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Thus at high fields we get

p/pp
——1.078y ',

p'/pp=1. 143y *,

p, '/p = 1.061.

CALCULATIONS

(11)

(12)

(13)

p/pp and p'/pp obtained by the low-field approximation
are 0.939 and 1.020, compared to 0.953 and 1.098 given
by the numerical integration for y=0.1. Thus the high-
field and low-field approximations are justified in the
ranges 20&y& ~ and 0&y&0.1 respectively.

The results are graphically illustrated by Figs. 1
and 2.

The authors have calculated p/pp and p'/lip for
y=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 20 by exact integration
and for y=0.1, 0.2, 0.3, 0.5, 0.8, and 1.0 by numerical
integration. The values for y= 1 obtained by numerical
integration and exact integration are found to be in
agreement to the third decimal place.

The high-field approximation gives an error of 7%
in the values of p/pp aiid p /pp at y= 20. The values of

ACKNOWLEDGMENTS

The authors are grateful to Professor R. E. Burgess
for suggesting the problem and helpful discussions.
They are also indebted to Dean G. M. Shrum for kind

encouragement. Thanks are also due to National R.e-

search Council of Canada for award of a fellowship

(M.S.S.) and Studentship (P.C.E.) to authors.

P H YSI CAL REVIEW VOLUME 110, NUM HER 6 JUNE 15, 1958

Barkhausen Pulses in Barium Titanate

A. G. CHvxowETH
Bell Telephone Laboratories, 3Eurray Hi/l, %em Jersey

(Received November 22, 1957; revised manuscript received March 7, 1958)

A study has been made of the Barkhausen pulses that occur
during polarization reversal in single crystals of barium titanate.
By both pulse counting and oscillographic techniques, the pulse
shapes and in particular their heights and rise times have been
studied as a function of the crystal thickness and the applied
field strength. The pulse shape represents an initial rapid increase
in the volume of the region switched followed by a slower relaxa-
tional type of growth, the latter being described by a time constant
of 5 to 6 @sec.The pulse heights increase with the crystal thickness
and linearly with the applied field while they are practically
independent of temperature between room temperature and 94'C.
The relaxation time is essentially independent of the crystal
thickness, of the applied field, and of the pulse height. The total
number of pulses in a given crystal is independent of the field
and temperature. In crystals 5&(10 ' cm thick, the average
volume corresponding to a pulse is 10 " cm' while the total
volume represented by all the pulses is less than one percent of
the crystal volume between the electrodes. Individual pulses occur
quite independently of each other and of their surroundings.

These observations are not consistent with the usual jerky
domain-wall motion models for the generation of Barkhausen
pulses. It is concluded that the eventual size and shape of the
rapidly switching region represented by a Barkhausen pulse are
mainly determined by the crystal thickness and the condition
that the depolarizing field within the region must not exceed the

applied field. This criterion is successful in accounting for some
of the features of the pulses if the region is assumed to be spike-
shaped and extending more or less through the crystal thickness,
in particular, the average pulse size and its dependence on the
field. These deductions suggest that the Barkhausen pulses could
represent the nucleation and initial stages of growth of new
spike-shaped domains extending along the c axis and that the
fixed number of pulses given by a crystal would then indicate a
definite number of nucleating sites on the crystal surfaces. Under
certain conditions a spike-shaped critical nucleus is consistent
with the empirically determined nucleation probability factor,
exp( —n/E), where E is the applied field strength.

To account for the polarization reversal in the remainder of
the crystal it is presumed that, after their formation, the spikes
expand radially (sideways) in all directions. By using this model
the rate of polarization reversal as a function of time can be
formulated, assuming that the radial wall velocity is proportional
to the field and the nucleations occur randomly. Satisfactory
agreement with experiment is obtained at low fields if it is assumed
that the expanding domains stop short of overrunning adjacent
nucleating sites. Relaxing this restriction for higher fields again
leads to good agreement with experiment. Also, the observed
dependence of the switching time and the maximum current on
the applied field is predicted by using certain approximations.

INTRODUCTION
' ~ROM the investigations made particularly by Merz'

and Little' using electrical and optical techniques
has evolved the following description of the sequence
by which the reversal of the polarization of barium
titanate is accomplished: spike- or wedge-shaped do-

'%. J. Merz, Phys. Rev. 95, 690 (1954).
s E. Little, Phys. Rev. 98, 978 (1955).

mains are nucleated at the surfaces of the crystals and
grow in the forwards direction, that is, along the
c axis. Merz concluded that there was negligible side-
ways expansion of these domains but this is contra-
dicted to some extent by Little's work, though the
latter used a quite different orientation of the field
with respect to the crystal axes and the direction of the
spontaneous polarization.

When the polarization state is slowly reversed many
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Barkhausen pulses can be resolved. '4 The shapes of
these pulses are strikingly similar both in a given crystal
and among various samples of different origins. In mag-
netic materials, Barkhausen pulses are usually ascribed
to jerky motion of domain walls caused by nonmagnetic
inclusions. However, such a process would be expected
to result in pulses of varying shapes (reflecting a distri-
bution of inclusion shapes and sizes) which is not the
case in barium titanate. Furthermore, preliminary
estimates of the size of the region represented by the
average Barkhausen pulse in barium titanate were not
very diGerent from the domain sizes determined by
Merz, suggesting that a careful study of Barkhausen
pulses in ferroelectrics might yield information con-
cerning the formation of new domains.

EXPERIMENTAL
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To obtain reproducible data it was necessary to cycle
the voltage applied to the crystal in a regular manner;
studies of the e8ect of diGerent voltage cycles have been
made and these suggest that relaxing space-charge
fields present in the barium titanate crystals affect the
rate of nucleation of new domains. These experiments
together with a description of the circuitry employed
will be described elsewhere. ' In the present studies,
steady or slowly rising voltages were applied to the
crystal for a definite time interval to produce the
Barkhausen pulses followed by a shorter application of
a somewhat greater field in the opposite direction to
prepare the crystal for the next cycle. At all times while
Sarkhausen pulses were being studied, the switching
speed was kept low enough to prevent superposition of
pulses. Two methods of studying and recording the
pulses were employed: pulse-height analyses could be
made by conventional counting techniques while indi-
vidual pulses could be studied from photographs of
triggered oscilloscope traces. By applying sine waves of
suitable amplitude to the amplifier input, it was
established that the pulse-height analyzer triggered
reliably at frequencies ranging from those corresponding
to the fastest rising to those corresponding to the most
slowly rising Barkhausen pulses.

The crystals used in these experiments and the
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FIG. 1. Oscilloscope photographs of typical Barkhausen pulses.
The total length of the trace is 100 @sec.

3 Newton, Abeam, and McKay, Phys. Rev. 75, 103 (1949).' A. C. Kibblewhite, Proc. Inst. Elec. Engrs. 1028, 59 (1955).' A. G. Chynoweth (to be published).

FIG. 2. Plot of LVO —U(t)] against time where Uo is the height
a Barkhausen pulse would eventually attain in the absence of any
distortion due to the input circuit and U(t) is its height at time t

method of attachment of the electrodes are described
elsewhere. ' The crystals were kept in a dry atmosphere
during all the experiments. Examination with a polar-
izing microscope showed the crystals to be entirely
c domained.

RESULTS

I. Study of Pulse Shapes

The growth of a Barkhausen pulse was found to be
significant for a period of up to 40 @sec or more. This
necessitated the use of input and amplifier circuits with
good low-frequency response if appreciable distortion
was to be avoided. A photograph of typical output
pulses obtained with such a system is shown in Fig. 1.
It will be observed that the pulses grow rapidly at first
followed by a period where the growth gradually slows
down. Analysis of such wave forms showed quite
definitely that the output pulse could not result from
the efkct of the circuit on a linearly rising input pulse
(as could result from steady wall motion alone). Nor
could it result solely from an exponentially growing
input signal of the form: q= gsL1 —exp( —t/r)$, with 'r

some characteristic relaxation time for the pulse and g,
its amplitude. In particular, matching the maximum
pulse height given by this model to that of the Sark-
hausen pulse showed that the latter rose initially very
much faster than the exponentially growing signal.

