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Classical Theory of Transport Phenomena in Dilute Polyatomic Gases*
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A classical theory of transport phenomena in dilute gases of molecules possessing internal degrees of
freedom is presented. It is shown that the existence of inverse collisions is unnecessary for the development
of the theory. First-order formal expressions for the coeKcients of thermal conductivity, shear viscosity,
and bulk viscosity are given. In cases where the molecules make only elastic collisions the expressions
found reduce to the well-known Chapman-Knskog results. The treatment is very similar to the semiclassical
one of Wang Chang and Uhlenbeck, who treated the internal degrees of freedom quantum-mechanically
and could thus use the fact that quantum inverse collisions exist. Their theory reduces to the present one
in the classical limit.

I. INTRODUCTION

CHAPMAN and Enskog (CE)' have presented a~ classical theory of transport phenomena in dilute
gases. They treated only molecules not possessing
internal degrees of freedom, and the extension of the
theory to eliminate this restriction has .not yet been
given. This state of affairs arises from the difhculty
presented by the general nonexistence of "inverse
collisions'" in classical mechanics. Certain special
models have, nevertheless, been treated. ' ' Further-
more, it was possible for Wang Chang and Vhlenbeck
(WCU)s to present a semiclassical theory in which the
internal degrees of freedom were treated quantum-
mechanically. They took advantage of the existence of
inverse collisions as guaranteed by quantum mechanics.

We expect the classical description of transport
phenomena to be valid over a large temperature range
for many molecules, in particular for heavy polyatomic
molecules with nearly classical rotations. It, therefore,
seems worthwhile to establish a classical theory, which
is an extension of the CE theory and at the same time
the classical limit of the WCV theory. That is the
purpose of this paper. The results, first-order expressions
for the coefficients of thermal conductivity, shear
viscosity, and bulk viscosity, are presented in Sec. IV.
They are given in the usual classical collision parameter
formalism, which in principle allows direct application
of the theory, providing we can solve the classical
scattering problem.
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II. CLASSICAL BOLTZMANN EQUATION

We start with the task of determining under various
physical conditions the form of the distribution func-
tion, f(c,Q,r, t) —=f, where c is the absolute linear velocity
of the center of mass of the molecule, 0 represents the
totality of coordinates and momenta about the center
of mass for the classical internal degrees of freedom, r
is the position vector to any point in the gas, and t is
the time. This distribution is dehned in such a way
that fdcdQdr represents the number density of molecules
contained in a velocity phase element dc about c with
internal degrees of freedom in the phase element dQ

about 0 and in a volume element dr about r at a time t.
By the customary arguments we get for the equation
which f obeys for a dilute gas in which only binary
collisions are important:

l9f r)f c)f
+c —+F—=—(f"ft" ffr)gbdb—dqdctdQr, (1)

8$ 81' Bc

where ntF is the total external force on the molecule,
ns being the mass of the molecule; g is the initial relative
speed; b is a collision parameter specifying the magni-
tude of the initial orbital angular momentum; q is an
azimuthal angle about the direction of the initial rela-
tive velocity specifying the direction of the initial
orbital angular momentum; and, as with f, f(cr,Qt, r, t)
is written fr, etc. The subscript 1 refers to the second
molecule in the collision. The double-primed quantities
refer to the initial conditions in the "corresponding
collision'" which restores molecules to the state de-
scribed by f In the colli. sion integral of (1) we are to
think of the double-primed quantities as functions of
the unprimed quantities, obtained in principle from the
classical equations of motion. The coordinates and
momenta of the two-molecule system are to be reckoned
at some time before and after the collision when the
molecular interaction is negligible, at "critical constel-
lations" in the language of Tolman. ' Since classical
inverse collisions are known not to exist in general, we
cannot make the usual symmetry arguments that allow
replacement of the double-primed quantities by ones
which refer to the final conditions in the "direct colli-
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III. EQUILIBRIUM SOLUTION

When there are no external forces, the x-independent
solution for f=—ft'& must satisfy

8—= ~~ (f"f&" ffr) gbd—bd q dcrd0r.

