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Assuming that the nuclear interactions between Z n and Z+p are charge-symmetric, the eGect of the
Coulomb potential in the Z+p system on the binding energy and wave function of a possible bound state of
the Z p system is calculated. Using a phenomenological square-well potential the binding energies, e+ and
e, of the Z p and Z n systems are determined. In particular, it is found that the limiting condition, e+ —+ 0,
implies that e is 0.38, 0.47, 0.62 Mev when the square-well range parameter, b, equals 1.4X 10 '3, 1.0&(10 ',
0.6)&10 "cm respectively. If the Z n interaction determines e to lie in the small but Qnite region 0 &6 (~,
then the Z n system is bound and the Z+p system unbound. Conversely, if Z+p is bound, then e &e . A
brief discussion of the experimental situation with regard to these hyperon compounds is given.

I. INTRODUCTION

A STUDY of the interactions of hyperons with
nucleons is of fundamental importance in under-

standing the nature of these new baryons. Since the
hyperons have such short lifetimes, 10 " sec, the
accumulation of data on the scattering of hyperons by
nucleons is necessarily an exceedingly slow process. The
existence and study of bound states of A. hyperons with
nucleons has furnished a considerable amount of in-
formation about the A.'-nucleon interaction. It is clear
that a similar investigation of Z-nucleon bound sys-
tems, if they exist, would be of interest.

The classification scheme of Gell-Mann' and Nishi-
jima' implies that the only possible "stable" compounds
of Z hyperons are a Z+ hyperon with one or more
protons and a Z hyperon with one or more neutrons. '
A compound containing for example a Z+ hyperon and
a neutron would disintegrate rapidly, 10 " sec, via
the exothermic reaction 2++st —+As+P. Several au-
thors4' have discussed the binding energies of the Z e
and Z+p systems from the field-thoretic point of view.
Making several plausible assumptions and approxima-
tions, they conclude that the 5 e system and possibly
also the Z+p system may be bound with very small

binding energies.
Experimentally, one event' has been found which was

interpreted as the decay from rest of a Z+p compound.
%bile profile' measurements and energy-momentum
balance considerations agree very well with this in-

terpretation, there still remains a probability of the
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order of 2/~ that this event was produced by a It.
meson rather than by a Z+P compound. r

A Z e compound can only decay via the reaction

Z st —+rt+rt+tr +(117—e ) Mev.

By analogy to the decay characteristics of the lightest
A' hyperfragments, a Z+p compound is expected to de-

cay predominantly via the emission of a x+ or +' meson,
that is,

Z+p —+ p+n+vr++ (110—e~) Mev (2)

(3)Z+p ~ p+p+sr'+(116 —e~) Mev.

The event reported in reference 6 is of type (2). From
the experimental point of view, reaction (2) provides
the most readily identi6able Z-compound event. Among
the known particles, only a E meson or a Z+p com-
pound can give rise to an event in which a slowly
moving particle disintegrates into a proton and an
energetic sr+ meson ( 100 Mev). Hence, if such an
event were seen in a situation wherein the E meson
hypothesis can be ruled out a priori, the existence of a
Z+p bound state would be conclusively demonstrated.
Such an unambiguous possible source of Z+p com-

pounds does exist in the following sequence of events.
A E meson comes to rest, is captured inside a nucleus
and produces a Z+ hyperon. The Z+ hyperon then
picks up a proton on the way out of the nucleus to
form a Z+p compound. Perhaps about 1000 Z+ hy-
perons produced by E mesons captured at rest in
nuclear emulsion have been examined by the world' s
emulsion groups without the detection of a Z+p com-
pound via reaction (2). This indicates that if the Z+p
compound is stable, the probability' of its formation
and subsequent decay via reaction (2) is much less
than 1%

Reaction (3) cannot easily be distinguished from
some types of nonmesonic decay or of x' mesonic decay