The pulse shapes were analyzed in the following
manner: an estimate was made of the voltage asymp-
tote, Vo, towards which the output pulse would ap-
proach in the absence of any clipping effect due to the
circuit. (In practice, Us was taken to be slightly higher
than the maximum height attained. ) Then semilog
plots were made of )Us —U(t)) against t; some typical
results are shown in Fig. 2. It is evident that after the
initial rapid increase in q, the slower growth can be
represented satisfactorily by an exponential term. Thus
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II. Pulse-Height Analyses

1. Relation between Height and Rise Time of Pulses

The pulse rise time is defined arbitrarily as the time
taken for the output signal to attain its maximum value.
The rise time is thus determined by a combination of
the circuit parameters and the shape of the Barkhausen
pulse. As described above, the shapes of the pulses
could be described quite well by a rapid linear rise
followed by a much slower growth, where the time
dependence of the slow growth was approximately of
the form L1—exp( —l/r)$. If such a pulse shape is
impressed on an RC circuit of time constant rq, then
the output pulse has the form:

10
0.5 1.0 1.5 2.0 2.5 3.0

PULSE HEIGHT, q, IN COULOMBS X IOI3
3.5

Fzo. 3. Integral pulse-height distribution curves for different
values of the time constant of the input circuit.

the total pulse shape can be represented approxi-
mately by

q= (q&/lr)l for 0&t&tr,

t~ being the duration of the linear growth, and

q= qr+ (qp
—q,)(1—expI —(t—tr)/r)) for

It should be noted that the distortion to the exponential
part of the pulse produced by the circuit now applies
mainly to the amplitude (qp

—qr) and so is relatively
much less than when it affects the total amplitude, qo,
if (qp

—qr) is not very large compared to qp. From the
slopes of the linear portions in the semilog plots, the
relaxation time r was found to be 5&1 @sec. It is also
apparent that the amplitude of the rapid first stage is
comparable to that of the slower second stage in the
growth of the pulse.

The slowly growing part of the pulse was also
analyzed by a different technique. The incoming pulse,
besides being applied to the I' amplifier of a wideband
oscilloscope, was used to trigger a square-pulse generator.
The generated pulse, of rise time of about 0.1 @sec and
about 50 psec in duration, was distorted by an inte-
grating RC circuit of variable time constant. The
resulting exponentially growing voltage was applied to
the X axis of the oscilloscope. The value of RC was
adjusted until the oscilloscope traces produced by the
pulses, after the initial rapidly rising portion, appeared
as near to straight lines as possible. Very good straight
lines could be obtained, the corresponding value of RC
at typical fields was 6&1 @sec. It is interesting to note
that a relaxation time of 5.5 @sec has been deduced
from studies of the frequency dependence of the di-

electric constant and loss of barium titanate. '

' Drougard, Funk, and Young, J. Appl. Phys. 25, 1166 (1954).
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FH". 4. Normalized integral pulse-height distribution curve ob-
tained by scaling only the abscissas of the curves of Fig. 3.

It is easily shown that for rI))r, the output pulse
attains a maximum amplitude at time

trp= r In(rr/r).

Hence, because r varies more rapidly than the loga-
rithmic term, tg will increase with r and therefore,
a measurement of the rise time, tg, does indeed reQect
the duration of the slowly growing part of the pulse.

In general, r~ was kept very large compared with r
but for the measurements described in this section, the
integrating time constant, ry, of the input circuit was
varied by altering the crystal load resistor. Applying
square voltage pulses to a 2.5-ppf calibration condenser
in the input circuit enabled r~ to be measured from the
resulting waveform displayed on the oscilloscope with
calibrated sweeps. Integral pulse height distribution
curves were taken for different values of ry. A typical
set of results is shown in I'ig. 3 where the same steady
externally applied field was used for all the curves.
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Qualitatively similar results were obtained for several
crystals, most of them showing curves of comparable
shape at high values of vr. For the larger pulse heights,
the count tends towards an exponential drop-off with
pulse height while the slope of the curve decreases
somewhat at lower pulse heights. As v.~ is reduced, the
count at a particular bias drops because of the drastic
clipping eftect the integrating time constant has on the
pulse shapes. Of particular significance, however, was
the fact that by choosing suitable scaling factors for the
abscissas only, all of the curves could be superimposed
to within the limits of experimental error. The result
of scaling the curves of Fig. 3 so as to superimpose on
the curve for v-~=36 psec is shown in Fig. 4.

To interpret this result it is necessary to consider the
effect of the input circuit on pulses of different heights,
diferent rates of rise, and different rise times. It will be
supposed that, as suggested by inspection of Fig. 1, the
pulses have somewhat similar shapes; that is, they can
be made to superimpose roughly on one another by a
suitable choice of scaling factors for both their magni-
tude and time axes.

In case (i), suppose that all the pulses have com-
parable rise times but that there is a distribution of
pulse heights. Then, the input circuit will reduce the
heights of all the pulses by equal fractional amounts.
Thus, the bias curves for different input time constants
can be superimposed by a suitable choice of scaling
factors for the output pulse heights, in agreement with
the experimental situation.

In case (ii), suppose all the pulses have comparable
rates of rise but that there is a distribution in rise times,
and hence, pulse heights also. Then the input circuit
will produce a greater fractional reduction in the height
of the pulse the greater its rise time. Thus, as ~1 is
reduced, the larger pulses tend to drop out of the bias
curves more rapidly than the smaller ones. This leads
to a change in the shape of the bias curve, making

fitting impossible.
In case (iii), let all the pulses be of the same height

but of di8erent rise times. Then, those pulses with

FrG. 6. Integral pulse-height distribution curves for various values
of the applied field. (Crystal thickness was SX10 ' cm.)

longest rise times will suffer greater clipping than those
of shorter rise times. Consequently, the input circuit
will alter the distribution of pulse heights, so making
the fitting of the curves impossible.

Finally, the general case, (iv), where there is a dis-
tribution of both pulse heights and rise times, can be
regarded as a combination of cases (ii) and (iii) and
again, the curve fitting will not be possible.

Thus, it is concluded that most of the actual Bark-
hausen pulses at a given field have roughly equal rise
times and that they differ from each other by a scaling
factor for their heights. In particular, the pulse height
is independent of the rise time.

By plotting the scaling factors against ~1 it was
possible to obtain the bias curve for 7-& = ~ by extrapola-
tion. In practice, this was seldom very different from
the curves obtained at the highest value of 7I.
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FIG. 7. Dependence of pulse height on field strength as
interpolated from the curves of Fig. 6.

2. DePenderlce of Rise Time or& Crystal Thickrless

In I'ig. 5, the scaling factor is plotted against ~~ for
crystals of different thicknesses. Here the scaling factor
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is the amount by which the abscissas of the points on
the curve for a particular value of ~~ must be multiplied
so that they lie on the curve for ~1= ~. Thus, while
the scaling factor approximates unity, the input circuit
is producing negligible distortion of the pulse shapes.
From Fig. 5 it is evident that as v.l is reduced, pulse-
shape distortion sets in first for the thickest crystal and
last for the thinnest crystal. This means that the
average rise time of the Barkhausen pulses increases
with crystal thickness. However, though the semi-
logarithmic form of plotting establishes the trend of the
thickness dependence of the rise time, it is not easy to
determine the magnitude of the dependence. Actually,
the five-fold increase in thickness resulted in about a
20% increase in rise time. The data are too meager to
allow any more precise conclusion to be drawn.

