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the complete y at y = 1 is due to the phase shift 83 alone.
If 63 were proportional to g' in a narrow region near
ri=o (while going over to —0.11' at higher energies),
the divergence of y would be removed. However, as
Fig. 2 shows, the spin-Rip dispersion relations would
still be violated by the n' phase shifts, because of the
rapid variations of y near the resonance and the fact-
that a straight-line relationship with the correct coup-
ling constant could not be obtained. Thus it can be
concluded that the o.' phase shifts are inconsistent with
the spin-Rip dispersion relations.

IV. CONCLUSIONS

We have applied the spin-Rip dispersion relations for
the pion-nucleon scattering to the Minami phase shifts
derived from the Fermi set and to a set of phase shifts
(n ) obtained by applying the Minami transformation'
to the well-known Yang phase shifts. It has been shown

that the Minami and the 0.' phase shifts both give
a divergence (at y= 1) in the curve of y es x, in definite
disagreement with the straight-line behavior deduced
from the dispersion relations. The divergence of y at
y=1 arises from the fact that 83 is proportional to g
at low energies (83———0.11rl).' In addition to the di-

vergence, the curve of y ~s x for the o.' phase shifts
has rapid variations in the region of the resonance.
From these results, one can conclude that both the
Minami and the n' phase shifts are incompatible with
the dispersion relations.

The fact that the Yang, Minami, and n' phase shifts
are all in very marked disagreement with the require-
ments of the spin-Qip dispersion relations, while on the
other hand the Fermi set is in agreement, makes it
almost certain that the Fermi set is the only correct set
and is also the unique solution for the pion-nucleon
scattering at low energies up to 300 Mev.
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A quantitative study of 7t-—+p+v decay is presented using the techniques of dispersion theory. The dis-
cussion is based on a model in which the decay occurs through pion disintegration into a nucleon-antinucleon
pair, the latter annihilating via a Fermi interaction to produce the leptons. The weak vertex contains
effectively both axial vector and pseudoscalar couplings even if one adopts the point of view of a universal
axial vector and vector Fermi interaction. The pion-nucleon vertex which enters our model is also calculated
using dispersion techniques. Under the assumption that this vertex is damped for large momentum transfers,
we obtain a result for the pion lifetime largely independent of the detailed properties of the vertex and one
which is in very close agreement w'ith experiment. The precise prediction of our theory depends on the energy
dependence of the complex phase shift for nucleon-antinucleon scattering in the 'So isotopic triplet state.

I. INTRODUCTION

HE main interest in the problem of pion decay at
the present time concerns the experimental ab-

sence of the modes ~~e+v ' and ~~e+v+y. ' Beyond
this, however, one would also like to understand
quantitatively the mechanism of the observed decay
mode w—&@+v.

This process is customarily described in terms of
virtual dissociation of the pion into a nucleon-anti-
nucleon pair, the latter annihilating via the p-capture
Fermi interaction to produce the lepton pair. Only the
axial vector and pseudoscalar Fermi couplings can
contribute here. The former is of special relevance, since
it and the vector coupling now appear to dominate in
the other Fermi interactions: p and P decay. Further-
more, a universal axial vector coupling would imply a

' H. L. Anderson and C. M. G. Lattes, Nuovo cimento 6, 1356
(i957).

2 Cassels, Rigby, Wetherell, and Wormald, Proc. Phys. Soc.
(London) A70, 729 (j.957).

suppression of m.~e+ v decay relative to 7r—+++ v decay
by a factor of 10 '.

It is possible that the physical picture described above
has to be extended to include also Fermi couplings of
hyperon pairs with leptons, although at the present
time there is no experimental evidence for P decay of
hyperons. In any case, if only to sharpen the problem,
we want to see to what extent the simple picture based
on an axial vector p,-capture coupling can be reconciled
with the known rate for m —+@+v decay.

It is necessary here to make precise what is meant by
our assumption that the coupling is axial vector. What
we assume is that the Fermi interaction Lagrangian
contains only nonderivative axial vector (and vector)
covariants. In the p,-capture reaction, however, the
nucleons involved are surrounded by clouds of pions,
pairs, etc. This means that the 5-matrix element will in

general contain terms which simulate Fermi interactions
with derivative nucleon couplings. When reduced to the
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standard form with no derivatives, the matrix element
will contain a pseudoscalar covariant, in addition to the
basic vector and axial vector terms. Moreover, the
coupling "constants" will in fact be scalar functions of
the momentum transfer. These matters are discussed
more fully in another paper, ' where it is made apparent
that, in particular, the effective pseudoscalar coupling
coeS.cient may be appreciable at the momentum trans-
fer involved in p, capture. Likewise, for pion decay it
plays a decisive role in the model to be discussed here.

