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Orientation of Nuclei in Ferromagnets*
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A theoretical discussion is given of the various orientation effects acting on nuclei in ferromagnets, and
the results are compared to experimental measurements on the specific heat and the anisotropy in the emis-
sion of p rays by radioactive Co' . The orientation is due to an effective magnetic field which is, neglecting
some small terms, the sum of one negative and four positive contributions all of which are roughly com-
parable. The uncertainty in the total field predicted is considerable but nevertheless rough agreement is
obtained with the few experimental results at present available.

I. INTRODUCTION

ECENTLY several experiments on the orientation
of nuclei in ferromagnets have been performed.

Craer, Johnson, Scurlock, and Taylor' have observed
the anisotropy in the p-ray emission from radioactive
orientated Co nuclei in Co metal; Johnson and Scurlock'
have repeated these experiments on alloys of Co in Ni
and Co in Fe; Heer and Erickson' have measured the
nuclear specific heat of Co metal, and Kurti, Arp, and
Peterson' have measured the nuclear specific heat of
pure Co and of a Co-Ni alloy. The purpose of this paper
is to analyze theoretically the various orientation effects
so as to determine what may be learned from these
experiments.

Because all the experiments performed so far have
used Co nuclei, we shall be chief concerned with the
orientation of these nuclei in pure Co and in Co alloys.
The calculations are difficult to make accurately and
there is a very considerable uncertainty in the final
results. However, it is hoped that some more experi-
mental work will give us a better understanding of some
of the difficult problems involved. In Sec. II the various
orientation effects are written down, and the fields
which are not critically sensitive to the symmetry of
the lattice are estimated. In Sec. III cubic alloys are
considered in detail, and in Sec. IV hexagonal cobalt is
discussed. In Sec. V the results obtained are discussed
and compared to experiment. In an Appendix the use
of an effective field is justified and formulas for the
specific heat are derived.

II. EFFECTIVE MAGNETIC FIELD

The orientation of the nuclei may be regarded as due
to an effective magnetic field H which may be written
as

H =Ht+H. +H.,
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Here I(g) is the intensity of the emission of p rays in a
direction inclined at an angle 0 to the aligned spins.

It is not obvious that these effects can be discussed
in terms of an effective field as we have used here, and,
in fact, Heer and Erickson give a formula for the specific
heat which is incorrect for this particular problem.
Therefore a discussion of this concept of an effective
magnetic field is given in the Appendix where it is
shown that apart from unimportant terms, (2) is
correct. The essential idea is that in a ferromagnet at
low temperatures the electron spins are completely
"locked in" by the strong exchange forces. Therefore
lowering the temperature still further does not affect
the electron spin system, and so the electrons serve only
the static role of providing an effective magnetic field
to act on the nucleus.

The local magnetic field at the nucleus B~ is given by

Ht H. DM+ sesrM+——H', —-(4)

where H, is the external field, —DM the demagnetizing
field depending only on the shape of the specimen,
4srM/3 the usual Lorentz field and H' the small residue
of the Lorentz field which exists only for noncubic
symmetry. We are interested in cubic ferromagnets and
in hexagonal close-packed cobalt; for the former, H' is
rigorously zero, and for the latter, H' is only about 10 '
0

where H~ is the local magnetic field at the position of
the nucleus, H, is the effective magnetic field which
acts through the contact interaction with the 4s elec-
trons and H is the effective field due to the interactions
of the nucleus with the electrons on the same atom.
This effective magnetic field gives rise to a nuclear
specific heat

Crr/R = ,'I(I+1)(g-NtstvH/kT)'

+O(gtrtstrH/kT)4+, (2)

and, if the aligned nuclei are radioactive Co", to an
anisotropy in the emission of p rays given by

I(sr/2) —I(0) 39 (gtrttA H ) '

I(sr/2) 14 l kT

+O(gtvtstrH/kT)'+ .. (3)
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where
II.=-(8~/3)„~l((0)

~ np,

P = (p+2Sa'/rt)

(5)

(6)

is the "effective polarization. "Here S is the mean spin
per atom and a' is an average of the amount of 4s wave
function mixed into a mainly 3d wave function. Both
P and S are negative because the g value for an electron
is negative, so H, is a positive Geld.