3. Dependence of Pulse Hei ght on the Applied Field

Integral bias curves were taken for diferent field
strengths applied to the crystal; the results are shown
in Fig. 6. The range in field strengths is limited by the
fact that if the field is too small, pulses occur too
infrequently while at somewhat higher fields, the pulses
occur too rapidly to be resolved. However, it can be

seen from Fig. 6 that all the bias curves appear to be
heading for the same intercept on the pulse count axis
to within the limits of experimental error. Also, the
higher the 6eld, the wider the distribution in pulse
heights. Thus, from these data it is concluded that the
total number of Barkhausen pulses of all sizes does not
vary with the applied Geld over the given range but
that their height increases with the held. Plots of the
pulse height versls the Geld as interpolated from Fig. 6
show that the pulse height increases approximately
linearly with the applied field (Fig. 7).
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4. Dependence of Pulse Height on Crysta/ Thickness

In Fig. 8, are shown integral pulse count curves for
crystals of diQ'erent thicknesses though of similar elec-
trode areas and with roughly comparable applied fields.
As the number of pulses per unit electrode area varied
from crystal to crystal it was not possible to make a
truly realistic normalization of the ordinates of these
curves. With this caution, the results suggest that the
pulse height increases with crystal thickness and this
was confirmed by qualitative observations on many
crystals. Also, it appears that the total number of
pulses decreases as the thickness increases though this
result was not true of all crystals.
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FIG. 11. Rise-time histograms for various values of the applied field.

5. Effect of Field Polarity

An example of the bias curves obtained for the two
polarities of the field is shown in Fig. 9. In spite of care
being taken to ensure that the fields and calibrations
were the same, there remained a small but definite
disparity between the two curves. It can be concluded
that the total number of Barkhausen pulses depends
somewhat on the direction of the field. In some crystals
there were considerable differences between the two
bias curves.

follow any particular trend, i.e., it can again be con-
cluded that the rise time of a given pulse bears no
relation to its height, which confirms the conclusion
drawn from the bias curve measurements described
above. Figure 10 shows again that there is an average
rise time under the conditions of the measurements.
This average rise time can be determined from the
histogram shown in the bottom part of Fig. 10. It is

also significant that an approximate lower limit can be
placed on the rise times.

III. Photographic Pulse Recording

1. Relation betmeee Pulse Height aed Rise Tinze

Photographs such as Fig. 1 were taken throughout the
switching period and from them the rise times and pulse
heights were obtained for an appreciable number of
pulses, the rise time again being taken as the time
required for the output pulse to reach its maximum
value, the latter being recorded as the pulse height.
The rise time is plotted against the pulse height in the
top part of I'i0;. 10 and it is clear that the points do not

2. Dependence of Rise Time on Applied Field

From histograms showing the rise-time distributions
for diferent applied voltages, the field dependence of
the average rise time can be determined. A set of such

histograms is shown in Fig. 11, where the "number of
pulses" plotted as ordinate refers to the number of
pulses photographed and bears no relation to the total
number of Sarkhausen pulses that occur. The photo-
graphs were taken at intervals throughout a switching

sequence for each value of the applied field. . It is
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FIG. l2. Barkhausen pulse counting rate versus time while the crystal is being switched by a slowly
rising field. The diferent curves apply to various settings of the pulse-height analyzer bias level. The
curves are traced directly from a chart recorder.

apparent that there is no .appreciable change in the rise
time for a field variation by a factor of 2.5.

IV. Counting Rate Studies

1. Stage of Switching at which the Various
Sises of Pulses Appear

Using a ratemeter of suSciently short integrating
time constant, the counting rate was recorded on a
paper recorder as a function of the time during the
switching. The curves so obtained at diGerent settings
of the pulse-height analyzer bias level are shown in
Fig. 12 as traced directly from the chart record. (For
these measurements, a slowly rising voltage was used
to switch the crystal, which resulted in a more rapid
completion of the switching than that caused by the
usual steady voltage. ) The lowest curves represent
solely the largest pulses while, as the bias level is
lowered, the curves move progressively higher reQecting
the increasing number of smaller pulses included in the
recorded counting rate. From several such experiments
it was established that there was no leaning in the set
of curves, showing that pulses of all sizes are distributed
in the same way throughout the switching sequence.

2. Counting Rate Versus Switching Current

By connecting an electrometer across the load re-
sistor in the crystal circuit, the switching current could

be studied simultaneously with the counting rate. The
electrometer and ratemeter outputs were compared
directly by feeding them on to an X-V recorder. During
the switching the recorder pen made an excursion out
from its starting point, returning when both signals
had again reached zero. A typical trace is shown in
Fig. 13; the noisiness of the trace results from the short
ratemeter integrating time constant that was necessary
to eliminate the lag in the output signal. However, it is
apparent that at the field used, the counting rate
varied close to linearly with the switching current. In
particular, there was no noticeable tendency for the
Barkhausen pulses to occur somewhat ahead of the
main switching current, this being found to be true
over most of the fields used in the present experiments.
On the other hand, recent more detailed investigations
by Miller' have revealed some instances where, with a
low field applied to the crystal, a significant number of
the pulses do not appear until most of the switching
represented by the current has ended.

V. Some Quantitative Results

1. MaxAnuns and Average Pulse Senses

The maximum and average pulse sizes, q~ and q
respectively, can be estimated from the bias curves
taken with the maximum value of ~g, negligible dis-

R. C. Miller (private communication).
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tortion is then introduced by the input circuit. Reason-
able values appear to be for q~, about 4X 10 "coulomb,
and for q about 10 "coulomb for the crystal used to
obtain the curves of Fig. 3. The pulse height is given
by q=2I'v/d, where I' is the spontaneous polarization
(26X10 coulomb cm '), d is the crystal thickness

( 5X10 ' cm), and ii is the volume of the crystal that
switches to produce a pulse of charge q. Thus the
volumes v~, 8 corresponding to q~, g respectively, are
4&(10 " cm' and 10 "cm'. Using the same argument,
Newton, Ahearn, and McKay' arrived at volumes about
100 times greater than these. However, their crystal was
30 times thicker than the present one, which supports
the above conclusion that the pulse size increases with
the crystal thickness.

Kibblewhite' has suggested that the above method of
estimating the volume associated with a Barkhausen
pulse may be fallacious in that it assumes that the usual
charge calibration of the input circuit (carried out with
the crystal polarization saturated) is the same as that
while it is in the midst of switching. To test this assump-
tion the calibration pulse generator was triggered by a

Barkhausen pulse so that the oscilloscope showed the
calibration pulse (of about 10 @sec duration) super-
imposed on the rising part of the Barkhausen pulse.
No diGerence could be detected between the amplitude
of the calibration pulse in the two methods. To obtain
an estimate for v, Kibblewhite assumed that the total
charge in the Barkhausen pulses at high enough fields
was equal to the total charge switched by the crystal,
2I'A, and thus, knowing the total number of pulses,
he arrived at a value for ~. Kibblewhite estimated the
total number of pulses at high fields by interpolating
data obtained at low fields and at a pulse-height
analyzer bias level other than zero. The evidence of
Fig. 6 indicates that it is misleading to extrapolate the
low-6eld pulse count at a bias level other than zero to
other field strengths, particularly for fields greater by
an order of magnitude.

