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which the latter investigators associated with thermal
spikes. The metamictization of minerals is dominated by
the behavior of the silica structure; but there are also
present some effects which are related to the class of the
refractory-ionic-metal oxides, and a phase separation
seems to occur at least in some cases. Small amounts of
stored energy are found on annealing metamictized
minerals in calorimeters, and it is suggested here to be
due mainly to chemical reaction between the separated
phases and to recrystallization.

APPENDIX

The paper by Simon* appeared after the writing of
the present paper. His data seem to agree with the
interpretations given here.

The deposit of about the density of cristobalite found

21, Simon, J. Am. Ceram. Soc. 40, 150 (1957).
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by Stewart® on the walls of a discharge tube was
probably radiation-damaged vitreous silica.

The variability in the density of quartz found in
nature has usually been attributed to impurities. That
it may in part be due to radiation damage from cosmic
rays and radioactive inclusions should be considered.
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The use of galvanomagnetic experiments to determine the mobility and density of carriers in the space-
charge region of a semiconductor surface is considered. In part I an approximate model is used: it is a single
crystal composed of two regions, a surface region of thickness of the order of a Debye length and a bulk
region. Expressions for the resultant Hall coefficient are given for three experimental configurations by use
of circuit analysis. The sensitivity of each configuration is derived, and by also considering experimental
desirability, one is selected for study. It has the magnetic field perpendicular to the surface and the Hall
voltages of surface and bulk are in parallel. Changes in Hall voltages of 1 to 509, are expected by using
ambients to change the surface potential.

In part IT the model is assumed to be a single crystal with continuous variation of the potential in the
direction perpendicular to the surface. Rigorous expressions are derived for the Hall coefficient and magneto-
resistance by use of the one-dimensional Boltzmann equation. A feature of the derivation is its independence
of a specific model of the surface region. The resulting expressions contain surface densities and mobilities
which can be evaluated from experimental data of Hall coefficient and conductivity. Conversely, the ex-
pressions can be used with theory based on specific surface models to predict values of conductivity, Hall

coefficient, and magnetoresistance.

INTRODUCTION

HE interpretation of many experiments relating

to the surface region of a semiconductor depends

upon a knowledge of the density and mobility of carriers
in the space-charge region as a function of surface
potential.! The density of carriers has been calculated
by solving Poisson’s equation.??® A theoretical study of

1 For a review of the current state of surface physics and an
extensive bibliography see R. H. Kingston, J. Appl. Phys. 27, 101
(1956); and Semiconductor Surface Physics, edited by R. H.
Kingston (University of Pennsylvania Press, Philadelphia, 1957).
(12;{5.) H. Kingston and S. F. Neustadter, J. Appl. Phys. 26, 718

955).

(13 5C.) G. B. Garrett and W. H. Brattain, Phys. Rev. 99, 376

955).

the mobility of carriers in the space-charge region has
been made by Schrieffer.* His study indicated that the
mobility is a function of the surface potential and, for
commonly obtained values of the surface potential, is
lower than the bulk value. This general picture has been
successful in interpreting a large number of experi-
ments, including measurement of conductivity, field
effect, and capacity.! However, a more direct measure-
ment of the density and mobility of carriers in the
space-charge region is desired to establish firmly the
basic picture of the semiconductor surface and because
of intrinsic interest in the scattering process.

4 J. R. Schrieffer, Phys. Rev. 97, 641 (1955).



MOBILITY AND DENSITY OF CARRIERS

Combined Hall coefficient and conductivity measure-
ments have been most useful for studying the mobility
and density of carriers in bulk crystals. However,
several problems are encountered in using these experi-
ments to study surface conduction. The first is that of
separating the surface contribution from the bulk
contribution to the Hall coefficient.® The second is that
of sensitivity—it is known that bulk Hall voltages are
an order of magnitude smaller than conductivity
voltages, and because of the geometrical factor, it can
be expected that the surface contribution will be small
compared to the bulk contribution. Even if magnetic
fields large enough to make the Hall field comparable
to the longitudinal field could be applied, it is desirable
to have the Hall field small in order to keep the effect
linear.

I. GENERAL DESIGN OF THE EXPERIMENT

It was decided to consider only experimental methods
susceptible to rigorous theoretical analysis. We there-
fore consider single crystals of large surface area and of
small thickness. The properties of such crystals can be
assumed to vary perpendicular to the surface (z di-
rection) but not parallel to the surface. There are three
independent ways that the magnetic field, current, and
Hall probes can be oriented, as shown in Fig. 1. The
mobility and Hall coefficient will in general be tensor
quantities at points close to the surface, so that the
three configurations will probably yield quite different
results. However, all three can in principle be analyzed
by solution of a one-dimensional Boltzmann equation.
We shall consider each of them to determine which
appears to offer the best possibility for a successful
experiment.