As usual we write

I4(o) I'=(lf(0)
I
~', (7)

where ~P(0) ~

q' is the free atom value and f is a cor-
rection factor. We estimate ~P(0) ~g' as follows. The
hyperfine coupling constant a(s), defined as

a(s) = (16m-/3)gat ivt ~P(0) ~
&',

is known to be 0.190 cm ' for copper. Using a mean
value of the two copper isotopes for gy, we find that for
copper

~P(0) ~

~' ——0.310X10"cm ', [for Cu).

Ridley~ has made estimates of these probability densi-
ties using extrapolation from Hartree calculations on
Fe and Zn and finds a value of 0.277X10" for copper
and 0.233X10"for cobalt. In view of the difhculty of
these calculations the agreement between theory and
experiment for copper is very satisfactory. We assume

' L. W. McKeehan, Phys. Rev. 43, 1025 (1933}.
C. Kittel, Introdnction to Solid State Physics (John Wiley and

Sons, Inc. , New York, 1953), p. 407.' C. Ridley (private communication).

of the Lorentz field. ' We may, therefore, neglect H'
completely.

For this problem there is no doubt that the Lorentz
field knrM/3, rather than the Onsager field, should be
used because we are concerned here with the fields
produced by the large electron moments acting on the
small nuclear moments. The reaction of the nuclear
moments back onto the electron moments can be
neglected. The values of the saturation magnetization
M to be inserted into (4) are 1752 for iron, 1446 for
cobalt, and 510 for nickel. '

The effective Geld H, which is due to the contact
interaction with the 4s electrons may be regarded as
the sum of two parts. The first part is that proportional
to the conduction electron polarization p and is

—(8~/3)t Ik(0) I'np,

where tt is the Bohr magneton, ~f(0) ~' is the average
probability density of a conduction electron evaluated
at a lattice point, e is the number of conduction elec-
trons per atom, and p is their polarization. The second
part is that due to the mixing of 4s functions into the
3d band. This mixing we expect to be reasonably large
(several percent) although it is extremely difficult to
make any kind of estimate for it. The sum of these two
parts gives an effective Geld

II,= —2.07(rtP X10' gauss. (9)

$ will have a value somewhere between 0.5 and 1.0.
A rough estimate of the "true" polarization p and

of the corresponding part of H, can be made as follows.
Suppose the interaction between a single conduction
electron, normalized to a unit cell volume, and an atom
be written as —2JS s, where s is the conduction elec-
tron spin and S is the atom spin. This interaction is
equivalent to an effective magnetic field acting on the
conduction electron of magnitude J'S/tt. Now the Pauli
paramagnetic susceptibility of a free electron gas is
3np, '/2EI, where EI is the Fermi energy. From this
susceptibility and the effective magnetic fieM we find

P=3JS/2EI. (10)

Assuming a free electron gas for the conduction elec-
trons of cobalt, we have

EJ——0.93X10—"erg.

In the free atom J is roughly 2.4X10 "erg. Substituting
these values and setting S equal to —0.85, we get

p= —3.3X10 ' [for Co)

and from (9) we get a value of roughly 4X10' gauss for
the corresponding part of H.. This must be regarded
only as a very rough estimate because P is unknown
and Jmay be expected to differ from the free atom value
by a significant factor.

The effective field H, can be estimated if we use the
Van Vleck model of ferromagnetism. In this model we
suppose that correlation effects are very important so
that on any particular atom there will always be an
integer number of 3d electrons coupled together ac-
cording to Hund's rule. Thus, for example, in cobalt
we suppose 70% of the atoms to have the (3d)''F
configuration and 30% to have (3d)''D. This gives
the mean moment of 1.7 p per atom. Of course the same
configurations do not stay on the same atom but are
continually changing position.

Using this model, we want to estimate the fields
acting on the nucleus of an atom with a (3d)' and with
a (3d)' configuration, and then average with the ap-
propriate probabilities. The field for each configuration
can be obtained from the usual spin Hamiltonian which
is used to study paramagnetic salts. The relevant terms
are

3C =AS,I,+B(S,I,+S„I„). (12)

In the ferromagnet the electron spins are aligned by
the strong exchange interactions, so we may replace
S, and S„by zero, and S, by the spin value S of the

that the theoretical estimate for cobalt is in error by
the same factor as that for copper, and so take

[P(0) (
~'=0.267X10"cm ', [for Co]. (8)

This gives
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configuration. Hence we obtain

H g ———A S/g pfp N ~ (13)

l p=-,'(0~L„Lp+LpL ~0)—srL(L+1)8 p,

, «IL-f~)&~ILpl0)
A.p=g'

n (E„—Ep)

(16)

(17)

&OIL„I ~)&~IL,L,+ L,Lpl 0
sic p 2 . (1g)

(E„—Ep)

In these expressions X is the spin-orbit coupling con-
stant, and the states ~n) are the orbital states in the
crystalline field. In writing (14) we have assumed that
the ground state is quenched, so that there is no orbital
contribution to the moment or to A, other than that
introduced by spin-orbit coupling.