If we now de6ne H, a function of the time only, as

H= I f lnfdcdQ, (3)

it is not possible by simple manipulations of (2) and
(3) to show that dH/dt's&0 in the usual way. ' Instead
we must appeal to the device of the "closed cycle of
corresponding collisions" of Boltzmann, a chain of
molecular collisions which has the property of repeating
itself after a finite number of collisions. When one uses
this concept, it can be shown that dH/dt's&0 and
dH/dt= 0 provided

t m y
' t p E&q
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~
+Eo [,

kTE 2 )
where e is the number density of molecules in the gas;
k is the Boltzmann constant; T is the absolute temper-
ature; C is the peculiar velocity, c—cs, with cs the
streaming velocity of the gas as a whole; and Eo is the
energy corresponding to the internal degrees of freedom.
Along with WCU, we have neglected in fi'& any "sum-
mational invariants" other than the number of mole-
cules, the linear momentum and the total energy. We
might have included the total angular momentum as
well. But although its inclusion may be mathematically
more general, it does not necessarily lead to results of
physical interest. For example, in Pidduck's "rough
sphere" model its inclusion leads to a possible nonzero

' We have also shown, for example, how it is possible to formu-
late the effect of a uniform electric Geld on a gas of polar molecules
LPh. D. dissertation, Northwestern University, 1957 (unpub-
lished)j.

sion, '" which removes molecules from the state de-
scribed by f. We must, therefore, look elsewhere for
the apparatus to express solutions to the transport
problem.

In (1) the classical Liouville theorem for a dynamical
system of two colliding molecules' has been used. In
collision parameter language, this is

g"b"db"d q "dc"dc'"do,"do&"=gbdbd pdcdcidQd~i.

Along with WCU, we have tacitly assumed that the
external forces do not act on the internal degrees of
freedom. '

average rotational energy at equilibrium for each
molecule. But it is more likely experimentally that we
are interested in the equilibrium state in which the
average is zero. Mathematically the treatment of this
latter condition is equivalent to having neglected the
total angular momentum summational invariant in the
first place.

2k2T
)t= [Ag, A@7,

3m

kT
$8(gg —-'@'U), 8(gg —-'(PU)7
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where cg is the internal specific heat at constant volume
per molecule, assumed temperature-independent; c„is
the total specific heat at constant volume per molecule,
-s'k+co, A, 8, and D are unknown scalar functions of
P, e, n, and T, to be determined; U is the unit tensor;
5—= (m/2kT)lC; and e= Eo/kT. These bracket —expres-
sions may be written in the convenient form

where

$M,N7= 2)~MO (N+Nt N"—N—r")dr, —

( m
dr =—-,'(

[ (
i~ e-'dQ

~ exp( —P—Krs —e—e,)
t Z~kT) && )

Xgbdbd&pdcdc, dQdQ, (6)

IV. NEAR-EQUILIBRIUM SOLUTION

Transport Phenomena

We may now proceed exactly along the lines of the
WCU theory, in which the exchange of energy between
the translational and the internal degrees of freedom
takes place with ease. This is because it will not be
possible in general for the "temperature" of the internal
degrees of freedom to become very different from the
"temperature" of the translational degrees of freedom.
We might think of some process like the passage of a
sound wave through the gas, exciting during each cycle
classical rotations and translations for which we con-
sider equilibration to take place fast enough that the
local state of the gas. may be described by a single
temperature.

Thus, we may write in a way that is formally similar
to WCU the general equation of change, the hydro-
dynamic equations, the various cruxes, the linearized
Boltzmann integral equation, the integral conditions,
the Aesuts for the first-order solution, etc. Along with
WCU, we eventually obtain formal bracket expressions
for the thermal conductivity X, the shear viscosity g,
and the bulk viscosity I~:, as follows:
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and Q signi6es a simple product of two scalars, a
scalar product of two vectors, or the trace of the
product tensor, depending on the character of M and E.
In (5) the double-primed quantities are still to be
thought of as functions of the unprimed ones just as
in (1).

At this point we must depart from the WCU treat-
ment in that we shall be unable to make use of a
convenient, but fortunately unnecessary, property of
the bracket expressions which holds under the general
existence of inverse collisions, namely,

[M,N] = [N,M]. (7)

We shall, however, be able to retain the important
result

[M,M] ~&0. (8)

Equation (8) is necessary because, consistent with the
second law of thermodynamics, X, q and ~, which are
of this form, must be non-negative. To understand
these points we digress from the present development
to consider the properties of the bracket expressions.

Using the Liouville theorem and the principle of
conservation of energy, we are permitted to write
from (6)

d7 =d7.

would follow, namely,

[M,N)=-; I'(M+M, M-M-,)

S (N'+N&' N —N i—)dr.

Thus, it is necessary to appeal elsewhere for the proofs
of these relations. We again call upon the closed cycle
of corresponding collisions.

Let us consider erst the proof of (8). Let

M+Mg =—xg,

M'+My'= x2,

M"+My" —=x,.