A first consideration is to estimate the magnitude of
the surface contribution to the observed Hall coefficient.
To get a qualitative estimate of this, we first adopt a
simple model and use an approximate method of
analysis. We consider the sample to be composed of
two regions (see Fig. 1), a bulk region of thickness dp,
and a surface region of thickness of the order of a Debye
length, d,~Lp, with

Lp= (xeokT/2¢’n;)}=0.67X10"* cm
for germanium. (1)

We assume that Hall voltages are induced in the two
regions as if they were isolated from each other. Then
the two regions are connected to each other either in
parallel [Figs. 1(a), 1(c)] or series [Fig. 1(b)]. Circuit
theory is used to derive an expression for the resultant

51In special cases the effects of the bulk can be neglected; an
example is the recent work of Frederikse, Hosler, and Roberts,
Phys. Rev. 103, 67 (1956). They studied galvanomagnetic
properties of magnesium stannide at helium temperatures and
concluded that the bulk contributions were frozen out at this
temperature; thus they observed surface effects directly. Our
analysis is for the general case when the bulk contribution is not
negligible.
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Fic. 1. Possible configurations for Hall measurements. (a) Cur-
rents in parallel and Hall voltages in parallel. (b) Currents in
parallel and Hall voltages in series. (c) Currents in series and Hall
voltages in parallel.

Hall coefficient in terms of the surface and bulk Hall
coefficients and conductivities.

This approach is approximate in that it does not
consider the potential to vary continuously in the z
direction, nor does it consider all possible circulating
currents. For example, in Figs. 1(a) and 1(c) circulating
currents perpendicular to the surface are neglected.
We use this method to estimate the sensitivity and to
discuss some of the experimental problems associated
with each configuration. The analysis enables us to
select one approach [Fig. 1(a)] as appearing to be the
most promising for study. '

In Part IT we then analyze configuration 1(a) by use
of the Boltzmann equation. That analysis drops the
two-region assumption and considers the potential to
vary continuously in the direction perpendicular to the
surface. It also treats the circulating-current problem
rigorously. The Boltzmann analysis leads to the same
expression for the Hall coefficient as the circuit ap-
proach, although this is not true for the magneto-
resistance.
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A. Expressions for the Hall Coeflicient by
Two-Region Circuit Analysis

We now give the expressions for the Hall coefficient
using the models of Figs. 1(a), 1(b), 1(c), and circuit
theory. These expressions have been used in the study
of inhomogeneous semiconductors. However, we sketch
their derivation because they do not seem to appear in
the literature.

1. Magnetic field perpendicular to broad area of sample,
Hall voltages of surface and bulk acting in parallel, and
bias currents in parallel—The first configuration and
its equivalent curcuit are shown in Fig. 1(a). The
individual Hall voltages and currents are

Vb=IbRbH/db, VS=ISRSH/ds,
Ib=(fbdb[/(o’bdb+o’sds), [3=U'sdsl/(0’bdb+03ds),
I=Iy+1,, d=ds+ds,

where the subscripts & and s refer to the bulk and
surface, respectively, ¢ is conductivity, R is Hall co-
efficient, and H is the magnetic field. The open-circuit
Hall voltage is

V=IHR/d= (VGy+VGs)/(Gy+G),
where the conductances are given by
Gb= (debL/'w, Gs = O’sdsL/w.

Solving, one finds for the Hall coefficient and con-
ductivity of the total sample,

R d(Rba'bzdb—l_RsUszds)

. 2

(cvdptosds)? @
Ao t0.ds

L2l ”d” ) 3)

This configuration is attractive from the experimental
point of view; no contacts need be made to the surface
area, gaseous ambients or electric fields can be used to
vary the surface conditions, and ordinary dc or low-
frequency techniques can be used for the measurements.
The side-arm technique is known to yield low noise,®
since no current flows through the contacts; thus small
changes in the Hall voltage can be detected. Further-
more, since the magnetic field causes the electrons to
have orbits in the plane of the surface, one expects the
conductivity mobility not to be seriously changed by
the magnetic field. However, the shunting effect of the
bulk is in the ratio of ¢:2ds/o*d, for the Hall coefficient,
so it is of interest to consider other arrangements which
may offer more sensitivity.