The first term of (14), Pz, has been—discussed
extensively by Abragam, Horowitz, and Pryce' and
arises through the contact interaction of the nucleus
with the inner 3s and 2s electrons. These inner electrons
see slightly different potentials, depending upon
whether their spins are parallel or antiparallel to the
spin of the 3d electrons. They therefore have slightly
different amplitudes at the nucleus and, although this
difference is only a small percentage, the effect is
appreciable because the probability density of these
electrons at the nucleus is very large. The magnitude
of this effect has been estimated with only moderate
success by Abragam, Horowitz, and Pryce, ' by Heine, '
and by Wood and Pratt. "Experimentally it is observed
that the quantity I'z/gz, which is independent of
nuclear properties, is roughly constant for paramagnetic
ions and neutral atoms. We might hope therefore that
it is roughly constant for different metals. Abragam,
Horowitz, and Pryce quote the values

zP/gsi=3. 8&&10 ' cm ' for neutral cobalt,

zP/giv=5. 3+10 ' cm ' for Co++.

Using the neutral cobalt value and denoting the cor-
responding effective magnetic field by H, &, we find

H i= —12.8X10' gauss.

It seems quite likely that this represents the order of
magnitude of this effect in the metal too, because the

s Abragam, Horowitz, and Pryce, Proc. Roy. Soc. (London)
A230, 169 (1955).

9 V. Heine, Phys. Rev. 107, 1002 (1957)."J.H. Wood and G. W. Pratt, Jr., Phys. Rev. 107, 995 (1957).

The full justification for this step is given in the
Appendix. In the usual notation, the quantity 2 is
given by

(14)
where

5—4SI =2givwrp(1/r )~
21(2I.—1)S

inner electron wave functions and the 3d electron wave
functions should not differ drastically from the free
atom. But possibly it may be that the effect is sensitive
to the exact overlap of the wave functions and so II,~

may differ considerably from this value.
The second term of (14) represents the dipole-dipole

magnetic interaction between the nuclear and electron
spins averaged over the zero-order wave function. The
third term is the magnetic interaction between the
nucleus and the unquenched part of the orbital moment.
The fourth term is a cross effect of the dipole-dipole
nuclear-electron spin interaction and the spin-orbit
coupling. These three terms depend upon the symmetry
of the crystal, so we shall discuss separately the two
cases we are particularly interested in, cubic alloys
containing cobalt and pure hexagonal cobalt, in Sec.
III and Sec. IV, respectively.

III. CUBIC ALLOYS

In alloys we may still regard cobalt as a mixture of
two configurations, 70% of (3d)' 'F and 30% of
(3d)' 'D. In the cubic fieM which has the same sign as
is usual in paramagnetic salts, the (3d) s 'F configuration
splits into the representations I's+I'4+1's, with the
I'2, i.e. a singlet orbital state, lowest. Hence for the
(3d)''F configuration the ground state to be inserted
in (16) is nondegenerate and, therefore, has the full
cubic symmetry. Therefore,

l, =l„„=l„=-'l„=0. (20)

This is just the well known result that the dipole-dipole
interactions average to zero in cubic symmetry. The
(3d)''D configuration splits into the representations
I's+I's, with the I' s, a doublet orbital state, lowest.
For neither of these two orbital states separately does
l p vanish (except for special choices of representation);
but because the two states are degenerate, and in the
metal they remain degenerate because there is no dis-
tortion to split them as there usually is in paramagnetic
salts, we are interested only in the mean value of / p

and this is zero. Hence the second term of (14) and the
corresponding contribution H, 2 to H, are zero for
cubic alloys.