Then translating along the closed cycle of corresponding
collisions of length s, say, we could write s equal
expressions for [M,M) just as in (11):

f
[M,M) = x2S (x2—xi)dr

—
) x3S(x3—*,)dr

Then (5) may be rewritten xiS (xi x,)dr". —
4

(13)

[M,N) = 2 MS (N+N, N" N, ")dr—", (1—0)

where the unprimed quantities are now thought of as
functions of the double-primed quantities, obtained in
principle from the classical equations of motion. Let
now the final state of the direct collision of Sec. II be
denoted by single-primed quantities. But the single-
primed quantities through the equations of motion are
exactly the same functions of the unprimed ones as the
unprimed quantities are of the double-primed ones.
Hence, (10) may be rewritten

[M1N] = 2 M'S (N'+Nr' N Nz) dr& (—11)—

Here x2 is a function of the variables of x~, x3 of the
variables of x2, etc. But by the connectivity of the
chain we could always express the variables of x;
(i=2, , s) in terms of those of x~, and we could
write by repeated application of (9)

8T—d7' = '''=d7

We may then write, on combining (9') and (13),

(9')

But in all cases,

1
[M,M]= [x,S(x-,—x,)yx, S(x,—x,)+ "

+x&S (x2—*,)]dr. (14)

where the single-primed quantities are thought of as
functions of the unprimed ones. This last manipulation
may be looked upon as either a formal change of
variables or a physical translation along the closed
cycle of corresponding collisions of Sec. III. It should
be noted that we have removed all reference to the
corresponding collision and have now to deal with the
direct collision. By symmetry, (11) may be rewritten

[MP']= (M'+Ma')S(N'+Ns' —N —Ng)dr. (12)

However, there appears to be no way open for us
without the general existence of inverse collisions to
write from (12) the expression from which (7) and (8)

Thus,
x,Ox, =x,ox;, z, )=1, , s.

1
[M)M] =— [(xl x2) S (xl x2) + (x2 x3) S (x2 x3)

2$~
+ . +(x,—x,)S(*,—x,)]dr&0

N/I+N II—
y

in all cases.
Let us consider in a similar way the possible proof

of (7). Let
N+N&=—y&,

N'+N&'—=y2,
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The two brackets [M,Ã] and [X,3I] become, in a
way similar to (14),

f[~,&]=- ' [*2$(y2 —yi)+~3$ (y3—y2)+
s~

+»$ (yi y,)—]dr,
1

[y2$ (+2 ~1)+y8$ (~3 ~2)+ ' ' '

s~
+yi$ (xi—x.,)]dr.

We see that the integrands would not in general be
equal for M~X except for s=2 for which case inverse
collisions exist. If the integrands are not the same, it is
not likely that we could show the integrals to be equal,

although this, of course, constitutes no proof. At any
rate it appears that in what follows we will have to
distinguish between $M,E] and [1V,3E]. This is the
basic difference between the present treatment and
that of WCU.

First approximations to (4) may now be found by
breaking off double power-series expansions in 5'—-',

and e—ca/k after the first few terms. Along with
WCU, we do not justify that such expansions would be
convergent. Then, the uniform center-of-mass motion
and the arbitrary direction of the initial relative
velocity may be integrated out of the formulation. We
obtain finally the transport coefficients in terms of a
binary collision in the relative system as follows:

3k'T (co' 5co 5cii 25
I

—x— F — v+—z
I (xz—l P),

2m Lk' 2k 2k 4

with

(kTI~( p l —'p ( 25 15 l 11
X=4I I I

e 'dD
I

y'»n'~+
I v cos,y—~ ~~&+ (6&) exp( —'Y ——&i—&2)y'bdbd&pdydQid02,) ~ E S 4 )

(kT)*(
' [(l—~')&~+(&~)'] exp( —~'—~i —~2)v'&d&d~dVdflidfl~,)

(kT)*(. p $
2 I'( co)

I
~i'—I&«xp( p' .l —62)p—'bdbdqdydQidQ„

«m) &~ ) ~ & ki

(kT) **( t. ) '
p ( co)

z=4I
I I

~~ e 'dQ
I

'

I
'i IB~~+v"(~i' —e2') yp'(e—i e2) co—sz] exp( —p' —c —f )y'bdbd pdydQ, dQ„L~J qJ )

(t
~ c 'dQ

I
[y4 sin'x —(3y"+y' sin'g)Ae] exp( —y' —ei —c2)y'bdbd pdpdflidfl~,

5( ~kT)& &~ )