2. Magnetic field parallel to broad area of sample, Hall
voltages of surface and bulk acting in series, and bias
currents in parallel—In this case the Hall probes are
placed on the front and rear surfaces; thus theindividual

8H. C. Montgomery, Bell System Tech. J. 31, 950 (1952);
Frances L. Lummis and R. L. Petritz, Phys. Rev. 105, 502 (1957).
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Hall voltages are now added in series [see Fig. 1(b)]:

V=V,+V,=IRH/w, I=I,+I,,
Vb=IbRbH/w, V3=ISR8H/W,
audol osdJ
Iy=—— [=——.
godyto.ds ovdytods

Solving, one finds
R Rbo—bdb_'—Rsasds

4
U’bdb—{_o—sds ( )
(Ubdb+osds)
g= d_ . (5)

In this case the shunting effect of the bulk is ¢4ds/0ds.
However, a disadvantage is that it requires attaching
leads to the surface under study or the use of capacitive
Hall probes. Also the magnetic field causes orbits
perpendicular to the surface, thus altering the con-
ductivity mobility to some extent. Presumably this
could be interpreted in the theory, so in itself it is not
a compelling reason not to use this setup.

3. Magnelic field parallel to large area of sample; Hall
voltages of surface and bulk acting in parallel, and bias
currents in series—For this case we have, from Fig.

1(0),

Vy=IR,H/L, V,=IRH/L,

Gr=0uLdy/w, G,=0,Ld,/w,
ViGo+V.G, THR

V= e "1

Solving, one finds
Rbabdb_i_Rso—sds
R=——r

_:bdb‘*_o-sds
d
Fg=—"",
(dv/av)+ (ds/0s)

In this case the shunting effect of the bulk is o3ds/0sds.
However, as for case two, it has the disadvantage of
requiring leads attached to the surface under study, or
the use of capacitive coupling. As in case 1(b), the
magnetic field causes orbits perpendicular to the surface.

(6)

(M

B. Sensitivity Analysis—Small-Signal Range

The sensitivity required for detecting a small change
in the Hall coefficient due to a change in the surface
potential is evaluated for the three cases as follows. A
change in surface potential will cause a change in o,
and R, while o5 and R; will remain unchanged. Thus

AR=(3R/d0,)Acs+ (dIR/OR,)AR,. (8)
Considering Fig. 1(a) we substitute Eq. (2) into Eq.
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(8) and find to first order

2 dd[204dy(Rsos— Ryop) Aas+ (04de+04ds)a P AR, ]
B (Ubdb+asds)3 )

)

By a similar analysis we find for Figs. 1(b) and 1(c),
using Eqgs. (4) and (6),

d[ (Rsos— Ryov)dpAas+ (ovds+0o.ds)o AR, ]
- (cudvto.d) '

AR (10)

Equations (9) and (10) can be used to evaluate the
sensitivity for arbitrary initial surface potentials. The
sensitivity of configuration 1(a) is in general different
from that of 1(b) and 1(c). However, these expressions
simplify greatly when one assumes the initial condition
of the energy bands to be flat, that is, the surface
potential, ¢, to be equal to ¢ (bulk potential):

(11)

Substituting the relations of Eq. (11) into Egs. (9)
and (10), we find for all three cases

Ri(ps=0dp) =Ry, os(ps=0s)=0s.

AR d, AR,
— = (12)
Ry, d Ry

This shows that for small changes in surface potential
around the condition of flat energy bands, all three
configurations have the same sensitivity. Furthermore,
AR is proportional only to the change in surface Hall
coefficient (AR,); the change in surface conductivity
does not enter directly.

In order to obtain an estimate of the sensitivity
required, we compare AR with the change in conduc-
tivity. Using Egs. (3), (5), and (7), we find

ds
Aaz;Atrs, [Figs. 1(a), 1(b)];

(13)
op2dd Ao

o= 1 .
A odotod)” [1(9)]

Assuming again for the initial condition that the bands
are flat, we have for all three cases

Ao  d. Ao,

Ty doy

Comparison of Eqs. (12) and (14) shows that the
geometrical factor, d,/d, is the same for the Hall
coefficient as for the conductivity.

To estimate the absolute magnitude of AR/R; and
to compare it with A¢/o,, we consider a one-carrier
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model and small deviations from ¢,=¢s:
Ry=c/nyq, =1,
Aps=ps(ps#=ps) —us, (15)
15 (s =3) = o,

AR, Ang

T = qhshhs,
Any=mns(ps 7= ds) —ns,
1s(ps=v) =11,
Aoy Ang, Aus

(16)

)
0b Ny Mo R,

Ny

Substituting Egs. (16) into Eqgs. (12) and (14), we find

AR| di|An,

—| ===, (17

Rb d Ny
Ao dy/Ans Aus
r_t (a0 2o "
op 4\ my 1123

Neglecting changes in mobility, we see that

AR| Ao di|An,
— | (19)
Rb Op d Ny

Thus one can expect the same order of magnitude
changes in AR/R;, as in Ac/os.