As in reference 3, the discussion here is based on the
use of dispersion-relation techniques. In the approxima-
tion ultimately adopted, the pion decay rate is expressed
in terms of the (complex) phase shift for nucleon-
antinucleon scattering in the 'So isotopic triplet state.
The essential assumption which has to be made here is
that the nucleon-pion vertex function vanishes for infi-
nite momentum transfer. If this is so, our final expres-
sion for the pion decay rate, although not free of ap-
proximations, is at least unambiguous.

The phase shift in question is not at present known
with any experimental accuracy. It is not possible
therefore to quote a de6nite theoretical result based on
the present model. For a wide range of possibilities,
however, our expression for the pion decay rate is not
sensitive to the detailed properties of the phase shift
and the calculated pion decay rate is in surprisingly
close agreement with experiment. We may note here
that in a perturbation-theoretic treatment4' of pion
decay one encounters (for axial vector coupling) a
logarithmic divergence, so that the result is quite
ambiguous. A similar calculation for pseudoscalar coup-
ling leads to a quadratically divergent result which is
naturally totally meaningless.

For dehniteness of writing we assume throughout the
validity of the two-component neutrino theory, though
this is not really relevant to the discussion.

II. DISPERSION RELATIONS FOR m DECAY

The quantum field theory of unstable states is not a
well understood subject and we shall not contribute to it
here. But there seems to be little doubt how to proceed
where we are willing to treat the weak interaction re-
sponsible for the decay in lowest order.

We begin by deriving a general formula for the decay
of a negative pion into p, meson and neutrino. Loosely
speaking, we are interested in the 5-matrix element

(p v "out"
I
s.). In spite of the fact that the state

I m) is un-

stable, we apply the customary formalism of field
theory' and write

(pv "out"
I
or) =i(2m)'b(p„+ p, —p.)

&&(half (o) I~)(&+vo)N(P. ), (&)

' M. L. Goldberger and S. B. Treiman (to be published).
M. Ruderman and R. Finkelstein, Phys. Rev. 76, 1458 (1949}.' S. B.Treiman and H. W. Wyld, Phys. Rev. 101, 1552 (1956).' Lehmann, Symanzik, and Zimmermann, Nuovo cimento 1, 205

{1955).

where we have introduced the source of the neut;rino
6eld, f, according to

where J is the source of the charged meson 6eld,
(p' — ) p, and the second line follows by making the
usual contraction on the state Im.).o The third form of
(3) follows from translation invariance. We can use
momentum conservation to replace p —p„by p„.
Finally, using the identity

(f (x)~(0))+=Lf (x),~(0)1~(x)+~(0)f (x), (4)

where 0 (x) is the step function (which vanishes for xo(0
and is unity for xo) 0), we may write

t'Pvo) ' t'
m=iI

I
dx e *v'*8(x)(plI f.(x),J(0)]IO). (5)

&m„)

We have dropped the second term in Eq. (4) since it
makes no contribution to physical pion decay. The
remaining discussion is based on Eq. (5).

It follows from invariance principles that 5R must
have the form

~=~I (P.+P )'l~(P.)Vox~(P.+P )~. (6)

Actually, since 5R is ultimately going to be contracted
with the spinor (I+go)u(p, ), the y p, term above may
be dropped; and further, we may set u(p„)p p„
=im„u(P„). The reason then for displaying the factor
(p„+p„)~ is that when we later make the explicit as-
sumption about the axial vector character of the lepton
coupling with nucleons, the factors will come out in a
natural way.

We now show that 5R, or more precisely, F, satisfies a
dispersion relation. 7 This is most easily seen by choosing
a coordinate system in which the p meson is at rest. By

7 See the Appendix for a more general derivation.

a
tv fv

BXp

The neutrino is described by the Dirac spinor e(p„).
Now f is assumed to be proportional to the small
coupling constant g linking p and v to the nucleon ('or

perhaps more generally, baryon) 6elds. Since we have
exhibited the weak link explicitly, we now turn o6 the
P coupling so that the state Im.) really exists.