This argument has presupposed that each cobalt
atom in the alloy sees a cubic field, and this will be
strictly true only in very dilute or in very concentrated
alloys. For alloys of intermediate concentrations each
cobalt atom will have some nearest neighbors of cobalt
and some of a different atom so that the field seen by
this cobalt atom will not be cubic. Only the average
field seen by all the cobalt atoms will be cubic. This
effect will, therefore, give no contribution to the mean
field acting on the nucleus, but it will give a contri-
bution to the mean square field and hence to the specific
heat and p-ray anisotropy. It does not seem possible to
estimate this term; but in alloys between elements
which are close in the periodic table, e.g., Co-Ni, we
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might hope the effect is small even for the 50% con-
centration alloy, especially as the e6ect of a noncubic
field on the (3d)' configuration must be small, so that
effectively only the 30% of the atoms which have the
(3d)' configuration can give rise to this extra term.

The third term of (14) will always be roughly of the
same order of magnitude and can be estimated as fol-
lows. Using (13) and (14), we find the corresponding
part of H, is

H, o
——S(2—g') 2p (1/ro). (21)

Using S=0.85, a typical value of 1.9 for g', and a value
of 5.2 ao ' for 1/r', we find H, o is about 6X10' gauss.
However, for any particular case a more careful esti-
mate of this term can easily be made, although in view
of the uncertainties in the experimental value of g' and
in the model we are using, there is considerable doubt
if such an estimate is really justified. To illustrate the
calculation, consider a small percentage of cobalt in
nickel.

We assume that the cobalt sees the same cubic field
as nickel. If we write this field as

V =C[x'+y4+ s4 oor4], —-(22)

we find, remembering that the easy direction of mag-
netization in Ni is the [111]direction so the subscript
s in (14) really refers to this direction, not the crystal-
lographic s axis,

i1„=21/C(r4)A„ for (3d)' 'F,
A„=10.5/C(r4)A„ for (3d)' 'D. (23)

We calculate the coefficient C, using the known g' value
of pure nickel, from the relation

(2—g') = —2X i10.5/C(r4) o„, (24)

where Xi is the spin-orbit parameter for Ni(3d)'. Using
(13), (14), and (23) we find that, after averaging over
configurations,

H, o
——p(2 —g') (1/r') (0.3X&+2.8Xo)/Xi, (25)

where ) 2 and X3 are the spin-orbit parameters for Co
(3d)' and Co(3d)', respectively. Now theoretically

The last term of (14) vanishes for this case because
in cubic symmetry u„=—',N, which is zero by in-
spection of (18).

Energy

0
—40b(r') A,/21
—80b(r4) A,/21

States

fo

Degeneracy

1X2
2X2
2X2

and the Co(3d)' 'F configuration splits as follows:

Then

Energy

104b(r4) A./21
40b(r') A„/21

24b(r4) A„/21

0

States

Po, P o

Po

Degeneracy

2X3
2X3
2X3
1X3

for Co(3d)' 'D f = —1

for Co(3d)' 'F 1 =—4

From (13), (14), and (30)
configurations,

J= 2/21, 8=—-', ;

1= 1/105, S= —1. (30)

we obtain, averaging over

H, o
——0.25' (1/r') =8.1X10' gauss. (31)

The third term of (14) needs some care. It is easily
verified that A„ is zero both for (3d)''D and for
(3d)' 'F, but this does not mean that there is no inter-
action between the nucleus and the orbital moment
because, in this case, in the first approximation the
orbital moment of the (3d)''D configuration is not
quenched. The quenching is done by the band-like
motion of the (3d)' configurations in this case. The small
orbital contribution which is left produces a field

IV. HEXAGONAL COBALT

The crystalline field potential can be written as

U =a f3s' —r'}—b(35s' —30s'r'+3r'}. (29)

The coefficient a is zero for close-packing so we shall
neglect this first term, as the cobalt lattice is very
nearly ideal close-packing. The coefficient b is positive.
In this potential the Co(3d)o 'D configuration splits as
follows:

X=&$/25,

where $ is a function only of the nuclear charge. Hence

H, o 0.85 (2 g') P/g pry
——~. — (32)

Xi= —PN;, 2Xo=ko ———$c.. (26) H,3=8.3X104 gauss.

H~o= [5 4&1.8]X10'gauss. (28)

Experimentally we find $N; and $c, are 670 cm ' and
540 cm ', respectively. Upon using these values with
(26), Eq. (25) becomes

H, o 1.4p(2 —g') (1/r') [for C——o in Ni]. (27)

If we use a value of 1.88+0.04 for g' and 5.2 ao ' for
1/r', this gives

The last term of (14) is difficult to calculate because
the coefficient b in (29) is unknown. A reasonable
estimate however shows the last term, H 4, to be
roughly only 1% of H, o, so we may safely neglect it.