The area under the diGerentiated. :,bias curve of
Fig. 3 for rr 128 psec r——epresents the total charge, Q,
contained in the pulses. Graphical integration showed
that Q was about 0.1% of the total charge 2PA. The
value of this fraction varied somewhat from crystal to
crystal though it was usually much less than one per-
cent. These results are in good agreement with that of
0.4%%uo obtained by Newton, Ahearn, and McKay at low
fields while their estimate of about 6%%uo at high fields

may be at fault because of the danger of extrapolating
low-6eld data to high fields without knowing the pulse-
height dependence on the field.

VI. Effect of Temperature on
Barkhausen Pulses

The eGect of temperature on the Barkhausen pulses
was studied by obtaining bias curves at various tem-
peratures, the field being kept the same. Since increasing
the temperature produced faster switching the Geld

was made just sufficient to switch the entire crystal at
room temperature within the time that the geld was
applied. In this way it was possible to obtain runs quite
close to the Curie point without the switching being so
rapid as to produce pulse pile-up. The input time con-
stant was high so as to avoid distortion of the pulses.
As the temperature altered, so did the crystal capacity,
thereby necessitating separate charge calibrations of the
input circuit for each of the temperatures at which bias
runs were made. The results are shown in Fig. 14 and
it is clear that to within experimental error, the total
number of pulses, Fo, is constant, and also, the pulse
height is independent of the temperature.

VII. Abnormal Pulse Shapes

The complex pulse shapes noted by previous authors'
were rarely seen in the present studies. An interpretation
of these pulses is that they represent the triggering of a
nucleation by another through the agency of c-domain
coupling; u domains were present in Kibblewhite's
crystals and probably in those of Newton, Ahearn, and
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(viii) Es differs with the polarity of V.
(ix) There is no evidence for pulses of any given size

showing any preference for a particular period during
the switching cycle.

(x) The pulses occur at a rate proportional to the
total switching current (except at low V when they
sometimes occur towards the end of the switching
current) .

(xi) The maximum and average-sized pulses corre-
spond to the switching of crystal volumes of 4X10 "
cm' and 10 "cm', respectively, in crystals of thickness
5X10 ' cm.

(xii) The total charge obtained by summing the
charges in all the individual pulses is less than one
percent of the total charge switched in the crystal.

(xiii) Individual pulses represent, apparently, a two-
stage process for the polarization reversal in a small
region, an initial rapid change in the polarization
followed by a more slowly growing phase. The slow
growth can be described by a relaxation time of 5.5 p,sec.

(xiv) The number and size of the Barkhausen pulses
do not vary with temperature over the range 27'C
to 94'C.

It is relevant to include some of the facts about the
Barkhausen pulses that will be given in reference 5.

10
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FIG. 14. Integral pulse-height distribution curves
at various temperatures.

McKay also, whereas the crystals described in this
paper were free from u domains.

Abnormal pulse shapes were seen occasionally, how-
ever. Figure 15 shows some typical examples of pulses
which rise slowly at Grst but faster than linearly
with time.

VIII. Summary of Experimental Results

Let i~ represent the average rise time for the group
of pulses produced throughout the switching sequence
and let Eo be the total number of pulses as extrapolated
from the bias curves. Let q represent the pulse height
and let d represent the crystal thickness and V the
applied voltage. Then, the above experiments have
shown that:

(i) At a given field, there is no relation between trr

and q for a given pulse.
(ii) trr increases slightly with d.
(iii) There is an appreciable minimum value of trr

under given switching conditions, there being no pulses
with rise times shorter than this.

(iv) The average and maximum values of g increase
with d.

(v) q increases linearly with V.
(vi) Es remains constant while V is varied.
(vii) lee appears to increase as d decreases.

(xv) The rate of appearance of the pulses is in-
Auenced by the field in the surface layers of the crystal
near the electrodes.

(xvi) The rate of appearance of the pulses is governed
by the Geld, E through a probability factor which, at
least, approximates exp( —a/E), where u is a constant.

(xvii) Individual pulses occur independently of each
other and of their surroundings.

INTERPRETATION OF BARKHAUSEN PULSES

I. Jerky Wall Motion Hypothesis

In magnetism, Barkhausen pulses are commonly
interpreted as being manifestations of jerky motion of
a domain wall. ' It has been postulated that in magnetic
materials there exist nonmagnetic inclusions which
hinder the motion of a domain wall. ' The Barkhausen
pulse can arise when the wall, or part of it, snaps past

-j-

P,',:, . :;," „';;,,;;,:,'. '. " ';.. .-;-?

FIG, 15. Oscilloscope photograph showing some of the abnormal
pulse shapes that were occasionally observed.

H. J. Williams and W. Shockley, Phys. Rev. 75, 1/8 (1949).
s R. S. Tebble, Proc. Phys. Soc. (London) 868, 1017 (19551.
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'0 T. Mitsui and J. Furuichi, Phys. Rev. 95, 558 (1954)."J.K. Gait, Bell System Tech. J. 33, 1023 (1954).

the inclusion. Alternatively the pulse may be produced
by the wall, or part of it, becoming free of the inclusion
and sweeping on until it is again stopped. That the
pulses in barium titanate whose characteristics are out-
lined above cannot be accounted for by such mecha-
nisms is the conclusion reached from the arguments
detailed below.

In this discussion, two basic assumptions are made,
namely:

(i) The inclusion density is roughly the same for all
the crystals used (which came from the same melt and
were processed in identical ways).

(ii) The velocity of a domain wall varies roughly as
the applied field in both the forward and sideways
directions —a linear dependence of the wall velocity on
the 6eld has been demonstrated in Rochelle salt" and
also, it is the observed behavior in magnetic materials. "

The magnitude of the Barkhausen pulse is determined

by the volume of material swept out by the moving
wall, that is, q varies as Ax, where A is the wall area
and x is the distance it travels.

There are four basic models for jerky wall motion,
each of which must be considered for sideways as well

as forward motion. Schematic representations of the
various models are shown in Fig. 16. I,et s represent
the linear dimension of an inclusion and r the distance
between inclusions.

Mode/ A.—When an inclusion is encountered, the
whole wall moves rapidly into a position of equilibrium

at the inclusion. Alternatively, if the field is sufhcient,
the wall can move discontinuously through the inclusion
and then proceed at its former smooth and slower pace.
The pulse height, q, will be determined by As. There are
two subdivisions to this model: (a) the distances s swept
out by the wall are roughly the same for all the walls,
then the distribution in q arises from a distribution
in A; (b) the wall areas are approximately the same,
the range in pulse heights representing the range in s.

Model B.—The wall can be regarded as getting
trapped at an inclusion, eventually breaking away and
moving rapidly until it is trapped by the next inclusion.
In this case, q~ Ar. This model can also be subdivided
into (a) approximately constant r and (b) roughly the
same A for all pulses.

Model C.—Instead of the whole wall behaving rigidly,
the motion of only a part of the wall may be aGected
by the inclusion while the major part of the wall con-
tinues to move on. The hindered part produces a pulse
by moving discontinuously into or across the inclusion
as in model A; the size of the pulse reQects the size of
the inclusion.

Mode/ D.—Similar to model C, except that the
hindered part produces a pulse when it breaks away
from the inclusion and catches up with the rest of the
wall. The size of the pulse is determined by the distance
that the hindered part has to catch up which in turn,
is determined by the time the segment of the wall
remained trapped at the inclusion.

Consideration of the above models leads to various
predictions as to the field and thickness dependence of
the measured heights of the pulses. These predictions
are summarized in Table I. In cases where the distance
jerked by the wall in the thickness direction is pro-
portional to the size s or the distance r, the electro-
static situation decrees that the magnitude of the signal
depends on the value of (s/d) or (r/d) (line 1). For
sideways motion of walls extending through the whole
thickness of the crystal, q is independent of d (line 2).