1= ( t . l t' ( 3cQ ca) cii—&'—
I
~~+—(~~)' exp( v' ~i ~2)v—'&d&d q dvdfl, de,

c&'(~mkT)-: ( ~ )

Here y'—= (m/4kT)g', x is the scattering angle, the
angle between the initial and final relative velocity
vectors expressed as a function of the initial conditions;
the primes denote quantities after collision which must
be expressed as functions of the initial conditions;
he= ei'+ e2' —ei—e~ ——y' —y"; and the now more appro-
priate subscripts 1 and 2 represent the first and second
molecules, respectively. Some of the expressions may
be put into slightly different but necessarily equivalent
forms by using one or the other of (11) and (12); in
every case we have chosen the more concise form.

By putting y=y' and cg=0,' we obtain the usual

9 It is necessary to set cg=0, since the elastic collisions do not
allow the internal degrees of freedom to take up heat energy.

first approximations to the CE theory; vis. ,

15k
X=

4ns

1 16m
sin'g exp( p')y'bdbdy, —

5 (m-mk T)-:"

This theory may then be regarded as the extension of
the CE theory to treat molecules possessing internal
degrees of freedom. It is also necessarily the classical
limit of the WCU theory. "The emphasis now appears

"See Sec. V.
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to be on the difhculty of the solution of the classical-
mechanical scattering problem for any assumed mo-
lecular model and not on the difficulty of the non-
existence of a general statistical mechanical theory.

Although we have not considered these matters in

detail, we forsee little difficulty in extending the theory
to mixtures so as to describe diffusion phenomena, nor
in going to higher orders of approximation than the first.

GOES DIR ECTLY TO

DOES NOT GO DIRECTLY TO

Qm

V. RELATION BETWEEN THE CLASSICAL AND
QUANTUM TRANSPORT THEORIES

As in the usual generalization of the classical CE
results to those of quantum mechanics, in our formula-
tion we formally replace bdbdq by 0;, ~k(g, x, p)de and
the integrals over the initial conditions by sums over
the variety of now possible final states as well as over
the initial states. 0,, qk(g, y, p) is the differential scat-
tering cross section for a transition in which the mole-
cules are initially in internal states i and j and end up
finally in internal states k and l, when the initial
relative speed is g, the final azimuthal angle is q, and
the scattering angle is x. The symbol i represents the
totality of quantum numbers required for the specifi-
cation of the initial internal state of the first molecule,

j for the initial internal state of the second molecule,
etc. ; Cko is the element of solid angle about the direction
in which the scattering occurs.

There remains one significant difference between our
formally generalized results and those of WCU: inverse
collisions will always exist in the quantum-mechanical
formalism. Thus, we are allowed to perform the mathe-
matical manipulations that give us (7). Although we

have shown (7) to be unnecessary, it nevertheless
proves convenient in expressing certain of the final
results of WCU in more symmetrical forms. WCU
could have calculated the bracket expressions just as
we have, so that the results would have been formally
the same. Since it essentially makes no difference
which of the number of equivalent ways WCU use to
calculate the bracket expressions, we may still regard
the formally generalized theory as that of WCU.

There might appear to be yet some confusion, if we

enquire into the nature of the quantum inverse collisions
in the classical limit. That classical inverse collisions
do not exist in general is well-known. A simple example
of this which is often considered is the collision of a
smooth rigid sphere with a rigid wedge of equal mass.
The collision is shown schematically in Fig. 1. The

DOES GO DIRECTLY TO

Fzc. 1. Inverse collisions in classical and quantum mechanics.
A~8 represents a direct collision; C~D represents a classical
inverse collision which cannot be directly achieved;. E~P repre-
sents a quantum inverse collision which can be directly achieved.

bodies collide along the line connecting their centers
of mass, and we shall assume them not to be rotating.
A represents the initial state in which the wedge is at
rest and the sphere is moving. 8 represents the final
state in which the sphere is at rest and the wedge is
moving. It is, of course, not possible to achieve the
inverse collision which C and D represent.

If this is so, in what sense is it possible that quantum,
or more precisely, semiclassical inverse collisions exist?
For a quantum description of the collisions we would
have to give up some of the precise knowledge of the
system inherent in the classical description. Since we
know exactly the spin angular momenta of both bodies,
we must give up entirely any knowledge of the angular
orientations of the bodies. Then, if the orientations are
irrelevant, we have little trouble in constructing an
inverse collision as shown in E and F. It is in this
sense that inverse collisions for classical molecules
exist in quantum mechanics.
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