Inserting normalization factors for convenience, let us
now write out the spinor coeflicient of (I+go)n(p, ):
~=—(P,o/m. ) '(2P-o) '(~ If I

~)

(Pool '*

t

' dxe'" *(~l(f (0)~(x))+I»
&m„i ~

. (Pvo)* t .
)d*e-""="'*(

I (f (*)~(0))+Io), (3)
& „)
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virtue of the masslessness of the neutrino, we may
express 5K in this frame as

F(—m, '—2m„vo) =— ' dvo'
/ ~

Po —Pp —Z6

This may be written in terms of the invariant
g=(p„yp„)' as

1 p" ImF (—$')
F(k) =—

I ('+$ ie—
We are of course making a definite assumption about

the behavior of E at infinity; if we were to encounter a
divergent integral we would in the usual way have to
write a dispersion relation with a subtraction. Unless
there were some value of g for which F is known, for the
present purposes we would be defeated. This is because
we require for the x decay rate the value of F at a single
point, namely f= (P„+P,)'=P.'= —nz '. Since this is
just a number, we cannot tolerate the presence of any
unknown constants. In the specific model which we shall

adopt, no subtractions are necessary if the lepton-
nucleon coupling is axial vector.

The imaginary or, better, absorptive part of F may
be computed by going back to Eq. (5); we write
9R= D+iA and identify A, the absorpi:ive part, with the
contribution from the term —,

' in e(xo) =-2+-', c(xo). We
then find, after inserting a sum over a complete set of
states and carrying out the space-time integrations,

(the three-vector part of the 5 function must, with our
normalization, be regarded as a Kronecker 5 function).
In order to maintain the proper reality conditions at all
stages of approximation, it is convenient to write the
sum over states

I n) as one-half the sum over "out" plus
"in" states. Ke shall not write this explicitly but it will

be assumed from now on that the sum has this meaning.
We evidently cannot hope to evaluate (10) com-

pletely, so we must resort to physical arguments to
select the important, and tractable, intermediate states.
We need consider only states of zero baryon number;
and the least massive of these is that consisting of three
pions (states containing two pions, or two E particles,
cannot contribute if parity is conserved in the strong

x(~ II f (*),J(0)7 I 0), (v)

where n is a unit vector in the (irrelevant) direction of
p„. Since

I
xo

I
&~ n x by virtue of the causality condition

Lf,(x),J(0)7=0 for x' —xP) 0, and since xo is restricted
by 0(xo) to positive values, we see that OR(vo) defines a
function which is analytic in the upper half of the vo

plane. I'hus we may write a dispersion relation for 5R, or
better, for the function F defined in (6), in the form

interactions). In fact, however, we want to explore the
possibility that only the baryon-antibaryon states are
important, in particular the state consisting of neutron
and antiproton. We have no quantitative argument for
throwing out other states of comparable or smaller mass.
One may, for example, try to argue that pion-pion
scattering is weak so that (3s I

J
I 0) might be expected to

make a smaller contribution than (np I
JIO). States with

even more pions are so complicated that we can have no
rational feelings about them. As far as baryon pairs
other than e—p are concerned, their importance de-
pends in part on whether they are directly coupled to
the leptons. If so, they may be expected to make
contributions comparable in magnitude to that coming
from the m —p state and the amplitudes would interfere.
Even if hyperon pairs are not directly coupled to leptons,
they are indirectly coupled in the sense that through E
meson transfer they may convert to nucleon pairs. In
the latter case, no direct hyperon-lepton interaction, the
hyperon pair states may be relatively unimportant.

We shall proceed then on the assumption tha, t only
the intermediate state

I
np) need be considered. This is

the state which has been considered in earlier investiga-
tions, and retaining just this state provides us at least
with a definite model which can to a certain extent be
evaluated and compared with experiment.