Ignoring the electrostatic problem and considering
only the e8ect of the increasing total number of in-
clusions as d increases (keeping electrode area constant),
then, an extensive wall in forward motion will encounter
more inclusions while crossing through the total thick-
ness of the crystal. In sideways motion, though the
distance it travels remains the same, increasing d will

cause an extensive wall to encounter inclusions more
frequently. Thus, So increases with d and this will

certainly be true also for all models in which part of
the wall is hindered by the inclusion (line 4). In side-

ways motion, model 8 requires that q decreases as d
increases (line 3).

Keeping d constant and increasing V will have no
effect on the sizes of the pulses (line 9) except in the
complicated case of model D where the volume swept
out by the wall depends on the time it is trapped at
the inclusion which, in turn, will be some function of
the 6eld.
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TABLE I. Comparison of the observed 6eld and thickness
dependence of the pulse heights and rise times with the behavior
predicted by the various models for jerky wall motion.

Model
Sideways Forward Prediction Experimental

a. For comparable field strengths, different crystal thicknesses

1 C, D Aa, Ab q is inversely proportional to q increases with d
Ba, Bb d (by considering the elec-
C, D trostatic situation only and

ignoring effect of greater
number of inclusions)

2 Aa, Ab
Ba, Bb

3 Ba, Bb

q is independent of d (wall q increases with d
extending through crystal
thickness and considering
electrostatic problem only)

q decreases as d increases q increases with d
(because of greater total
number of inclusions and
ignoring electrostatic prob-
lem)

8 Ba, Bb tR decreases as d increases tR increases with d
(under same conditions as
line 2)

b. Crystal of given thickness, various applied fields

9 Aa, Ab Aa, Ab q is independent of V q increases linearly
Ba, Bb Ba, Bb with V

C C

10 Aa, Ab Aa, Ab tR decreases as V increases tR independent of V
Ba, Bb Ba, Bb

C C

It is also possible to make some predictions concern-
ing the field and thickness dependence of the rise time,
assuming it to be related to domain wall motion. It will
be apparent later, however, that this assumption is,
most likely, false. Nevertheless, for the sake of com-
pletion, the predictions are included in Table I.

For all the models where the spectrum of pulse
heights rejects a spectrum in the distances travelled by
the walls it is to be expected that the greater the dis-
tance traveled, the longer it takes, that is g increases
with t~ (line 5). For those particular models where the
spectrum of pulse heights is brought about by a range
of wall areas, all walls moving about the same distance,
tg will be the same for all pulses (line 6).

If the field is kept constant, then, for all models,
tn will remain the same while d is varied (considering
the electrostatic problem only and ignoring the effect
of more inclusions, line 7). If the electrostatic problem
is ignored, the increasing number of inclusions as d in-
creases will cause an extensive wall to move shorter
distances between inclusions when in sidewise motion,
Then, tie will decrease as d increases (line 8).

Finally, except again for the complex situation of
model D, since the distance moved by the wall is
independent of U while its. velocity increases with U,
tg will decrease as U increases.

On comparing the predictions listed in Table I with
the experimentally observed behavior, it is apparent

4 All models ¹increases with d No decreases with d

5 Ab, Bb Ab, Bb q increases with tR q independent of tR
C, D . C, D

6 Aa, Ba Aa, Ba q independent of tR q independent of tR

7 All models tR independent of d (under tR increases with d
same conditions as line 1)

that all of the above models of jerky wall motion fail
completely to account for the observed behavior. The
same conclusion is reached even if all the predictions
about tg are excluded from the table. Some further
considerations follow.

An alternative proposed explanation of Barkhausen
pulses is that the more or less steady motion of a domain
wall past an inclusion results in sudden rearrangements,
in the subsidiary domain pattern surrounding the
inclusion. " However, this alone would give rise to
both positive and negative pulses whereas, in the
crystals used for these experiments, only pulses of sign
appropriate to the direction of switching were observed.
This rearrangement mechanism is of no consequence if
it occurs simultaneously with the much larger discon-
tinuities discussed above.

Because there will be a range of inclusion sizes, there
will be a range of pulse sizes for the cases where the
wall moves discontinuously through the inclusion, i.e.,
models A and C. It is to be expected that the relaxation
time for moving a wall through an inclusion will increase
with s, or alternatively, higher fields will be required.
Thus, if a slowly rising field is applied to the crystal,
the smaller pulses should occur earlier, and the largest
ones at the end of the switching. This is quite contrary
to the conclusions drawn from Fig. 12.

For model 8, the distribution of pulse sizes should
show a maximum corresponding to the average distance
between inclusions. Differential bias curves show no
evidence of any such maximum; rather, the number of
pulses of given height drops continuously with height.

If jerky wall motion is responsible for the pulses, the
maximum counting rate would be expected to occur
near the maximum of the total switching current when,
presumably, the greatest number of walls are in motion.
Though such a correspondence is represented by Fig. 13,
preliminary studies at lower fields have indicated that
sometimes very few pulses occur until most of the total
charge has been switched, ' i.e., there may be no corre-
lation between the pulses and the switching current.
This phenomenon will be discussed in a future paper.
However, it is dificult to conceive of a wall motion
that is jerky (owing to energy minima) at high fields
becoming less jerky at lower fields.

Conceivably, Barkhausen pulses could be generated
if two domain walls in sideways motion approached
each other closely, the pulse corresponding to a hastened
polarization reversal of the narrowing space between the
walls. The expected consequence of this, however,
would be for the counting rate to always lag behind the
switching current and become a maximum towards the
end of the switching.

The arguments outlined above as well as further con-
sideration of the remaining experimental facts listed
lead to the conclusion that the Barkhausen pulses are
not manifestations of,jerky wall motion. It should be

rs L. F. Bates and D. H. Martin, Proc. Phys. Soc. (London)
869, 145 (1956).
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noted also that the very great differences in the domain
wall thickness of ferroelectrics and ferromagnetics
might argue against jerky wall motion models for
ferroelectrics.

II. Polarization Reversal in Spike-Shaped Region

The fact that the Barkhausen regions are of finite size
and that the variation of the average size with field and
crystal thickness follows a well-established pattern sug-
gests that the extent of the Barkhausen region is
determined by energy considerations. In this section,
the possibility that the Barkhausen region is in the
form of a long thin spike extending along the c axis will

be explored. Such a picture is made attractive on several
counts: (1) The Barkhausen volumes are not very
diferent from those of the smallest spike-shaped nuclei

(or domains) observed optically by Merz' and Little s

and by etching techniques by Hooton and Merz" and
Cameron. '4 (2) These domains nucleate near the crystal
surfaces which is consistent with the conclusion that
mobile space charges modulate the field near the elec-
trodes and so regulate the occurrence of the Bark-
hausen pulses' through the nucleation probability
factor, exp( —n/E). (3) The Barkhausen volume is in

very close agreement with that calculated by Landauer"
for a spike-shaped quasi-stable nucleus. (4) If it is

supposed. that the spike grows mainly in the forwards
direction (along the c axis) and that the initial rapid
rise of the largest pulses represents motion essentially
through most of the crystal thickness, then the forwards
wall mobility determined from the Barkhausen pulses is
about 3 cm' volt ' sec ' (at a field of 600 volts cm ')
which compares very well with that deduced by Merz
from switching studies, 2.5 cm' volt ' sec ', and is con-
sistent also with I.ittle's forward velocity measurements.

