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The study of Hall effect along with conductivity at high electric fields will shed more light on the behavior
of carriers at such fields. This can be done by little modification of existing apparatus.

In this paper the authors have obtained an expression for Hall mobility applicable in a large range of
fields and non-Maxwellian distribution of velocities of carriers. This expression, together with the velocity
distribution of carriers in the presence of the field, obtained by Yamashita and Watanabe, has been used
for the theoretical investigation of the variation of Hall mobility with electric field.

INTRODUCTION

s0 far the measurement of electrical conductivity has
been the only experimental approach to the study

of the velocity distribution of carriers in a semicon-
ductor at high electric fields. In interpreting the data it
is usually assumed that the number of carriers does not
change with electric Geld, an assumption probably true
but not proved. If we apply a small magnetic field and
study the Hall eGect we can get more data to compare
with theory. Moreover, the product of Hall coefficient,
velocity of light, and conductivity is equal to Hall mo-
bility and is independent of the number of carriers. It
may be added that the study of the Hall effect involves
very little modification of the apparatus.

In this communication the authors have obtained an
expression for Hall mobility applicable in a good range
of fields. Utilizing this expression and the velocity
distribution obtained by Yamashita and Watanabe' by
solving the Bloch integral equation to second order of
approximation, the authors have studied the variation
of Hall mobility with electric Geld.

(1A) and (13), we obtain
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where p and p' are the drift and Hall mobilities, respec-
tively, and v the carrier velocity.

For a Maxwellian distribution, Eqs. (2) and (3) are
equivalent to the expressions given by Shockley. '

DISTRIBUTION FUNCTION

Yamashita and Watanabe' have obtained the velocity
distribution of carriers in the presence of an electric
field by solving the Bloch integral equation for non-

polar semiconductors to the second order of approxi-
mation. They found the following velocity distribution
in the presence of a field E:

MOBILITY
N(o )dx= Aoc'(sc'+y)" exp( —x')dx, (4)

Using Conwell's' notation and Eq. (8) of her treat-
ment, one has

2 q' df
dj= —E7.—k' cos'8 singed &dk.
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If we apply a small magnetic field H so that terms
involving second and higher orders of (qH/esse) are
negligible, Eq. (1A) remains unchanged and'

where x= u(ere/2IeT)', N(x)dx is the number of carriers
in the range g to g+dg, sss is the effective mass of
electrons, k is the Boltzmann constant, T is crystal
temperature, po is the zero-field drift mobility, t,

- is the
velocity of sound in the crystal, and y= (3sr/16)
X (leo'E'/c'). Equation (4) was obtained by neglecting
the scattering of carriers by optical modes.

MOBILITY IN PRESENCE OF FIELD

The time of relaxation of a carrier due to scattering
by acoustical modes is given by'

dJ= (qII/esse) rdj,
r=l/x, (5)

where J is the Hall current.
Proceeding in the same way as Conwell' from Kqs.

where l is constant at a given temperature. Using
expressions (2), (3), (4), and (5), we obtain the drift
and Hall mobilities:
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and f.l6

where
E 4 J &II

x'(x'+y)& exp( —x')dx,

(7)
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I= 2 x(x'+y)& exp( —x')dx,
6 p

(x'+y) & exp (—x')dx.
Jp

For integral values of y the integrals can be evaluated
by expansion of (x'+y)" and remembering that
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Fzo. 2. Variation of p'/p with y.
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s~e *ds=ii(n),

where II is a tabulated function. 4

For nonintegral values of y the integrals have to be
evaluated numerically.

LOW-FIELD MOBILITY

When the electric held is low, y is small and we
may put

(x'+y) &= 1+y in(x').
Remembering that

where + is also a tabulated function, 4 we may write in
the low-Beld case

n= ', s'(1+y 1—ns)e 'ds=-', II(-', ){1+y4(-',)},
dp

I= (1+y ins)e *ds=II(0){1+y+(0))

s—l(1+y ins)e
—'ds=-,'II(——',){1+y+(—-', )).
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Hence, from Eqs. (6) and (7) we get

p/po = 1 —0.6137y,

p'/po= —',or {1—1.3863y),

p, '/p, = am (1—0.7726y). (10)
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Equation (8) has already been derived bv Sodha. '

HIGH-FIELD MOBILITY

For high fields, y is large and Yamashita and
Watanabe' have pointed out that

(x'+y)" exp( —x') ~ exp( —x4/2y).