'W. F. Fry, Proceedings of the Padtta Venice Conf-erence on
Elementary Particles, 1957 (Suppl. Nuovo cimento, to be pub-
lished).' More precisely, it is the probability of decay via reaction (2)
into a proton that has su%cient energy to make a visible track
that is the relevant quantity. In nuclear emulsion this corresponds
to a proton kinetic energy greater than about 0.3 Mev.
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of a A' hyperfragment with Z=2. Reaction (1) cannot
easily be distinguished from the decay of an ordinary

hyperon into one neutron and a m meson, except
in those special cases in which the x meson is followed
to the end of its range so that its energy can be deter-
mined with great precision. An additional complication
in the case of reaction (1) is that analogously to the
behavior of an ordinary Z hyperon, a Z m compound
that comes to rest will be absorbed by the nucleus that
captures it into an atomic orbit long before it has a
chance to decay via reaction (1).Hence the method of
measuring the x energy with great precision to dis-
tinguish a Z e compound from a 2 hyperon can only
be applied to decays in Right, but in such cases there
is a considerable uncertainty in the 2 or 2 m velocity
at the point of decay which will in most cases render
the separation of 2 e decays from Z decays impossible.

This discussicn illustrates that in order to detect a
z rl, compound, or a Z+p compound that decays via
reaction (3), a great deal of painstaking measurement
on the track of the suspect particle must be carried out
in order to determine its charge and mass. Swami' has
made a start in this direction on a limited number of
events superficially classified as Z hyperons, with in-
conclusive results as to the existence of a 2 e compound.

A priori, there is a finite probability that the Z+p
system be unbound and the Z e system be bound.
Consequently, a careful comparison of these two sys-
tems from a phenomenological point of view seems
warranted. H charge symmetry is assumed for the
Z-hyperon —nucleon interaction, as will be done in this
note, the wave functions of the Z+p and Z I systems
differ only through the presence of a repulsive Coulomb
potential in the Z+p system. The purpose of this note
is to determine theoretically the effect of this repulsive
Coulomb potential on the binding energy and wave
function of the Z+p system. In particular, the extent of
the energy region in which the Z e system is hound
and the Z+p system is unbound is determined.

Section II describes the mathematical problem and
the physical approximations made. Section III contains
the solution to the problem in the limit that the Z+p

binding energy approaches zero. Section IV gives the
Z+p wave function and binding energy for a particu-
larly simple special case that corresponds to the Z+p

binding energy having the value 0.014 Mev. Section V
contains some further discussion and conclusions.

II. MATHEMATICAL PROBLEM

We assume that the Z-nucleon interaction can be
represented by an attractive, static, central potential,
which is the same for Z ri as for Z+p except for the
Coulomb potential. For definiteness the Z e potential,

M. S. Swami, doctoral dissertation, University of wisconsin,
1957 (unpublished).

V (r), is taken to be a square well:

V (r)= —Vp, r(b
r& b.

The parameters Vo and b are related to the binding
energy e of the lowest state of the Z rl, system by the
well-known formula"

where
cote b= —p,

V~(r) = —Vp+e'/b, r&b

= e'/r, r&b.
(6)

To avoid the unphysical singularity of the Coulomb
potential at the origin, and to approxima, te crudely the
effect of the smeared-out charge distributions of the
proton and Z+ hyperon, the 1/r increase of the Coulomb
potential has been cut off at the boundary of the square
well. With these assumptions the problem is to deter-
mine the relationship between e+, the binding energy
of the lowest state of the 2+p system, and e for various
values of b. Of particular interest is the value of e in
the limit e+ —+0. Analogous to the nucleon-nucleon
interaction, b is expected to be small i0 ", and Vp

large, ))e'/b. As a result the major contribution of the
Coulomb potential arises from its effect on the asymp-
totic form of the Z+p wave function in the region r& b

Hence the differences between e+ and c should be in-
sensitive to the precise method of rounding off the
Coulomb potential in the region r(b.