The change in free energy resulting from the rapid
polarization reversal in a given region is usually taken
to be the sum of three terms: the electrostatic energy
due to the applied field, the electrostatic energy due to
the depolarizing field, and the energy due to the domain
wall energy. It is of interest to examine whether the
main features of the behavior of the Barkhausen pulses
can be accounted for by the condition that the de-

polarizing field within the Barkhausen region must not
exceed the applied field. From Landauer's work it
follows that this condition can be written (in equi-
librium) as

e+=2LP,

where E is the applied Geld and L is the depolarizing
factor. The factor 2 appears because of the head-to-
head or tail-to-tail configurations of the polarization
vectors at the domain boundary and the permittivity
along the a axis, e„enters as a consequence of the di-

i' J. A. Hooton and W. J. Merz, Phys. Rev. 98, 409 (1955).
~4D. P. Cameron, I.B.M. J. Research and Development 1, 2

(1957).
~s R. Landauer, J. Appl. Phys. 28, 227 (1957).

g= 2I's/d, (3)

where e is the volume switched and is proportional to r'l.
From (2) and (3) it follows that

q ~ (e.'/e, )EP/d.

Thus, q increases linearly with E, as observed, and it is
independent of I'. Increasing d may cause the average
value of l to increase though probably more slowly. Thus
the empirical fact that q increases roughly in proportion
to d over the relatively narrow range studied is not
inconsistent with (4); for thin crystals it would be
expected that l would be limited by d, making q d',
whereas for thick crystals, l may approach a constant
making q vary as d '. The insensitivity of pulse size to

"J.A. Osborn, Phys. Rev. 67, 551 (1945).

electric anisotropy of barium titanate. If the nucleus is
approximated by a prolate spheroid of length l and
radius r, with l&)r, I. is given by,"

L= (4n/sr'')( —1+ln2m). (2)

In this expression rw=l%, where l*= (e,/e, )'J, and e, is
the permittivity along the c axis. Using the values
quoted by Landauer, (l*/l)~4&1.

From Eq. (2) m can be calculated for any value of E.
Putting E=600 volt cm ' yields (J/r) 10. This esti-
mate is less than the length-to-radius ratio observed by
Merz by up to an order of magnitude. A similar dis-
crepancy results if the known Barkhausen volume is
taken to represent a spike extending right through the
crystal. However, the calculated value of m can be
regarded only as very approximate as it pertains to
ideal geometry and field configurations (that is, with no
image fields due to the presence of an electrode other
than the one which nucleated the domain) and there is
considerable uncertainty as to the value to be used
for e,. Also, the e6ect of domain wall energy has been
ignored though it can easily be seen that if this were
more important than the depolarizing energy, very
diGerent field and thickness dependencies would result
for the Barkhausen pulses. In particular, an increase in
the field would cause a decrease in the Barkhausen
region. For a spike-shaped region of volume 10 " cm'
and l/r=10, it follows that r 10 ' and l 10 ' cm.
This makes the calculated spike extend only a fifth of
the way through the crystal whereas in view of the
thickness dependence of the average pulse size it seems
necessary to suppose that the average spike extends
more or less right through the crystal. The calculated
basal radius is not inconsistent with the radii of small
domains observed optically or by etch patterns. Scatter
in the values of l and r could then account for the
observed distribution of pulse sizes though it is purely
an empirical fact at this stage that frequently the
distribution of pulse heights is approximately expo-
nential.

The pulse height q is given by
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temperature is not explained because of appreciable
changes in the permittivities over the temperature
range covered. It must be concluded, therefore, that
the simple condition that the depolarizing field balances
the applied field is only partially successful in account-
ing for the observed behavior of the Barkhausen pulses.

The fact that there is a marked uniformity in the
pulse shapes might also argue in favor of some generally
applicable energy criterion but the cause of the actual
pulse shape can only be guessed at at present. It seems
plausible to associate the initial rapid rise with forward
growth of a spike while the slower relaxational growth
may represent an adjustment of the spike shape to that
of a long, thin, domain extending more or less right
through the crystal, the rate of adjustment being con-
trolled by image Gelds both ahead of and within the
switched region. The 5-p,sec relaxation time, which
seems to be characteristic of barium titanate and
independent of its impurity content, would not be
particularly evident in high-field switching current
transients as the Barkhausen pulses account for less
than one percent of the total switched charge. Alter-
natively, the relaxation time might become negligible
at high G.elds. On the other hand, there is some evi-
dence" that the relaxation might be associated with
the dynamic behavior of the space-charge layers near
the surfaces of the crystal.

It is also pertinent to consider whether the slow
growth could result from some sideways growth of the
spike due to the applied field. It is not unreasonable to
picture sideways motion of a wall as a switching of the
dipoles adjacent to the wall so that the switched region
propagates basically in the forward direction, layer by
layer. ' Thus, the net Geld promoting this switching is
determined, at least partly, by the applied field, which,
in turn, will influence the velocity of the domain wall.
It is easy to show that as a consequence, the growth
rate will depend in some way on the value of the applied
field; this applies equally to wall motion in either the
forward or the sideways directions. A further objection
to ascribing the slow growth to sideways expansion
promoted by the applied field arises from the fact that
pulses of various heights have equal rise times; if the
different heights reflect to some extent diGerent amounts
of sideways travel, the larger pulse heights would be
expected to possess larger rise times.

Thus it appears that slow sideways wall motion of the
sort envisaged in the previous paragraph does not occur.
(Note, though, that it seems necessary to expect some
sideways motion to occur in a time not greater than the
time taken for the forward growth. This conclusion
follows if it is assumed that the e6ect of the depolarizing
field is important during much of the growth of the
nucleus. )

If, as seems plausible, a Barkhausen region represents
the start of a new domain, it is necessary to reconsider

~7Private communication from M. Drougard, International
Business Machines, Poughkeepsie, New York.

briefly the nucleation problem. From switching studies,
Merz' deduced that the probability of nucleation was
determined by the factor exp( —u/E) and he could
account for the E ' dependence of the exponential
factor by allowing the critical nucleus to be wedge-
shaped. This restriction is not necessary, however, if the
depolarizing field during nucleation is negligible. On
this interpretation, the Barkhausen pulse represents the
growth of a nucleus after it reaches critical size and,
consequently, the critical nucleus must be much smaller
than the Barkhausen volume. If the critical nucleus is
assumed to be in the shape of a prolate spheroid, then
its length/radius ratio could be much larger than the
value that makes the depolarizing field important.
Neglecting the depolarization energy term in the ex-
pression for the free energy, it becomes

AF= 2EP (g)~r—'i+o (m'/2) rl
&

where a. is the wall energy. Now if the fluctuations in AIi
are brought about mainly by fluctuations in r, then the
condition that (BDF/Br) =0 results in the critical value
of r being

r*=37ro/16EP. '

Thus, the critical free energy is

DF*= (3''o't/64) /EP,

and the nucleation probability is exp (—AF*/k T) which,
in Merz's notation, is equal to exp( —n/E). Hence,

n =3m'o't/64Pk T.

Merz has determined o. to be 5X10' volts cm '. Thus,
at room temperature,

0-'1=3.4X10 ' erg' cm '.
Now for the depolarization field to be unimportant we
must have f/r))10. Also, at E=600 volts cm ',

r*=3.9X1o '0-

To meet these requirements, 0- must be appreciably
smaller than about 10 ' erg cm '.

From these estimates, the critical-size nucleus that
emerges is a long thin spike a few lattice constants in
diameter and extending perhaps for one micron or more
into the crystal along the c axis. Thus, the condition
that its length be considerably less than the crystal
thickness is met. The value that 0 is required to have is
considerably less than that previously estimated by
Anderson' (10 erg cm ~), and more recently by Kinase
and Takahasi" (1.4 erg cm '), but for such a small
critical nucleus, the validity of an estimate based on the
macroscopic permittivity and elasticity constants is
questionable. Also, it is conceivable that crystal im-
perfections or dislocations which may provide the
nucleating sites could drastically modify the crystal
properties in the immediate neighborhood. The lower

~ W. Kinase and H. Takahasi, J. Phys. Soc, Japan 12, 464
(1957).
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value of 0 arrived at above facilitates sideways motion
of domain walls much more so than did Anderson's
estimate.