The Bardeen-Brattain gas ambient cycle” enables
one to obtain 0.01<A¢/0,<0.5, in thin (d=21 mil)
high-resistivity germanium. This indicates that our
experimental problem is to measure changes in R of
the order of 19, to 50%,. Further sensitivity can be
attained by decreasing the sample thickness and by
reducing the bulk density of carriers (e.g., by making
the sample intrinsic or by cooling).

C. Selection of Experimental Approach

The above analysis shows that all three configurations
have the same sensitivity for small changes in surface
potential about ¢,=¢;. Therefore, the selection is
reduced to considerations of experimental technique.
The first method, Fig. 1(a) is chosen because it embodies
the features described in Sec. A.

In conclusion, the configuration shown in Fig. 1(a)
offers a good possibility for studying surface Hall effect.
The sensitivity needed is approximately that required
in conductivity measurements.

We have found it possible to carry out such measure-
ments on high-resistivity germanium at room tempera-
ture, using the configurations of Fig. 1(a) and a modified
Bardeen-Brattain technique for varying the surface
potential.®? The results are in good agreement with the
estimates of this paper.

7 W) H. Brattain and J. Bardeen, Bell System Tech. J. 82, 1
(1953).

8 A preliminary report of the experimental and theoretical work
has been given: J. N. Zemel and R. L. Petritz, Bull. Am. Phys.
Soc. Ser. 11, 2, 131 (1957).

9 J. N. Zemel and R. L. Petritz, Phys. Rev. 110, 1263 (1958),
following paper. .
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II. BOLTZMANN EQUATION AND EFFECTIVE
MOBILITY ANALYSIS OF CONDUCTIVITY,
HALL COEFFICIENT AND MAGNETO-
RESISTANCE

The two-region circuit analysis used in Part I in-
volved simplifying approximations in regard to circu-
lating currents and the variation of the potential
perpendicular to the surface. In Sec. A below, we
analyze the configuration of Fig. 1(a) by use of a one-
dimensional Boltzmann equation. We drop the two-
region assumption and allow the potential to vary
continuously in the z direction. This allows for a
rigorous derivation of the expressions for the Hall
coefficient and magnetoresistance. In Part B we show
that the z dependence can be eliminated by integration
to define effective surface densities and mobilities. The
use of the resulting expression for analyzing experi-
mental data is discussed in Sec. C. An interesting
feature of the derivation is that a specific model of
the surface is not assumed.

A. Solution of z Dependence of Hall Coefficient
and Magnetoresistance

We first require an expression for superposing the z
dependence of the Hall coefficient and magnetore-
sistance, analogous to the well-known expression for the
conductivity,

o= (1/d) f o (3)d. (20)

The previous solution for the Hall coefficient [Eq. (2)]
obtained by circuit analysis generalizes to continuous
variation in the z direction as'

R=dj(;dR(z)a2(z)dz/[j;da(z)dz]z.

Presumably one should use the multicarrier formulas
for the local Hall coefficient, R(2), and the local con-
ductivity, ¢(2), in Eq. (21). However, this point was
not considered in the circuit analysis since the problem
of circulating currents was not adequately covered. To
show that this is the correct procedure and to derive an
analogous expression for the magnetoresistance, we use
the Boltzmann equation. Assuming spherical energy
surfaces and a magnetic field, H, in the z direction, we
have

1)

1 —
~~q—(E+—vXH) grady f+v-grad.f= —f fo’
m c T (22)

The solution to this is written as
f=ftf1(v,2),

10 J, N. Zemel (private communication).

f0= ce—le—adDI/ET
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The function f1(v,2) is determined by solving Eq. (22)
subject to appropriate boundary conditions for surface
scattering. The current densities are then found by use

of
0= [ [ [aveine,
@ = [ [ [avornes.

For small magnetic fields, j, and j, can be written
formally as

J=(8)=1q| Zx nx(2)(ur(2) Ex+ 2k qimi (2)(ui (2)) HE,
— g Xk m1(2){ui (2))H?E4,  (23)

7u(@) =1 g1 2k ma(2){ur(2))Ey— Xk g (2)(ui*(2) ) HE
— g1k me (@) (i (2)) H’E,,  (24)

where 7x(2) is the density of the kth specimen (holes or
electrons) and (ux™(z)) are appropriate averages over
momentum space; ¢x is positive for holes, negative for
electrons. The above expressions are quite general,
being a result of the spherical energy surfaces, the
small-magnetic-field approximation, and the linearity
of the problem, i.e., the carriers contribute additively
to the current.

