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The binary collision expansion for the density matrix of a system of X particles with pair interaction
was derived by Huang, Lee, . and Yang by expansion in the interaction and subsequent summation over
terms represented by certain classes of diagrams. A simpler derivation has been obtained by the use of the
1V(X—1)/2 integral equations which relate the density matrix of the system to the density matrices of
systems in which only one pair of particles interacts. Successive substitution of the integral equations
into each other yields an expansion which by a trivial additional step becomes the binary collision expansion.
Qur derivation shows also that the binary collision expansion is the Laplace inverse of the coordinate
representation of the expansion in terms of scattering operators.

The integral equations used here are the usual
Green's function or propagator equations, which relate
the principal solutions of two Bloch equations with
diGerent potentials. They become especially transparent
if the coordinate representation of the density matrix
is interpreted formally as the transition probability
density for the Brownian movement of a point in
configuration space in the presence of absorption. ' The
integral equations then result from the simple counting
arguments used in the theory of Markoff processes. '

' "N a paper on the many-body problem in quantum
~ - mechanics and quantum statistical mechanics, ' Lee
and Yang have presented a number of important results
obtained by a "binary collision method'" applicable to
systems whose interaction is the sum of pair potentials.
This method consists essentially in the summation of
certain classes of terms in the expansion of the density
matrix exp( —H/kT) obtained by treating the total
interaction energy of the system as a perturbation.
The terms of the resulting expansion are integrals of
products containing the coordinate representations of
the density matrices of the one- and two-particle system
and a matrix X,- which is the product of a pair potential
and the density matrix of the two-particle system with
this pair potential. Since the interaction potential
occurs only in this combination, the terms of the
binary collision series are integrable even in the case
of infinite repulsive potentials.

Some of the results obtained by this method have
since been rederived by Lee, Huang, and Yang by a
diBerent method, ' but the binary collision method is
considered by these authors to be still of importance for
the further development of the theory for the reasons
stated in reference 3, p. 1142. It may, therefore, be of
interest to have a more elementary and direct derivation
of the binary collision expansion. This derivation is
obtained, by successive substitutions, from the integral
equations which connect the coordinate representation
of the density matrix of a system with pair interactions
with the density matrices of systems in which only one
pair of particles interacts. Our derivation shows also
that the binary collision expansion is the Laplace
inverse of the expansion in two-body scattering oper-
ators. '

We consider a system of E point particles with
interaction energy U(q), where q denotes a point in the
3N-dimensional configuration space. We define the
function G(qs, ts~q, t) as the principal solution of the
Bloch equation

r)G/r)t =BCG,— (1)
where X is the Hamiltonian of the system. The function
G is understood to satisfy boundary conditions (e.g. ,
vanishing on the walls of the container) or periodicity
conditions, and the "initial" condition

G(qo to
I q, to) =~(q—qo). (2)

Since, for the problems of interest, X does not depend
on t, G does not depend on t and to separately but only
on t —to.

The partition function Q& of the system at tempera-
ture lis determined by

Qsr= "G(qg~q, (&T) ')&q,

for Boltzmann statistics, where dq is the volume
element in configuration space, and by

1
Qsr —— ~P G(q, Oi Pq, (kT)-')dq, (4)g!J
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for Bose statistics, where I'q is the configuration point
obtained from q by the permutation P of all particle
numbers and the sum extends over all permutations.

It should be emphasized that even if G were known
exactly, the integration required in Eq. (3), for instance,
is at least as difFicult to perform as the corresponding
integration in the classical case if the particles have
hard cores, since the integrand vanishes when two
particles overlap. Individual energy levels, however,
such as the ground-state energy, could be obtained
without integration over all q space from G(qp, tp~q, l)
for any pair of points qo, q, for which the eigenfunctions
belonging to the desired energy level do not vanish.

If the principal solutions G and G of the Bloch
equation with interaction energies V and V, respec-
tively (and the same boundary or periodicity condition),
exist, they are related by the integral equations

Xt V(q') —V.(q')3G(q', ~'lq, ~), (5)

r
G(qp fp[ q/) =G (qp tp [q f) — dl dq G(qp fp[ q, t )J

In this notation, Eqs. (5) and (Sa) are written as

G=G —(G (V—V ),G),

G =G —(G(V—V ),G.).
If, specially, V is the sum of pair potentials,

V=gp Vp,

(5')

(Sa')

G=G —{G Q Vp,G}.
P, Pga

Another special case of Eq. (6) is the well-known
equation

G=Gp —(GpV, G), (9)

where Go is the principal solution of the Bloch equation
for noninteracting particles; and of course one also has

G~=Gp —(GpV, G ),
and the reverse equations corresponding to (5a).

From Eq. (8) it follows Lwith V—= V(qp)) that)

(10)

VG=Q V G=Q V G —Q {V G Vp, G), (11)

where the pairs are numbered by small Greek subscripts,
and the sum extends over all pairs, Eq. (5) yields
1V($—1)/2 integral equations for G:f

)&)V(q') —V (q')jG (q', ~'Iq, ~). (Sa) d

Either of these integral equations determines G
uniquely. ~ Boundary, periodicity, and symmetry con-
ditions imposed on G, in both qo and q, are therefore
also satisfied by G in both qo and q.