The fact that the total number of Barkhausen pulses
produced by a crystal when switched is independent of
the applied 6eld and the temperature strongly suggests
that nucleations occur at a very definite set of sites at
or near the crystal surfaces. It is reasonable to suppose
that these nucleating sites lie at crystal imperfections
of some sort, possibly dislocations.

The total number of Barkhausen pulses was found to
vary over an order of magnitude or more from crystal
to crystal of equal electrode areas. In view of the above
discussion this could reQect differences in the concentra-
tion of surface imperfections amongst crystals. Further
study of this point is in progress. Though the number of
pulses from a crystal remained constant as long as it
was regularly cycled, slow changes in No did occur
when the crystal was left for some time. Also, Xo
appeared to depend somewhat on the electrical history
of the crystal prior to being regularly cycled. It is un-
likely that these changes in No reflect changes in the
number of nucleating sites resulting from some sort of
annealing or plastic Row occurring at room temperature.
Rather it is felt that electrochemical reactions may take
place at the surfaces of the crystals, the resulting space
charges serving to modify in some way the nucleating
properties of the imperfection sites.

Finally, it is of interest to discuss the way in which
the whole crystal reverses its polarization in the light
of the Barkhausen pulse studies. It has been noted
above that the total charge represented by all the
Barkhausen pulses amounts to less than one percent
of the charge 2PA. Also, the total switching current is,
at all stages of the switching, more or less proportional
to the rate of occurrence of Barkhausen pulses. Thus,
it seems necessary to conclude that a domain cannot
switch until a nucleation has occurred but that the
volume of the nucleus corresponding to the Barkhausen
pulse is 10' to 10' times smaller than that of the domain
it controls. Thus it appears to be most likely that the
Barkhausen volume expands, on the average, by a
factor of 10' to 10' and the most plausible picture is
that it does so by sideways motion of the 180' walls.
I.ittle's experiments together with studies of etch pat-
terns tend to support this conclusion. The velocity of
the sideways motion is limited by the fact that the
expansion must take 10 ' sec or longer for the height
and shape of the Barkhausen pulse to be relatively un-

affected. On the other hand, the switching current
does not lag the Barkhausen pulses by more than 1 sec.
Thus, the expansion of the nucleus by a factor of 10' to
10' occurs in a time between 10 ' and 1 sec. Since the
Barkhausen nucleus is regarded as a spike, it will most
likely expand radially. The radial velocity of the wall

motion is therefore, 10 '+' cm sec '. Thus the ratio of
forwards to sideways velocity at 6elds of the order of

10' volt cm ' is of the order of 10'+', a ratio that is not
inconsistent with Little s description of the growth of
a nucleus.

From the experimental facts it appears that at low
fields the expanding nuclei do not overrun adjacent.
regions that have not been nucleated. This conclusion
follows from the independence of Eo on the field and,
particularly, from the exponential tails to the Bark-
hausen pulse counting-rate curves. It is this last fact
which shows that Barkhausen pulses occur independ-
ently of each other and of their surroundings. The
reason for not ingesting adjacent nucleating sites is not
clear. Speculating, as nucleating sites probably reside
at crystal imperfections they will be surrounded by
stress 6elds such that a domain wall moving in the
stress 6eld of its nucleating site may 6nd a potential
barrier preventing it from entering the stress field of an
adjacent nucleating site. At high applied fields, the
wall may be able to get past the barrier.

Summarizing, the Barkhausen pulse studies have
suggested that at low fields, a crystal switches by the
random nucleation of a certain number of spike-shaped
nuclei which extend through the crystal thickness and
thereafter grow by slow sideways expansion until the
whole of the crystal is switched though the expanding
domains do not overrun adjacent nucleating sites. This
model enables the switching current transient to be
formulated if some assumption is made as to how the
nucleus expands. This is done in the Appendix where it
is shown that good agreement with experimentally
obtained current transients results for both the low- and
the high-field regions.

CONCLUSIONS

From the detailed studies of the electrical charac-
teristics of Barkhausen pulses in barium titanate, it is
concluded that they do not represent domain wall jerks
of the particular kinds usually felt to be responsible for
Barkhausen pulses in magnetic materials. An attempt
to account for their properties on the basis of the condi-
tion that the depolarizing field in the Barkhausen
region must not exceed the applied field is partially
successful if the region is assumed to be spike-shaped
and lying along the c axis. An alternative condition
assuming domain wall energy to be the dominant factor
is much less satisfactory. The depolarizing field criterion
yields Barkhausen regions not too different from the
smallest spike-shaped domains that have been observed
optically, suggesting that the Barkhausen pulses are
manifestations of the formation of new domains. If this
is correct it seems necessary to conclude that after its
formation, a spike-shaped domain must expand side-
ways in all directions with a wall velocity slow compared
with the forward growth of the spike. This radial, or
sideways, wall motion eventually ceases; it appears
that there is a potential barrier preventing an expanding
domain from overrunning an adjacent region controlled
by another nucleating site. This barrier may arise from
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crystal strains associated with imperfections that pro-
vide the nucleating sites. The volume of a domain when
it ceases to grow is of the order of 10' to 10' times
greater than that of the initial spike. When all the
nucleations and expansions have occurred, the crystal
is fully switched.

Merz's picture of switching is modified to some extent
since the Barkhausen experiments indicate that a rela-
tively large amount of sideways wall motion occurs.
However, the resulting domains in crystals of the
thicknesses normally used will still appear as long
columns, circular in cross section. Thus, it is true to
say that at low fields, the crystals switch by the appear-
ance of many thin domains rather than by walls sweep-

ing sideways through the crystal in the same way as
they do in magnetic materials. The picture of a nucleus
first growing rapidly io the forwards direction and then
expanding very slowly in the sideways direction is in
complete agreement with Little's conclusions.

Formulations of the switching current transient based
on the above model of switching lead to pulse shapes
which reproduce the main features of the observed
transients at low fields. Also, the correct form for the
field dependence of the switching time and the maxi-
mum current are predicted. At high fields the model
becomes modified in that it appears that the sideways
moving domain walls can sweep on through the crystal
overrunning many nucleating sites before they have
had a chance to nucleate. Formulating the switching
transient resulting from this model again leads to
agreement between the predicted and observed pulse
shapes as well as the observed form for the field de-
pendence of the switching time and maximum current.

The total number of Barkhausen pulses differs quite
considerably from crystal to crystal. These diRerences
could reQect perhaps, different imperfection concentra-
tions and it would be of interest to learn more about
the nature of these nucleating sites. Also, it is not
understood at present why, over a period of hours or
days, appreciable changes in the number of pulses from
a given crystal sometimes occur. Certainly more investi-
gation into how the pulse count depends on the im-
mediate past history of a crystal is indicated.
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less through the crystal thickness appear randomly
according to the nucleation law and then proceed to
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nucleation theories. "

For random nucleation, the nucleation rate is

dN/dt =kg(N p N), — (5)

where Ã is the number of nucleations that have occurred
and k~ is the nucleation probability, that is,

k~= g exp( —n/8),

where g is a frequency factor. Thus,

(dN/dt), , =k,Npe ~"

The growth of a nucleus by sideways expansion may
be represented by the expansion of the area that it
subtends at the crystal surface, namely, s. It is now
necessary to choose particular models for the time
variation of s. We note that the nucleus is regarded as
expanding radially and it seems a reasonable assumption
that the wall velocity, c (that is, the radial velocity),
is roughly proportional to the field. Thus,

c=kE,

where k is a constant. Equation (8) tacitly assumes
that E is much greater than a threshold 6eld, if the
latter exists. "Therefore, the area, s, of a nucleus that
appeared at time l' increases such that

Sg gi=c (t t )—
The total area covered by all those nuclei that have
appeared up to time t is then given by

fdNq
S(t)=,

,

'

s, , i
'i dt'

p

t

=k, 'N, ~ (t t')' "'dt'—-
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APPENDIX. FORMULATION OF THE CURRENT
WAVE FORMS

2c'Ep
Lp k, 'tp —k,t+1—e

—" 'g.
k~'

Now the switching current t varies as dS/dt. Thus

2c'E p

t(t) Lk, t—1y; j.
kg

(10)

It is proposed to show that the model of the switching
sequence suggested by the Barkhausen pulse studies
yields current wave forms in reasonable agreement with
those observed experimentally. In particular it will be
supposed that spike-shaped nuclei extending more or

When l is small, i varies as 3'. At low fields, that is, less

"P.W. M. Jacobs and F. C. Tompkins in Chemistry of the Solid
State, edited by W. E. Garner (Academic Press, Inc. , New York,
1955), Chap. 7.

