observed 5'P —5'D and 5'P —5'D cross sections"
i.e., 10 " cm'. If the 5'D, 5 'F, and 5 'F states had
been included in the analysis, the curve of f36/3 5$ 1V

would have been much the same at low and inter-
mediate densities but would have dropped to a some-
what lower value at the highest densities. This example
shows that it is necessary to take into account both
imprisonment and the transfer of excitation when
evaluating the measured cross sections. The cross
section for the excitation of the 5 'P state, when one
uses Lees' data multiplied by 3/f, is found to be
8.5/10 " cm'. This value is to be compared to the
theoretical cross section" of 8/10 "cm' and the value
of 5&(10 " cm' obtained from our analysis of Dorre-
stein's data for 100-ev electrons.

VI. DISCUSSION

The analysis presented in this paper shows that in
order to obtain significant values for the cross section
for the production of atoms in a state which emits
both resonance and nonresonance radiation, one must
take into account the imprisonment of the resonance
radiation. In particular we have shown that when
properly analyzed, the published experimental data
are in reasonable agreement with the predictions of
theory. We have shown that if experiments are made
in sufficiently ideal geometry, one should be able to
make quantitative comparisons between the theoretical
and experimental variations of the apparent cross
sections with gas density. The available data show as
good agreement as can be expected in view of the
nonideal experimental conditions. Obviously, further
experiments are required.
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