To determine the dependence of e+ on t/'0 and b, one
must solve the Schrodinger equation

—(&'/2~+) ~V +V+(r)0 = —e+0, (7)

where V+(r) is given by Eq. (6), and @+=Mr+M„/
(Mx++M~)." before proceeding in this manner, we
can obtain an order of magnitude estimate of e —e+
using first-order perturbation theory. The normalized
ground-state 2 e wave function is simply"

(1 p 2p
riP (r) =

)
—

) (
—

) slnKr,
L 4pr L 1+pb)

(s $ f1/ f 2y'
=I —

~ 1

—
IIEE) I 4pr) E1+yb)

See, for example, R. G. Sachs, Nuclear Theory (Addison-
Wesley Publishing Company, Cambridge, 1953), Chap. 3."Hereafter we shall not distinguish between p+ and p, p =@+
=524.49 Mev=p, . Similarly IC '~E+'=E'. This simpli6cation
introduces s negligible error since y+ and p differ by 0.34%%up.

~ '=E '—y '-, y '= (2p /h')e,

E '= (2ij, /P)Vp, y =Mr, M„/(M-g +M„)-.

For the Z+p system we assume a potential V+(r) of
the form
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V+(r) V(—r) =e'/b, r & b

=e'/r, r&b,

For r&b,

(The subscript (—) has been suppressed on the symbols where

y and «.) Then the first-order change in energy due to
the additional potential

K'= (2tt/5') Vp, y~'= (2tt/ttt') e+,

1/D=tte'/b'=1. 940X10"cm '.

Cy slnK+t
lt, (r) = (14)

1S where
«+' =K' yp—' 2/—Db,

DE=4m P '(r)[V+(r) —V (r)]r'dr

2y (e') b sin2«b

1+yb (b) 2 4«

and C~ is a normalization constant. The logarithmic
derivative of lt+(r) at r =b&, i e., the limit as r approaches
b from within, is simply

dr r=b(2y
+—

l
—

l
e'&be'[ —Ei(—2yb)], (10)

K l1+&b) In the external region, let

=a'+ cotz+b ——.
b

(16)

where —Ei(—x) is the exponential integral function. "
In the energy region e near zero, «b=rr/2, and yb and E t (13)
y/«are small compared to 1. Then

0+(r) =e ""g(r). (17)

DE—ye'+ 2ye'[ —Ei(—2yb)]. (11)

If we equate DE of Eq. (11) to e, and solve for the
value of p or e that satisfies the resulting equation, we

obtain the value of the Z e binding energy, e, such
that e+ has the limiting value of zero binding energy.
For the values b=1.4X&0 ", &.0X10 ", and 0.6X&0
cm, this procedure yields e =0.43, 0.54, and 0.76 Mev
respectively. As will be seen in the next section, these
perturbation theory results di6er from the exact results
for e —e+ in the limit e+ —+ 0 by &20%.

III EXACT SOLUTION IN THE LIMIT a+

The solution of the Schrodinger equation for the Z+p

system is somewhat different from the standard Cou-
lomb field problems discussed in books on elementary
quantum mechanics. In this case we wish to determine
the lowest energy eigenvalue for a bound state, where

the total potential consists of the superposition of an
attractive short-range potential and a repulsive, long-

range Coulomb potential. Since the Coulomb potential
drastically modifies the form of the wave function in
the external region, r&b, the matching of the loga-
rithmic derivative of the internal and external solutions
at the point r= b introduces complications.

For an /=0, bound state solution, Eq. (7) can be
written in the form

d'g dg
p—+ (2—p)—1+ g=0,

dp dp y+D
(18)

where p=2y+r. Equation (18) is the second-order dif-
ferential equation for the confluent hypergeometric
function, "with the particular parameters c=2, and

a =1+(1/y+.D). (19)

Since we seek a bound-state solution, we require the
asymptotic condition that

(20)

where
0+(r) =ere '+"Us(al 2l p), (21)

etar —e oo

~ N~ i-e
p

Us(al2lp)= ~ e "I' 'l 1+—
l

drt. (22)
r(a) &s ( p&

Asymptotically,

e +"Ur( sl2al ) —p+ e" (2y+r) ~e &+"-+0. (23)

Morse and Feshbach" discuss at length the properties
of the solutions of Eq. (18). It is easily seen from their
discussion that the unique solution of Eq. (18) that
satisfies the boundary condition (20) is

e r+"U&(a
l
2

l p) ~ (2y+r) 'e+r+", (24)

The other independent solution of Eq. (18), Ui(a l
2

l p),
2

(ry,)"yl Ks———&,s l(~,)=0, r&b, (12)
Db )

t' 2
(r4'+)"—

l

—+v+' l (tnt'+) =0
&Dr ] which violates the boundary condition of Eq. (20).