The relevant term in (10) involves the product
(IiI f„Inp)(npI JIO). The first factor involves the weak
link; on general invariance grounds, it must have the
form

( nl„m
( If Inp) =

I I ~(p)(i~v»5 —b(n+p)»s}N(n)
EP„on,po)

Xu(p, )iy»~; (11)

where we have included only those terms which are
relevant for pion decay and where the assumption that
the basic Fermi interaction is axial vector is made
apparent by the structure of the lepton factor. The
coefFKients a and b are, in general, functions of the
momentum transfer (n+p)'. The term containing the
coefficient b simulates a pseudoscalar coupling, though
it in fact has its origin in radiative corrections of the
basic axial vector coupling. The only experimental
information concerning the coefFicients a and 6 can at
present come from p-capture measurements and would
concern values of the argument (n+p)' of order m„'.

A discussion of these coeKcients is given in reference
3. It is shown there that u is very likely a slowly varying
function of momentum transfer, at least for small
momentum transfer. We shall make the perhaps drastic
assumption that, even for the large momentum transfers
involved here [—(n+p)')4'], it retains effectively
its p-capture value: a=a(m„') =gz, where we identify
g& with the Gamow-Teller coupling constant of P decay.

As for the coefFicient b, we take the result of reference
3:for small momentum transfer,

b$(n+p)'7= %2GF( m')I ( +np)'+—m '7 ' —(12)
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where 6 is the pion-nucleon coupling constant and
F(—m ) is just the effective pion-decay coupling
coefficient defined in Eq. (6) and evaluated at the
momentum transfer of free pion decay. The relation (12)
is based on the assumption that b satisfies a dispersion
relation with no subtractions and no additive constant.
This represents the major assumption of the present
discussion. Again, we shall assume the validity of (12)
even for the large momentum transfers involved here.

The superficially unwarranted assumptions concern-
ing the P dependence of a and fifor large $ have, in fact,
been investigated in reference 3. Ke have found that a
more exact treatment does not modify our numerical
conclusions qualitatively.

Next we turn to the matrix element (Npl JlO). For
definiteness assume that leg) is an "out" state. (The
distinction between "in" and "out" was of no conse-
quence in our discussion of (p l f, l rip) since we ultimately
set a=go= constant. ) This vertex has been studied by
us in detail in connection with the problem of nucleon
structure. ' We content ourselves here with quoting the
main results and trying to make them plausible. We
note first that since J is a pseudoscalar, the intermediate
state

l rip) must have zero 'angular momentum and odd
parity. Imagine that we are in a coordinate system where
n+y=O. The state in question is evidently the 'Sp
isotopic triplet. It is evident from invariance considera-
tions that the matrix element must have the form

(ape-p/m')-*'(~p
l el 0) =zEL (e+ 1-)'7u(e)p,e(p). (13)

We shall assume, as appears quite reasonable, that the
function E(P) is analytic in the complex $ plane, cut
from —(3m )' to —~.Now the exact behavior of E for
large g is not known. It has been shown, ' however, that
the proper vertex function, which is very closely related
to E, does approach zero for &~~ . Tlie precise relation
is as follows:

( Pl&IO)=(~+ .')~..(&) (.) ~ V)f(~),

where d p, ($) is the exact pion propagation function.
The function f(P)—4 as —t—+po; thus E will show the
same behavior provided the product g p, (&) is finite in
the limit. This limit is in fact Z3, where Z3 is the usual
meson wave-function renormalization constant. If Z3 is
not zero then we may conclude that our function E
approaches zero as —$~ po.

Now in general, for real $, E($) is a complex function
and we may write the self-evident formula

ezv(—k)

E(t) = ReE(q),
cosL p( —h)7

where the argument of &p has been written as —$ for
later convenience. We now assume that E($) can be

' Federbush, Goldberger, and Treiman (to be published).' Lehmann, Symanzik, and Zimmerraann, Nuovo cimento 2, 425
(1955).

extended to a function analytic in the cut P plane and,
further, that it satisfies a dispersion relation with only
one subtraction, namely,

)(+m.'~
E(P)=E(—m.') —

l

ImE( —$')
x ~

"(sm. ) 2 (P' —m. ') (P'+P —ie)

)$+m.'~

)
t-L (~')7

ReE(—&')d&'. (14)~(-.&
(&'- -')(8+&- )

The "—ie" has been inserted to conform with the "out"
boundary condition on the state

l
rsgr).