'0 H. H. Wieder, J. Appl. Phys. 27, 413 (1956).
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than 5)&10' volts cm ', the switching transient does
indeed show an initial increase of i with t that is faster
than linear. It is interesting to note that this faster-
than-linear dependence of the total current results
from the above types of calculation only if the area of
each individual nucleus expands more rapidly than
linearly with t. In particular, wedge-shaped nuclei
expanding by sideways motion of their major faces
(that is, linear rather than radial expansion) yield a
current transient for which d'i/dto (0 at small t

Equation (11) was obtained assuming that the
domains expanded indefinitely. If it is supposed that
they expand up to an average size Si then (11) is no
longer valid after the first nuclei have reached the
size S». This takes a time t»=S»'c. For times t2) t», we
now have

~-MATCHING POINT
I- 10~

Z I. (k, t, -l + e-I'~~)

z~ 101
W
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F»G. 1'?. Comparison between the observed switching transient
and the theoretical curves based on a nucleation model applicable
at low fields.

+Si
(dX)

dt'

ddt�),

,

+Siki/o e» "dt'

c'Ep
[—2e—»~2+e—»«&—«~ (k Pt P —2kiti/2)$

k»'

(12)

Differentiating with respect to t~ gives the current
variation, namely,

reasonable in view of the assumptions that have to be
made regarding the mode of expansion of the nuclei.

It is of interest to predict the field dependence of the
switching time, t„and the maximum current on the
basis of the above model. The switching time is defined
as the time taken for all but a small fraction of the
crystal to switch. Thus, if the total crystal area is Sp,
we have S(t,)/Sp= collstant, G. From Eq. (12) it
follows that

(ki/c)'[(GSp/1Vp)+S&g
(14)—2+e»"[ki'tP —2kiti+2+Si(ki/c)'j

Now G is slightly less than unity while Sp/Xp ——Si.
Also, at the fields used. , c is probably of the order 10
cm sec ', while reasonable values for k», t», and S» are
10' sec ', 10 ' sec, and 10 ' cm', respectively. Thus, to
a good approximation, (14) reduces to

i(tp) ~p&~i ~ A exp( —kitp), (13) A1t8 ~ 2~
—k1ty

where A is a constant given by

2 = [(c Xo/ki) (2—aki ti +2akiti —2a) —tVoS&kia],

and a= exp(kiti). Thus the current transient predicted
by this model has an exponential tail of decay con-
stant k» '.

The current transient predicted by the above model
is compared with an actual transient obtained at a field
of about 4000 volts cm ' in Fig. 17. The decay of the
pulse was found to be very close to an exponential and
from the semilogarithmic plot a value for k» was
obtained. Substituting this value into the expression in
brackets in Eq. (11) allowed the form of the initial
growth of the current to be calculated. In the figure
the ordinate of the theoretical curve for small t was
scaled so as to intersect the straight line at the time
corresponding to the maximum of the current transient.
It is seen that the agreement over the rising part of
the transient is not very good though it is felt to be

and in particular, t, varies linearly with 3» which in
turn, varies inversely as the sideways wall velocity.
Thus 1/t, varies linearly with the field, in agreement
with experimental observations. '

The maximum current will occur when t=t» and,
therefore, while k»t» is appreciably less than unity.
Thus, Eq. (11) can be approximated as

2c'gp k»'S»
Z~~

k» 2c

Thus, i~ varies as k», or

Ini~ ~ —(n/E),

which, again, is the observed behavior. '
At fields higher than those supposed to be present for

the above discussion, the expanding domains may be
able to surmount the potential barriers between difer-
ent nucleating regions and so overrun some adjacent
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sites before they have had a chance to nucleate. These
continually expanding nuclei will eventually cease to
grow when they encounter other growing nuclei. Thus,
the mathematics has to take into account the amount
of overlap of domains and the number of nucleating
sites that do not get a chance to nucleate. This problem
has been solved for the case of random nucleation. "
We have

2c'kalVp—in[1 —F(t)j= [-',kit' —krt+1 —e ""g, (17)
Sp

where F(t) is the fraction of the crystal switched at
time t. The switching current, obtained by differenti-
ating with respect to t, is

field dependence of the switching time and maximum
current. At F (t,) =G, we can write

ln(1 —G)~c'kr'Pot '/&o
or

c'ka't, '= cons~.

Hence t, varies as (c'k&') & and, from Eqs. (6) and (8),
t, varies as

(kE) '[1+(3n/2E)+

Therefore, t, varies as E ' if E is sufFiciently large
compared with n. This also, is in line with experiment.

Finally, assuming that Eq. (19) is a reasonable
approximation at t~, the time at which the current is a
maximum, we find, by putting (di/dt)=0, that

2csk 'Qo t' 2c'kryo
[krt —1+e "")expl

Sp So

4r = (So/21Voc'kro) '*

Substituting this in (19) yields

(20)

-P 2t2

X
2

k,t+—1 e "r'—l-. (18)

i (t) =At exp( —its), (19)

where X and p are constants. It is interesting to note
that this is the same form that has been found, em-
pirically, to 6t the switching transients at high 6elds. "
[Alternatively, if krt is large, the transient takes on
the form

i (t) =X't' exp (—p't') .

It is well known that the shape of the transient can be
modified appreciably by the nature of the voltage
cycling the crystal receives. ]

Again it is possible to make predictions as to the

'C. F. Pu1vari and G. E. McDu%e, Communications and
Electronics, Arn. inst. Elec. Engr. 28, 681 (1957).

When t is large, e ~" is small and the current can be
expressed, approximately, as

2c'kr'Ão t'c'krocVQ
t expl

So E SQ )
01

ior ckr*' ——kE[1—(n/2E)+ ]. (21)

Thus, in this case, the maximum current varies linearly
with the applied 6eld if E is suf6ciently large with
respect to n. This again is in keeping with experiment.

Pote added ie proof Since.—this paper was written,
Robert C. Miller of these Laboratories has obtained
direct evidence that Barkhausen pulses of similar form
to those described in this paper can be generated when
two domain walls in sideways motion approach each
other closely. Thus, there is some doubt as to whether
Barkhausen pulses are generated when a new domain is
nucleated. However, there is still no evidence that
Barkhausen pulses represent jerky wall motion of the
sort discussed in this paper, that is, where the magni-
tude of the pulse is determined by the inclusion size or
the distance between inclusions. Miller has also invoked
the depolarizing 6elds to account for the Barkhausen
pulses generated by the close approach of two domain
walls (to be published). Whether or not Barkhausen
pulses represent domain nucleations, the formulations
of the switching transients still hold in the framework
of the assumptions made in deriving them, namely, a
definite number of nucleating sites giving rise to random
nucleation of domains followed by sideways expansion.