In the bulk or interior of the crystal where the
surface boundary condition is negligible,

q (er™)
K™y =—
)=

:—"j—k-fffdve’rm(e)fb/fffd‘fffb;» (25)

where 7(e) is the relaxation time of the bulk scattering
process, € is the energy, and f; is the bulk distribution
function.

In the region near the surface, (us™(2)) will differ from
{urs™) because of surface scattering. We shall not derive
explicit expressions for {u;™(2)); Schrieffer has done
essentially this for (ux(2)) for two models of the surface
region. Instead we shall continue our analysis keeping
{ur™(z)) as formal averages over momentum space.

We next derive expressions for the Hall coefficient
and magnetoresistance from Egs. (23) and (24). The
total currents for a sample of thickness d are

d
I.=(w/L) f ju)ds, (26)

I,=(L/w) f 7y(@)dz=0, @)

where the boundary condition is that the total current
in the y direction is zero. This boundary condition takes
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into account all circulating currents, including those
due to having more than one kind of carrier, and those
due to the z dependence of the problem.

We can take E, and E, from under the integral sign
because they are not functions of z (one-dimensional
nature of the problem and curl E=0). Substituting Egs.
(23) and (24) into Egs. (26) and (27) and solving, we
find for the conductivity and Hall coefficient (to order
H)

I,
E.dw
E,dw

;I

=d§£2m@@ﬂma/

o= (28)

—.:2 lq| %\L‘ 1k (2)(ui(2))dz,

[M§LZ@W@WT<M

We note that if the local Hall coefficient and conduc-
tivity are defined as

R(2) =21 quna(2)(ui(2))/L | g1 2k nx(2) (i (2)) 12, (30)
o (@)= [q| Xk n(2)(ur(2)), (31)

we can write Eq. (29) as Eq. (21), in agreement with
the result derived by circuit analysis.

Similarly, we find for the magnetoresistance, to order
a2,

Ap IAG'I IzO_I;c\
U‘QH2 I;.;OH2

pH?

= f 1003 (s (2) )3

%f . (2)(u(2))dz

hﬁlmmwmﬂZ
- . (32)

[mgLE@W@WT

Whereas we were able to derive the Hall coefficient by
circuit analysis, we have not been able to do so for the
magnetoresistance.

B. Effective Mobility Formalism

The interpretation and analysis of surface con-
ductance data has been simplified by the concept of the
effective mobility of carriers in the space-charge region.*
This enables one to calculate the total conductance as a
function of surface potential for samples of arbitrary
shape and composition by a simple superposition of
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bulk and surface contributions. We shall show that a
similar method can be used for the Hall coefficient and
magnetoresistance with corresponding usefulness. This
transformation is carried out in the Appendix and the
results are summarized in the following sections.

1. Conductivity—We find that the one-carrier con-
ductivity [Eq. (28)] can be expressed [Appendix,
Sec. 1, Eq. (A-12)] as

0d/q=n{pp)ds+nus)ds+Anuc)ds,
d=dy+d,

where #; is the bulk density of carriers, {us) is the bulk
‘“conductivity” mobility [defined in Eq. (25) with
m=17], d is the total thickness, d, is the effective
thickness of the surface region and is of the order of the
Debye length [Eq. (1)], #, is the effective total density
of surface carriers [ Egs. (A-5) and (A-11)], {us) is the
effective ‘“‘conductivity” mobility of surface carriers
[Egs. (A-4) and (A-10)7], and (u.) is a correlation
mobility [Eq. (A-8)]. The first and second terms
represent the bulk and surface contributions respec-
tively, while the third term is a correlation term that
has been ignored in previous treatments.* It is included
for completeness but can be expected to be small and
probably negligible [see discussion following Eq. (A-8)].

It is useful for calculations to subtract out the bulk
conductance of the sample. This is most conveniently
done when the bands are flat:

33
= Np+Ans, (33)

o (ps=0s) = 0= qnius). (34)

Thus, v
(d/qds) (6—0v) = Anlps)— 15 ((uo)— (ue) +Ansluc). (35)

This can be interpreted as follows. The first term repre-
sents the change in conductance due to excess surface
carriers of effective mobility (us). The second term
represents a.decrease in conductance due to a reduction
in mobility of charge that already is present in the
surface region. Finally, the third term represents a
spatial correlation between A#(z) and Au(z). Calcu-
lations >~* show that Az, changes much faster than the
effective mobility; therefore, we can expect that in
high-resistivity materials the first term is the only one
of importance. In low-resistivity materials (#; large),
it may be necessary to include the second term. The
third term can probably be ignored in all practical
cases, although further study is required to justify this.