"See for example P. Morse and H. Feshbach, Methods of
'2 Jahnke-Emde, Tables of Functions (Dover Publications, New Theoretical Physics (McGraw-Hill Book Company, Inc. , New

York, 1945), p. 1. York, 1953), Chap. 5, p. 551.
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The problem that remains is to match the loga-
rithmic derivatives of iP+ in the two regions r&b and
r &b at the point r =b. From Eq. (21) it follows that

TABLE I. Values of the binding energy 4, and j = (2ps /A')4,
of the Z n system, for several values of the square-well range
parameter b, in the limit that the binding energy, e+, of the Z p
system is zero.

1 diP+ ( 1 dUs)= —~++I—
dr r b&=(Us dr ) r b)=

(25)

The dependence of y+ or e+ on the parameters Vo and b

is contained implicitly in the equation obtained by
equating the right-hand sides of Eqs. (25) and (16).
The evaluation. of (dUs/dr)/Us at r= b& is not simple.
It has been carried out only in the limit as e+, p+ ~ 0.
This limiting value for e+ is the most interesting, since
it determines the relationship between t/0 and b such
that the Z+p compound has zero binding energy. By
applying this same relationship between t/'0 and b, for
various values of b, to the Z e system, the correspond-
ing, nonvanishing binding energies of the Z e system
are obtained. An outline of the evaluation of the loga-
rithmic derivative of U2 is given in Appendix A. The
result is, in the limit y+~0,

b(10» cm)

1.40
1.00
0.60

(10» cm ')

1.015
1.122
1.292

(Mev)

0.384
0.468
0.622

Equation (33) can be numerically solved for p as a
function of b. The results are given in Table I. The
values of b were chosen to cover an a priori reasonable
set of values for the range of the Z e effective potential.
The exact calculation reduces the difference between
e and e+ as compared to the first-order perturbation
result. If the 2 m interaction can bind the Z e system
with a binding energy less than the values of e listed
in Table I for a given value of b, then the Z+p system
will be unbound. We postpone further discussion of
these results until Sec. V.

where

Then

1 diP4. 1 2 Ii

/+dr r» b DIs
00 dg

e
—( M+2b/D u)

f e (u+2bfDu)ds—4

(26)

(27)

(28)

IV. ILLUSTRATIVE EXAMPLE OF X+P BOUND
STATE WAVE FUNCTION

In this section we consider the solution of Eq. (18),
for the Z+p wave function, in a particularly simple
special case; namely for a=2, or (1/y+D)=1. This
choice of y+ corresponds to the Z+p system being bound
with a binding energy, &+=0.014 Mev. Since the pa-
rameter a is an integer, the general solution of Eq. (18)
can be found by quadratures. Again letting

1 df+ 1 de.

i/4- dr r b( I(4.=dr r b)= (29) Eq. (18) with @=2 becomes

Pg" (P)+ (2—P)g'(P) —2g =o. (34)
implies that One solution of Eq. (34) is

K~ CO tK+b = —(2/D) (Ii/Is) . (30)

Since (2b/D)«1 for b 10 "cm, the integrals Ii and
I2 can be evaluated by expanding I1 and I2 as power
series in 2b/D, which we shall call b.'4 Keeping all
terms of lower order than P, we obtain

g ()= '= "+'. (35)

e ~

gs(p) =Ae& dp=A +—ei' dp . (36)

The second independent solution is then easily found
to be

Ii b —(0.5772+in/5) (1+6)=2
I2 1—8+25 (0.5772+in+8)

Since we have assumed that Vo and b are the same for
the Z+P and Z rb systems, it is easy to expand A+ cotK+b
in terms of y, b, and D, ignoring terms of order
(y /K )'«1. In the limit y+ + 0, we obtain

(37)4+= e "'gs(p)

Using this solution in the external region, one can
easily evaluate L(de+/dr)P+$ at r =b. Equating internal
and external logarithmic derivatives, one obtains a
relationship between Vo and b for this particular
choice of p+(=1/D =1.94X 10" cm '), namely

K+ cotK+b——y (1+sty b) —1/D. (32)

Hence, equating Eqs. (32) and (30),

(31)
The solution that satisfies the boundary condition
i'. -+ 0 at infinity, is

1 2 (Irq—v—(1+le—b) ——=—
(
—I.