It is convenient to introduce an abbreviated notation
for a type of integral which occurs frequently in the fol-
lowing calculations. We define the symbol (A,B)pp, &p:p, &

by

—(Gp V,G}= —Q (Gp V.,G }

+ 2 (Go ( V-G-Vp G) ) (12)

With the notation

u . =G Gp= {GpV,G ) = {G V,Gp}, (13)

one obtains, using Eqs. (9) and (10),

{A,B)pp, &p;p, &= d~'J dq'A(qp, tpIq', i')B(q', t'I q, t), (6)
~~0

and we shall omit the subscripts when there is no
danger of confusion. The operation {A,B}is associative,
so that inner parentheses can be omitted:

{{A,B),C) = {A,(B,C})=—(A,B,C).

~ If Eq. (5a) had also a solution G', we would have Lin the
notation explained in Eqs. {6)and {7)j

G'=G —{G'(U—U ), G 1,
and

(G'(V —V ),G}= (G (U —U ), G}—(G'(V —V ), G (V—V ), G},
and from Eq. (5),
(G'(V —V ), G}=fG'(V —U ), G }—{G'(V—V.), G.(V—V.), G},
01

{G (V—U ), G}={G'(V—V ), G };
and, therefore,

G—G =G' —G.
Any solution of (Sa) is thus equal to any solution of (5), so that
either equation can have only one solution.

G—Gp ——P u —P (u Vp,G).
a 0&P

Successive substitution of Eq. (8) into this equation
results in the binary collision expansion

G=Gp+P u —P (u Vp, Gp)
Pga

+ E (u-Vp(GpV. ,G ))— . . (»)
P~a, v~P

In the notation of Huang, Lee, and Yang, our func-
tions are given by

u (q', t'I q, t)

f The symbols Z, Z, etc. , are used for the sum over
~&P «P v&P

all indices, excluding the values O. =P, y=b. Summation over P
only, vrith P/o. , is indicated by Z

P,P&a
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where o.~, o.2 and n~', n2' stand for the coordinates of the
two members of the pair n. We have (with iir'/2m=1)

have, taking s= —S
Gor. ( E)-= —(E—E)—' (23)

or

t' 8
+P Voto —V. IG.=0,

&Bto

f 8
+P V'oro )e = U G,

L Bto
(17')

where E is the operator of kinetic energy,

Gr, (—E)=—Q(E—E) ' (24)

V.G.r, ( E)=— t (E—E) —', (25)

V Gr.( E)=——t 0 (E—E) ' (26)

where Vo acts on the components of qo, so that

V.(q')G. (q', t'i q, t)

and our Eqs. (20), (21), and (22) become, after multipli-
cation by (E E) from—the right,

0=1+(E—E) 'Q t 0, (27)

in the notation of Huang, Lee, and Yang. This shows
that the series (14) is identical with the binary collision
expansion developed by these authors.

To show the equivalence of Eqs. (8) and (9) with the
basic equations of Watson's formalism [Kqs. (26) of
reference 4j, we define the Laplace transform of our
functions by

~" e "A(q—o) to~q, to+t)dt—=(qo~&i(p) ~q). (19)
~~0

Since all our functions depend only on 3—)0, the Laplace
transform thus dehned does not depend on to. The
Laplace transform of (A,B) is then the coordinate
representation of the operator product A I,BI,. Equation
(9) becomes

Gr, =Gor. Gor, Q V—Gr„ (20)

and Eqs. (8) and (10) after multiplication by V (jo)
become

t.n.=t.+t.(E—Z)-' P tpn, ,
p, PA+

=V+V (E—~) 't

(28)

(29)

or, with the notation introduced by Eqs. (23), (24),
and (25)P

Gr, (—E)=—fl(E—~)—'= (E—If)-'

+Q (E—E) 't (E—E') '

(31)+ Q (E K) 't (E—E—) 'tp(E —E) '

+ Q (E—E) 't (E—E) 'tp(E —E) 't (E—E) '

Taking the Laplace transform of Eq. (15) [with e
substituted from Eq. (13)) yields

Gr. =Gor. Z Gor. V~G~r, + P Gor. VaG~r. UpGpi,
a p&a

Gor, U~G, r, VpGpr, V,G,r+ , (30)
p&~ v&p

V Gr, = V G r, (1—Q UpGi),
p, p&a

(21)

V~G~r, = V Gor. (1—V~G~r), (22)

where V„ is the operator whose coordinate represen-
tation is V (qo)5(q —go). ln Watson's notation we

Comparison with Kq. (27) of reference 4 shows that
the binary collision expansion is the Laplace inverse of
the coordinate representation of the scattering operator
expansion multiplied from the right by —(E—E) '.