When three carriers are involved, as in the case of
germanium and silicon, we find

(d/qd,) (c—0as)
= {Ano(pns)+LAps/ (147) J(uas)+7(uss)) )
— {15 (unvy— (uns)) +[ 25/ 147 ]
X L (uas) — (uza) +7 (usn) — (use) 1}
+{Ans(une)+[Aps/ (147) J((uae)+7(use) }

(uap)+7{usp)

(36)

75=q(nsun) +pskps),  (pp)= » (37)
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where py=no+n; is the total bulk density of holes,
r=mns/ns is the fraction of light to heavy holes, and
subscripts 2 and 3 refer to heavy and light holes,
respectively.

2. Hall coefficient.—The expression for the Hall
coefficient [Eq. (29)] is transformed into an effective
mobility formalism in the Appendix [Sec. 2, Eq.
(A-15)7], where we find for the one-carrier case

—Ro?d/q= ﬂb<ﬂb2>db+ns<ﬂ32>ds+Ans<“02>d8: (38)

where (us2) is the bulk “Hall” mobility [Eq. (25) with
m=2], {u:2) is the effective ‘“Hall”’ mobility of surface
carriers [ Eq. (A-16) 7, and (u.?) is the correlation “Hall”
mobility [Eq. (A-17)]. Note that (us? is not the Hall
mobility as normally denoted by ur=Rs, but rather
{us2)=pum(us). We note that except for the correlation
term, Eq. (38) is the same as Eq. (2) used in the two-
region analysis.

For calculational purposes the appropriate bulk term
to subtract off is

-—Rbcrbz/q: nb<ub2>. (39)

Thus

— (d/d.) (Ro®— Ryov?) = An(us’)—mo ((ua?) — (us”)
+Ans<l’~02>-

The terms are analogous to those appearing in the
conductance [Eq. (35)].

The generalization of Eq. (40) to the three-carrier
model leads to

— (d/qds) (Ro*— Ryos?)
= {Any(uns?) —[Aps/ (147) J(uasd)+7(ua))}
— {no((unt®)— (un?)) — [po/ (1+7) ]
XL (uos®y— (ua)) +7 ((uap?) — (uss®) 1}
H{Anund)—[Aps/ (1+7) ]

(40)

X (<ﬂ202>+r<ﬂ302>) }7 (41)
— Ryov*=q{ns{uns’) — [pe/ (14+1)]
X ((uas)+r{use?)}.  (42)

3. Magnetoresistance.—The expression for the mag-
netoresistance [Eq. (32)] is transformed into an
effective mobility formalism in the Appendix [Sec. 3,
Eq. (A-21)], where we find for the one-carrier case

do[ Ap’
—[—p+(RU)Z]=m(#b3>db+%s<ns3>ds+Ans<nc3>ds, (43)
g LoH?

where (u;?) is the bulk “magnetoresistance” mobility
[Eq. (25) with m=3], (u*) is the effective “magneto-
resistance” mobility of surface carriers [Eq. (A-23)],
and (u8) is the correlation ‘“magnetoresistance” mo-
bility [Eq. (A-24)7].

For calculation purposes it is again useful to subtract
a bulk quantity; the appropriate one in this case is

(00/Q)[(Ap/pH?) v+ (Roo)*]= naus’). (44)
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Subtracting Eq. (44) from Eq. (43), we have

%["L%“L (Ro)z]—ob[(%) + (wa)2]l

= An(pd)— 1y ()= (') +Aniud).  (45)

The terms are analogous to those appearing in the
conductance [Eq. (35)]. Generalizing to three carriers,
we find

il a[gjr (Ra)2]—ab[(g;) b+ (Rbtfb)z:l }

= {Any(uns’)+L[Aps/ (147 ] (p2s®)+7(usd))}
—{no((unt®) = (uns’) + Lo/ (147) ]
XL ((uar®)— (125%)) +r((us’) — (us) 1}

F{Anua)F[Apo/ (147) J(uad)+r(uss))},  (46)
oo / Ap
1 Gr) ]
=npuns®)+ o/ (147) J(uar)+russ’)).  (47)

C. Discussion

Equations (36), (41), and (46) give the conductivity,
Hall coefficient, and magnetoresistance in terms of
carrier densities and effective mobilities. There are
several ways that these expressions can be used. One
is to consider the surface carrier densities and effective
mobilities as unknowns and from experimental data to
find values for them. This is possible because of the
generality of the derivation. In writing down Egs. (23)
and (24) we assumed only spherical energy surfaces,
linearity of the currents in carrier density, and small
magnetic fields. Our next assumption was that the
carrier density and mobility deviated from the bulk
values only near the surface [Eq. (A-2)]. The analysis
then followed rigorously to the derivation of Egs. (36),
(41), and (46). Thus, these solutions have general
validity for surface problems. The restriction to
spherical energy surfaces can be removed by general-
izing Egs. (23) and (24) to tensor form.