D DPI ) (33)
1 1 1
+K+ cotK+b = +v+, (38)

b b [1+be' Ei(—b) I

"See for example, %. Grobner and N. Hofreiter, Integraltufel
I'Springer-Verlag, Berlin, 1950), Part II, p. 166. where b= 2b/D
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b (10» cm)

1.4
1.0
0.6

(Mev)

0.415
0.500
0.656

—e+ (Mev)

0.401
0.486
0.642

Assuming charge symmetry, and neglecting terms
y+b and (y '/a '), the left-hand side of Eq. (38) can

be expressed in terms of y and b, and one obtains

TABLE II. Values of the Z n binding energy e, for several
values of the square-well range parameter b, in the special case
m+=0.014 Mev.

field theoretic calculations fall approximately in this
region, 4' the possibility that only the Z n is bound
cannot be overlooked. On the other hand, if con6rma-
tion is forthcoming for the existence of a bound Z+p
compound, '~ then the values of e listed in Table I
can be used as lower bounds to the Z e binding energy.

Another parameter with which one can estimate the
size of the region in which only Z n is bound is the value
of the depth of the potential, Vo. That is, one can ask
the question, by what percentage must Vo be increased,
for each value of b, so as to make e increase from 0 to
e ? From Eq. (5) it is easy to show that

2 r e'Ei( —8), (1+-„b)=—
l

D (1+be'LEi( —b)j) (39) 8
(Eb)'=(-', pr)' 1+—(y b),

~2
(43)

Table II lists the values of e obtained from the solution
of Eq. (39) for several values of the square-well range
parameter b.

As seen from a comparison of Table II and Table I,
increased by 0.032 Mev as e+ increased from 0 to

0.014 Mev.
It is instructive to compare the asymptotic properties

of the wave function f+ of Eq. (37) with that of |P .
Whereas f has the simple form

f+ has the form

P =Ce ~ "/r, r&b, - (4o)

1 1
f& ~ A +ln (3—562y+r), . b (r&(

27+r 27+
(41)

1
P+~ Ae p'+"—,r))

(»+r)' 2m+
(42)

Special solutions of the type given by Eq. (37) for
the Z+p bound state wave function may be of use in
developing theories for the probability of Z+p forma-
tion and for the probability of Z+'p decaying ~ia reaction
(2) into a proton that has sufficient energy to make a
visible track in nuclear emulsion. '

V. DISCUSSION AND CONCLUSION

We have seen that if the Z n interaction binds the
Z e system with a binding energy e less than the
values e listed in Table I, then the Z+p system will be
unbound. The values of e increase as the choice of the
range parameter b of the attractive Z e potential de-
creases. Clearly our choice of a square-well potential is
only a device to simplify the calculations, but the order
of magnitude of the e6ect of the Coulomb potential
should not be altered significantly by a more compli-
cated and more realistic choice for the Z e potential,
provided its effective range of interaction lies in the
region (0.6—1.4)X10 "cm. The region in which Z n is
bound and Z+p is unbound is quite small, but since the
most plausible estimates of the Z e binding energy from

neglecting terms (y b)'&(1. It then follows that the
percentage change in Vo necessary to increase e from
0 to e is 12, 10, and 7% for b=1.4X10 ", 1.0X10 ",
and 0.6X10 " cm respectively. This result again illus-
trates the small but non-negligible region involved. It
is hoped that a continued and rigorous search for Z+p
and Z e compounds will resolve these questions in the
near future.
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APPENDIX A

Evaluation of Dd Up/dr)/Up]r =p) in the limit y+ ~ 0.