Hence we may write

0.6 n= x' exp( —x'/2y)dx=2 '(2y)'11( ——,'),
~p
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Thus at high fields we get

p/pp
——1.078y ',

p'/pp=1. 143y *,

p, '/p = 1.061.

CALCULATIONS

(11)

(12)

(13)

p/pp and p'/pp obtained by the low-field approximation
are 0.939 and 1.020, compared to 0.953 and 1.098 given
by the numerical integration for y=0.1. Thus the high-
field and low-field approximations are justified in the
ranges 20&y& ~ and 0&y&0.1 respectively.

The results are graphically illustrated by Figs. 1
and 2.

The authors have calculated p/pp and p'/lip for
y=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 20 by exact integration
and for y=0.1, 0.2, 0.3, 0.5, 0.8, and 1.0 by numerical
integration. The values for y= 1 obtained by numerical
integration and exact integration are found to be in
agreement to the third decimal place.

The high-field approximation gives an error of 7%
in the values of p/pp aiid p /pp at y= 20. The values of
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A study has been made of the Barkhausen pulses that occur
during polarization reversal in single crystals of barium titanate.
By both pulse counting and oscillographic techniques, the pulse
shapes and in particular their heights and rise times have been
studied as a function of the crystal thickness and the applied
field strength. The pulse shape represents an initial rapid increase
in the volume of the region switched followed by a slower relaxa-
tional type of growth, the latter being described by a time constant
of 5 to 6 @sec.The pulse heights increase with the crystal thickness
and linearly with the applied field while they are practically
independent of temperature between room temperature and 94'C.
The relaxation time is essentially independent of the crystal
thickness, of the applied field, and of the pulse height. The total
number of pulses in a given crystal is independent of the field
and temperature. In crystals 5&(10 ' cm thick, the average
volume corresponding to a pulse is 10 " cm' while the total
volume represented by all the pulses is less than one percent of
the crystal volume between the electrodes. Individual pulses occur
quite independently of each other and of their surroundings.

These observations are not consistent with the usual jerky
domain-wall motion models for the generation of Barkhausen
pulses. It is concluded that the eventual size and shape of the
rapidly switching region represented by a Barkhausen pulse are
mainly determined by the crystal thickness and the condition
that the depolarizing field within the region must not exceed the

applied field. This criterion is successful in accounting for some
of the features of the pulses if the region is assumed to be spike-
shaped and extending more or less through the crystal thickness,
in particular, the average pulse size and its dependence on the
field. These deductions suggest that the Barkhausen pulses could
represent the nucleation and initial stages of growth of new
spike-shaped domains extending along the c axis and that the
fixed number of pulses given by a crystal would then indicate a
definite number of nucleating sites on the crystal surfaces. Under
certain conditions a spike-shaped critical nucleus is consistent
with the empirically determined nucleation probability factor,
exp( —n/E), where E is the applied field strength.

To account for the polarization reversal in the remainder of
the crystal it is presumed that, after their formation, the spikes
expand radially (sideways) in all directions. By using this model
the rate of polarization reversal as a function of time can be
formulated, assuming that the radial wall velocity is proportional
to the field and the nucleations occur randomly. Satisfactory
agreement with experiment is obtained at low fields if it is assumed
that the expanding domains stop short of overrunning adjacent
nucleating sites. Relaxing this restriction for higher fields again
leads to good agreement with experiment. Also, the observed
dependence of the switching time and the maximum current on
the applied field is predicted by using certain approximations.

INTRODUCTION
' ~ROM the investigations made particularly by Merz'

and Little' using electrical and optical techniques
has evolved the following description of the sequence
by which the reversal of the polarization of barium
titanate is accomplished: spike- or wedge-shaped do-

'%. J. Merz, Phys. Rev. 95, 690 (1954).
s E. Little, Phys. Rev. 98, 978 (1955).

mains are nucleated at the surfaces of the crystals and
grow in the forwards direction, that is, along the
c axis. Merz concluded that there was negligible side-
ways expansion of these domains but this is contra-
dicted to some extent by Little's work, though the
latter used a quite different orientation of the field
with respect to the crystal axes and the direction of the
spontaneous polarization.

When the polarization state is slowly reversed many