To illustrate their use in finding values of surface
carrier densities and mobilities from experimental data,
suppose that the bulk and surface are sufficiently # type
so that holes can be neglected. We also neglect the cor-
relation term. Then Egs. (36) and (41) reduce to

(d/qds) (60— 0v) = An(pins)— 15 (uns) = (tns)), (48)

— (d/gds) (Ro*— Ryos?)
= Ans<ﬂnsz>'— nb«,u'nb2>_ </J'm12>) . (49)
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The unknown quantities in these equations are An,
{uns)y {uns®) and ds;. The quantities (¢6—o3p) and
(Ro?>—Ryo?) are determined from experiment; the
surface potential being changed by a suitable means
(gas ambient, field effect, etc.). The bulk quantities are
assumed to be known. If one assumes a relation be-
tween (uns) and {un2), the values of And; and {u,s) can
be uniquely determined from the experimental values
of R and o. The surface potential does not enter such
an analysis. If (u,s) and {(u..?) are considered inde-
pendent, two relations among three quantities are
obtained. When more than one carrier must be con-
sidered, one must assume relationships between carrier
mobilities and relationships between carrier densities
to obtain unique answers.

Another usage of Egs. (36), (41), and (46) is in
connection with theoretical expressions for the surface
quantities. For the Poisson model of the surface, the
densities An; and Aps, are found by solution of Poisson’s
equation and are tabulated?? as functions of #, and
uy, where u=q¢p/kT"; d, is equal to the Debye length
[Eq. (1)]. The effective surface mobilities can in
principle be found by a solution of the Boltzmann
equation subject to appropriate boundary conditions.
Schrieffer has done this for the “conductivity’” mobility
(us), assuming an energy-independent collision time
and spherical energy surfaces.* He obtained curves of
(us) for both the Poisson and the linear potential models
of the space-charge region. Recently, Zemel has ex-
tended Schrieffer’s solution to include galvanomagnetic
effects.!' Zemel finds an explicit expression for {u;?) for
the linear potential model, but the assumption of
constant collision time is not adequate to determine the
“magnetoresistance” mobility, {(u?).

The correlation terms in Egs. (36), (41), and (46)
can also be evaluated from a solution of the Boltzmann
equation with appropriate boundary conditions. While
the correlation contribution should be small, it would
be of interest to prove this rigorously.

Use of theoretical expressions for the carrier densities
and mobilities allows for the calculation of o, R, and
Ap/p as a function of surface potential. The surface
potential can then be eliminated and one has explicit
relations between R, o, and Ap/p. The uniqueness of
these relations is a feature of this method of studying
the conduction process in the space-charge region of a
semiconductor surface. Other methods generally intro-
duce additional unknowns; for example, field-effect
experiments depend upon the number of surface
charges immobilized in surface states, which is usually
not known.

While we have considered only two methods of using
Egs. (36), (41), and (46) in connection with experi-
ments, it is clear that other methods are possible. For
example, in order to study the sensitivity of the ex-

11 T N. Zemel, Bull. Am. Phys, Soc. Ser. II, 3, 105 (1958).
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periment for the determination of surface mobilities
as a function of surface potential, we have calculated
curves of R, o, and Ap/pH? versus u,. We first used
surface mobilities equal to bulk mobilities; then we
used surface mobilities as given by Schrieffer.* The
carrier densities were taken from theory.?® These
curves check out the results of the small-signal analysis
given in Part I, and provide a theoretical basis for
interpreting galvanomagnetic experiments on semi-
conductor surfaces. They are presented and discussed
with the experimental data in the following paper.®

ACKNOWLEDGMENTS

The author wishes to thank his colleague, Dr. Jay N.
Zemel, for many interesting and stimulating discussions
in the field of surface physics. He also wishes to acknowl-
edge several helpful discussions with Dr. Joseph Woods
concerning Hall voltages in inhomogeneous semi-
conductors.

APPENDIX. TRANSFORMATION TO EFFECTIVE
MOBILITY FORMALISM

We now transform the expressions of Egs. (28), (29),
and (32) into an effective mobility formalism. We
consider first the conductivity, to exhibit the general
method and to derive more complete expressions than
those appearing in the literature.