e p
U(al2lt)= „' e u 'l 1+-

l

r(a) &p

where a = 1+(1/y+D), p = 2y+r =2r/D(a 1), and r & b. —
Equivalently,

cise r D) goo

U( l2l»+)=
I'(a —1) &2r) "p

r ) I—a

xl 1+ du. (44)
(Du/2r) (a—1)&

As y+ —+0, (a—1)=1/7+D~ ~. Hence, for

Du/2r &g&0,

r ) 1—a

l
1+ '"'o" as a —& ~ (45)—

(Du/2r) (a—1)&

Choose a parameter X equal to Drt(a 1)/2r, such that-
1&&iV&&(D/2r) (a—1). (46)
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dU2 1
(aI 2

I 2~,r):—-U,
dr y+-+0( rase D)—

U2(a I
2

I »+r)
(F(a—1) 2rJ

etiam y poo dN
&~+2—«I» ) —(49)

r(a —1) r" 0

2r
exp —

I
m+

I
dej p E DQ)

( ~ 2«/D y «1 —D «2 & «4p Tile result. of Eq. (26) follows directly, since the quo-
tient of Eqs. (49) and (48) yields

Then by breaking up Jo in Eq. (44) into two parts, In an analogous way, it is easy to show that
Jo" and J'„",one can show that

Since in the limit u —+ ~, & can be made arbitrarily
small without violating Eq. (46), Eq. (47) implies that

g2QT D ~co

U (a I
2

I
2y r) —X e & "+'"'D")du (48.)

~+ 'r(a —1) 2r

i 1 dU2) 1 2 I1

iU2 dr ) «=~) '+ ' b DI2

where Ii and I2 are defined in Eqs. (27) and (28).

(50)
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Enumeration of the True Observables in Gauge-Invariant Theories
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By making use oi i@variance arguments, we shall show that the total number of true observables which can
serve as "coordinates" in a gauge-invariant theory is Q —2n where S is the number of field variables and n
is the number of arbitrary functions needed to specify an element of the gauge group.

INTRODVCTION
" 'T has long been known that, in electrodynamics, the
i- Euler-I. agrange equations of motion for the four-
potentials are not of the Cauchy-Kowalewsky type. As a
consequence, only certain functionals of the four-po-
tentials have the property that their values at any time
are uniquely determined by the equations of motion.
Indeed, only the two independent components of the
transverse part of the four-potentials and functionals
thereof have this latter property. The same situation
obtains in the general theory of relativity where, again,
only two functionals of the ten g„„have the above-
mentioned property. In what follows, we shall refer to
dynamic variables whose motion is uniquely determined
by the equations of motion as "true" observables. A
unique state of the system is then specified by giving, at
some instant of time, values of the true observables and
their erst time derivatives. In a sense, these true
observables are the physically meaningful "coordinates"
of the system.

The existence of fewer independent true observables
than field variables is due to the particular invariance
properties of the theory. In both electrodynamics and
general relativity, we have invariance under what we
call a gauge group, that is, a group whose elements are
specified by one or more arbitrary space-time functions.

In electrodynamics, the gauge group is just that group
which is usually referred to as the gauge group and re-
quires one arbitrary function to specify an element. In
general relativity, the gauge group is that of all continu-
ous coordinate transforrnations, and hence an element
of the group is determined by four arbitrary functions.

The particular manner in which a gauge group acts to
restrict the number of independent true observables in a
theory has been worked out in the canonical form of the
theory. ' Ke shall not go into the details here except to
say that the existence of the gauge group leads to a
number of relations, called constraints, between the
canonical variables. As a consequence of the existent e of
constraints, only certain variables, namely those which
have vanishing Poisson brackets with the constraints,
are true observables. The constraints themselves, of
course, have this property; however, we do not treat
them as true observables, since they always have the
value zero throughout the motion.

One of the chief drawbacks to the canonical formalism
is the difhculty of discovering, except in the simplest of
cases, what are the true observables, Such information
is not only necessary for the classical theory, but is
essential to its quantization. With the advent of the

i J. L. Anderson and P. G. Bergmann, Phys. Rev. 83, 1018
(1951).