To proceed further we must of course identify the
phase q. If we assume that all matrix elements con-
necting the one-pion state to states other than

l rip) are
negligible, it turns out that

Re(e" sinb)
«nl ~(k)7= ~(rsvp-m'), (»)

1—Im(e" sinb)

where 8 is the complex phase shift for ss —p scattering in
the 'So state and is a function of the center-of-mass wave
number (4 $

—m') i. This result may be understood in the
following way. Note first that if 6 is real then &=8; and
one has a familiar-looking result, namely, that the matrix
element is a real number times e~, where 5 is the phase
shift for the final state. Actually this form would be
expected only if the interaction responsible for the
process 7r~n+p were weak. Now the matrix element
(n p l

J
l 0), aside from irrelevant kinematic factors, is just

equal to —iS „-, , where S „-, is the S-matrix element
for the rather unusual process of a x meson converting
into a neutron and antiproton. From (10) it is evident
that we are concerned with the above matrix element
only for such weird x mesons that the process is in fact
allowed by energy-momentum conservation; i.e., we
have 8(p„p„p„)=h(n+—p p—). Since the —conserva-
tion laws are satisfied we may utilize the formal prop-
erties of the S-matrix in the usual way. In particular,
we write 5 in terms of the real reaction matrix Q. Only
one angular momentum and parity combination is in-
volved here, namely 0; and the matrices are labeled by
the particle symbols, x, 3x, ep, Next we write
Q=Qp+Q', where Qp is defined as having no matrix
elements connecting to the one-pion state. We then
write

(1+sQp+sQ')
=-l:(1+~)Q'7-;,-, (16)

&1—sQp —iQ') „~, 4

where the second equality may be verified by expanding
the first form of S, appropriately symmetrized, in
powers of Q' and then regrouping. If, finally, we assume
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ImF (—()1
F(—m.') =— dP

2r ~4m~ $—m 'z

5;, z(22p l
J

l 0)=—(1+S);, „-Q' —, .
4

(17)
we require

that all the matrix elements of Q are negligible except For the dispersion relation (9), which we rewrite
that connecting ~ and ep, we have

(21)

~(y)
dy—,(22)

(y —g) (y —m.')

where we have used the fact that E(—m ') =v2G. A
principal-value integration is implied here.

It is convenient now to introduce as variable the
center-of-mass wave number k for nucleon-antinucleon
scattering. I et

Im(e" cosb)
tang=

Re(e*' sinb)

Now we know that Q'„~ is real and —,'(1+5)„„-„~ is
f

p$
—m2)

simply e@ cosb, where 8 is the complex phase shift for R E( ~) =v2G cos22(~) exp'( l

e—p scat."ering in the 'So state. The important point to
notice is that we do not have to assume that Q'„~, is
weak to obtain this result, so that (17) is a generalization
of the usual result and is valid provided that the ele-
ments of Q' connecting 2r to states other than 22@ are
weak. Since tan&p=ImE/ReE', we have

which is equivalent to the result of Eq. (15).
We now return to the dispersion relation (14), where

of course the lower limit of the integral is now (2m)'. It
may be shown that the solution of (14) is given by

f$+m.2~
E(P)=E(—m ') exp' —

l

dP' . (18)
2 (Y)

(5' m') (—5'+ k 2e)—
Note that since only tang is de6ned experimentally, q
itself is undefined to within additive multiples of x. But
on physical grounds we suppose that tan~0 for
$'—+4m2 and we take 22(4m') =0. If, as would appear
reasonable, there is always some absorption at all wave
numbers (8 always complex), then clearly for all wave
numbers

l 22l (2r/2. We shall assume this to be true.
Moreover, if E is to vanish for infinite momentum
transfer —as must be assumed in the present, discussion—it is necessary thar. q approach a positive limit as
g'-+ co .

We are now ready to put the pieces together to finally
effect the evaluation of (10). Substituting (11) for
(pl f„lnp) and (13) for (Npl Jl0), and carrying out the
sum over spins and integration over phase volume
implied in (10), we find

5$ J
F(0)= — v2Ggg

2 ' 1+(G'/42r)(2J/ )
(24)

00 jP 2
t dk cos22(k) exp —

~ dk'k'p(k')
" 2 (k2+m2) i

1 1
Xl —

I . (25)
(k~2 k2 k 2+m2)

III. NUMERICAL ESTIMATES

let us first write down the expression for the pion
decay rate co. In the standard way, one finds