V. COMPARISON WITH EXPERIMENT

There are several experimental results on hexagonal
cobalt available. Craer, Johnson, Scurlock, and Taylor'
have observed the anisotropy in the p-ray emission
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from Co", and from their results they deduce that, if
the electron-nuclear interaction is written as AS'I'
with 5'=&—,', then for Co", A is 0.0145&0.002 cm '
Since Co" has a spin of 2 and a moment of 4.64 p~, we
deduce

appear from this result that the use of the Van Vleck
model has exaggerated the size of the field H & by a
factor of about two.

The total field which we have calculated for cobalt
in nickel is

H =21.7&(104 gauss. (34) [1.45$(
~ p ~

+2.43a') X 10'—7.4X 10'j gauss.

B=18'10' gauss. (35)

Arp, Peterson, and Kurti' have also measured the
specific heat and they found

giving

CvT'/R=4. 7X10 4,

H = 19.5)(10' gauss. (36)

We shall take the experimental value to be the mean
of these three results, namely 19.7)&104 gauss. Actually
these experiments can measure only the magnitude and
not the sign of H. We have assumed the sign to be
positive in writing (34)—(36).

The total field which we have calculated for hexagonal
cobalt is the sum of (9), (19), (31), and (33) and is

(1.45$(~P ~+2.43@')X10'+3.6X10'] gauss. (37)

Taking P to be 1.0 we find this consistent with the value
19.7X10' gauss, if we accept the estimate (11) for p
and set a' equal to 0.032. This conclusion that the
mainly 3d wave function contains about 3% of a 4s
wave function seems very reasonable. From this result
it would seem likely that the term H, & does not differ
too much from the free atom value, and is therefore
not too sensitive to the exact overlap of the wave
functions.

It would be very interesting to have experimental
results on a high-concentration cubic Co alloy. Here
we would expect all the fields to have roughly the same
value, except for H, 2, which would become zero. We,
therefore, expect a value of 11.5)&10' gauss for H in
this case. An experimental measurement of this quantity
therefore ought to give information on the validity of
the Van Vleck model which we have used. A compli-
cation is that on this model the quenching mechanism
is diferent for hexagonal cobalt and cubic cobalt. We
might therefore expect H, 3 to change appreciably, too.

Experimental results on a high-cobalt-concentration
cubic alloy are not yet available, but Arp and Peterson
have reported measurements on an alloy of 60% Co,
40% Ni which give an eRective field of 16.2X 10' gauss.
It is not clear how close we would expect the results
for this alloy to come to the predicted result of 1.1.5)& 10'
gauss for the high-Co-concentration alloy. It would

Heer and Erickson' have measured the specific heat of
hexagonal Co" and found

CyT'/R=4. 0X10 4.

Hence, from (2), we have

Assuming that the first term has the same value as in
hexagonal cobalt, we get an effective field of 8.7)&10'
gauss. Hence the anisotropy in the emission of p rays
ought to be a fraction 0.19 of that for hexagonal cobalt;
i.e. , since Craer, Johnson, Scurlock, and Taylor ob-
served an anisotropy of 5.7% at a temperature of
0.040'K for hexagonal cobalt, an anisotropy of 1.1%%uo

should be observed at the same temperature for a
dilute alloy of cobalt in nickel. This is in rough agree-
ment with some preliminary experiments of Johnson
and Scurlock' on an alloy of 3% cobalt. They report.
that the anisotropy is very small.

APPENDIX

In this Appendix we shall justify the use of an
effective field to describe the nuclear spin orientations.
For simplicity of notation we shall use the simple
Heisenberg model of a ferromagnet with a spin S on
every atom. We write the Hamiltonian for the system
as

where

BC=BCp+X', (A.1)

GCp ———2J Q(,, ,) S; S,+2pH, Q, S,', (A.2)

BC'=A P; S,*I,'+8 P, (S,*I,*+S,~Ip)

2g~p~H. Q, I,'. (A—.3)

3'.0 is the Hamiltonian for the electron system alone,
and X' is the nuclear Hamiltonian. Actually these
expressions are not complete because the dipole-dipole
interactions between the electron spins themselves,
between the nuclei themselves, and between the
electrons and nuclei have all been omitted (except for
the dipole interaction between the nucleus and the
electrons of the same atom which is included in the
coefficients A and 8). The neglect of the nuclear-
nuclear dipole interactions is certainly justified and
the neglect of the other terms will have as a consequence
merely the replacement of the local field H&, defined by
(4), by the external field H, .