1. Conductivity—Considering one carrier and
dropping unnecessary subscripts, we have from Eq.
(28)

od/q= f () u (2))dz. (A-1)

We write

n(z)=np+An(z), (u(z))=(us+Au), (A-2)

where {(us) is the bulk “conductivity’” mobility [defined
in Eq. (25) with m=1], n is the bulk carrier density,
An(z) and Au(z)) differ from zero only in the space-
charge region. The effective thickness of the space-
charge region is denoted by d,. In general, d; is of the
order of the Debye thickness, Lp, but its specific value
will depend on the model. For example, in the Poisson
field d;=Lp, but in the case of the linear potential
model d; may differ from Lp. The brackets ( ) denote
averages over velocity space. Substituting Eq. (A-2)
into Eq. (A-1), we find

d d
od/g=n{uei+ms f A (@) dzt-(ur) f An(s)dz
0 0

+ f An()Mu(2)ds. (A-3)

Now the three integrands are nonzero only in the space-
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charge region. We therefore define three space averages:

o= (1/d) [ (s (A-4)
An,=(1/d;) f An(z)dz, effective excess

density of surface carriers, (A-5)

Cana = (1/d) [ 806 ()i (A-6)

Substituting Egs. (A-4), (A-5), (A-6) into Eq. (A-3),
we have

od/q=nyus)d+n[ Aw) Inds+ Anus)ds

+[AnAGw) Inds. (A-T)
We define a correlation mobility
(ue)={[AnAGw) Jn—An[AGw) In}/Ane. (A-8)

(uc) represents a spatial correlation between An(z) and
Ap(z); it is zero when the surface and bulk potentials
are equal, but otherwise will not in general be zero.
Since {(u.) depends on the difference of two spatial
averages we would expect it to be small, but direct
evaluation by means of explicit solution of the Boltz-
mann equation is necessary for rigorous justification of
this.
Substituting Eq. (A-8) into Eq. (A-7), we have

od/g=nyus)d+nm[ Mp) Indst An(us)ds
+Anuoydt An A Inds.  (A-9)

We now define the effective surface mobility and

density as
(us)=(un)+LAW) Jny

ns= np+Ans,

(A-10)
(A-11)

where in general we expect (us)<{us). Substituting
Egs. (A-10) and (A-11) into Eq. (A-9), we have

0d/q=n{un)dstnps)dst Anlu)ds,
where d=dy+d;.

Thus. we have expressed the total conductance in
terms of a bulk contribution #{us)ds, a surface con-
tribution nus)ds, and a correlation term Ang u.)d,.
Except for small effects due to the correlation mobility
not being identically zero, the effective surface mo-
bility defined by Eq. (A-10) is defined in the same way
as the effective surface mobility of Schrieffer.* Note
that (us), {ue), %5, and An, all involve a spatial average
as well as a momentum average. The momentum
average is explicitly indicated by the brackets { ),
while the spatial average is indicated by the subscript
sorc.

(A-12)
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2. Hall Coefficient—We now transform Eq. (29)
into an effective-mobility formalism. Considering one
carrier, we have

a
—Ro%d/q= f 7(2)(u?(2))dz. (A-13)

We write

(@)= (A (2), (A-14)
where (up?) is the bulk “Hall” mobility defined by Eq.
(25) with m=2. Substituting Eq. (A-14) into Eq.
(A-13), by an analysis similar to that for conductivity,
we find

—Ro*d/q=ny(ue’)dy+nu)ds+ Anlul)ds, (A-15)
where
(u?)= (ue)+[Au? In, effective surface “Hall”
mobility; (A-16)
(ue’) = {[AnAW?) Jn— Ans[A?) I}/ Ans,
correlation ‘“Hall” mobility; (A-17)
a
(86 Tu= (1/d) [ aGe@Ns,  (A19)
0

Cana(ela=(1/d) [ an(9aGe@)ds. (A-19

3. Magnetoresistance.—Considering one carrier, we
have from Eq. (32)

ad[ﬁ;—% (Ra)z] = j;dn @ (z))dz.  (A-20)

oH

q
We find, by an analysis similar to that for ¢ and R, that

ad[ Ap
—[—_‘F (Ra)z] =ni{us’)dotns(us)ds

g LoH?
+Anutd,, (A-21)
where
W (2)= )+ A% (2)), (A-22)
(usy=(us*)+[A{u®) Jn, effective surface
“magnetoresistance” mobility, (A-23)
(u)y= {[AnAG?) Jn— An[AG®) n}/ Ans,
correlation ‘“magnetoresistance”
mobility; (A-24)
d
(= (/) [ Mss, (429
(1]

CAnAG) o= (1/d.) f An()AGR @)z, (A-26)

and (u;%) is the bulk ‘“magnetoresistance” mobility,
defined by Eq. (25) with m=3.