From (A.3), with zero H, and setting S=—'„Heer
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and Erickson deduce the specific heat to be

Cv/R= I(I+1)(2'+2B')/12k'T' (A 4)

This would be correct for a paramagnetic salt but, as
we shall show, is incorrect for a ferromagnet. The correct
expression, for zero H„ is

Cv/R =I(I+1)A' S'/3k'T' (A.5)

Following Schafroth" we write the partition func-
tion, correct to second order in 3C', as

z=zp —p p e-ee"(e!K'l e)

e
—PEn e

—P&np

',I(I—+1)NpZ pp/AS+ 2g»~II (A—/N) p k ek]'

A'
+—P (Nk+1)ek

g2 krak'

1—exp[ —P(pk —pk )]
6k 6k'

and that

we get

(~k~k )A. =&k&k +~k, k ~k(~k+1),

8= —S+(1/N) Pk nk,

(A.13)

(A.14)

8'S 1
+ Z —((&k+1)L1—exp( —Ppk)]

E

krak

—0k[1—exp(P pk)]}. (A.12)

Remembering that

!+l(3»(I+1) Z l—
k, k' (pk —pk ) (exp(ppk ) 1)

S 1
+ ',PNI(I+1-)B' —P —. (A.15)

kS'= —S+a,*a,,
S,+= (2S)~a,*(1—a,*a;/2$) & (2S)~a,*

= (2S/N)l Qk (e'"'"'ak*),

S; = (2S)l(1—a,*a,/2S)'a, (2S)~a;
= (2S/N)' Pk (e-*""a,).

From this we deduce, in zero field, that
(A.7)

RI(I+1) 88 cl ( cl8)
Cv=c,o+— ~' 8'+4p8 +pp—

l
8

3k'T' BP BP & clP )

where p is 1/kT and the states le) are the eigenstates Z/Zp=1+-', ppNI(I+. 1)(g8 2IIg»~)&
of Xp. Zp is a partition function for the noninteracting
system. The second term of (A.6) certainly vanishes
because it is linear in 3C'. To evaluate the second term
we first diagonalize GCp, using the familiar spin-wave
operators. With the usual approximations, we have

Then

[a;,a, ']=&,,", [a„ak.*]=sk,k etc. ,
RI(I+1) A' 8' —

( 1
+ — PZl-

3k2T2 N2 plp2 k ki (pk pk, )
and, if we neglect all terms except those quadratic in
the annihilation and creation operators, Xp is brought
to the diagonal form xl (A.16)

L. exp (ppk. )—1)

where

3'-p=C+Qk pkek, (A.8)

8= —S+cP-'*, (A.17)
Nk ak*ak,——pk ——2pII+2SJyk,

Vk=gt.oexp(ilr p)

and the sum over y goes over nearest neighbors. Then

where, for a 1'ace-centered cubic lattice,

1 1 ' " xldx
! =0.0294! ! . (A.18)

Sm' (2SJ) J p e'—1 42SJ)

In terms of these variables, K' becomes

Zp= (2I+1 e & kl 1—exp( —pk A.10
From (A.17) and (A.16) we find the leading terms in
an expansion in inverse powers of P to be

X'= —Q; I (AS+2g~lJ, ~II (2/N)— RI(I+1)A'
Cv=Cv'+ $2+ 1SCP ~+ c2P P

Xpk, k e'&'—"& "'ak*ak }+B(S/2N)& p; I,*

XQ k(e 'k R~ak+e'k "'ak*}+iB(S/2N) * Q; I,"

3k'T'
8p l~' 1

+-P,cP-'* dk—. (A.19)
(27r)'& pk

{e ik Rga e—ik Rgaf*} (A 11)

Then we 6nd that the last term of (A.6) is the thermal
average of

"M. R. Schafroth, Helv. Phys. Acta 24, 645 (1951).

The last three terms in the brackets are negligible
compared to the first term and Cyp is also negligible,
so we obtain (A.5). Clearly the other effects which we
have ignored in this simple model can be taken care of
by replacing AS by g&p&II, where II is given b—y (1).