1 |'mp) 2 t' m ) t' m„2)
m. l

m.2i

x I
—1(g~m-')'I

I 42r/ ~1+G2J/22r22

/=4(k2+m2) y=4(k"+m'). (23)

Finally, for algebraic convenience, let us set the pion
mass equal to zero in the above expressions (this
introduces no appreciable error). Collecting all our
results, we obtain

1
a (g) =——(ma ——,'Pb) ReE(P)

4z
t'$+4m2~ '*

I @p.)»»(p.+»)i

From this and Eq. (12), we thus have

1- v2
ImF (P) = ——mgg+ GF ( m—')—

42r 2 &+m.2

(P+4m2& '
XReE(8)

l

If we take G /42r = 15, and if we adopt for gg the value of
the Gamow-Teller coupling constant in P decay (there
is as yet no experimental justification for the latter, but
aside from small corrections, it is implied by the notion
of a universal Fermi interaction), we then find from the
known pion lifetime that

J
=0.13.

(1+OS/22r2), p

(27)

On the theoretical side, provided only that J))yp so

(20) that we can neglect the unit term in the denominator of
Eq. (27), we obtain a result independent of J (i.e.,
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independent of the details of the nucleon-antinucleon
scattering); namely, we obtain the value 0.10. This is
rather surprisingly good agreement with experiment.
One sees here the decisive damping eGect of the de-
nominator in Eq. (27).

We remark that the expression for F(0) which one
obtains in perturbation theory is precisely given by
Eq. (24) if one neglects the damping term in the
denominator and if one sets p=0 in Eq. (25). In this
case the integral over k in Eq. (25) of course diverges
logarithmically.

In the present discussion, what we require for good
agreement with experiment is of course that the integral
of Eq. (25) shall be finite, i.e., that the pion-nucleon
vertex function vanish for infinitely large momentum
transfer; and tha( the value of J be large compared to
(G2/22r2) '= ~'~. We cannot argue in detail the cor-
rectness of our assumptions. No one can really be
confident about a conjectured behavior of a complex
phase shift for very large energies. It is our general
feeling that even in the face of the opening up of ever
newer absorptive channels with increasing energy, the
real part of the 'Sp phase shift will remain finite, so that
damping of the nucleon vertex will persist. The argu-
ment is that the wave function will ultimately stay out
of the region of annihilation.

H, as we are hoping, the behavior of y for large wave
number k is such as to guarantee fairly rapid con-
vergence, the main numerical contributions to J would
come from small values of k. In this low-energy region a
two-parameter scattering length approximation for
+—p Sp scattering seems reasonable, and we now turn
to this simplification. As stated, the approximation
presumably makes little sense at large wave numbers,
but the final result may be numerically reasonable. This
will be especially so if the integral J is in any case large,
since then the pion decay rate does not depend on J.

The 'So n pscatter—ing amplitude f is related to the
complex phase shift 6 by

Let us now define

2 w" ( 1 1
1(k)=- dk' k'&(k')

t

Lk"—k' k"+m2i

Even with our simplified expression (30) we have not
been able to carry out this integration in closed form for
the general case. We instead consider two limiting
possibilities (in the following discussion we set m=1,
which means that the parameters a and b are expressed
in units of the nucleon mass).

I. a«b

2u) 1
~(u, b)=exp —

t tt 2~+b»bj .
t2r kb2+ii

(35)

As for cosy we need make no approximations and we
have

COSy =
((1+kb)'+ k'u' j'*

(36)

As a numerical example, if we take a= b =3 we find
J=1.7.

2. a))b
We carry out this approximation to lowest order in

b/u and we further suppose that u) 1. We then find

In this limit we can set tan p= &p (the approximation
is in fact not unreasonable even for u as large as b), and
we find

2u ( b'k'
expI(k) =C(u, b) exp ——

t t ln(bk), (34)
~b ~b2k2 —ii

where

f= (e" sinb)/k. (28)
2b( u'

expI(k) = (u+1) exp ———
t t

lnu (k'u +1) '*

2r u (u2 —1i

tanb =k (u+2b) (29)

We now introduce two positive constants, a and b, and
we suppose that 2 b( k2u2

Xexp ——
t t ln(ku) . (37)

~ u & k'u'+1&

Then, from (15),

tang= ku/(1+kb). (30)

In the extreme limit a))b where we can completely
ignore b/u, we can carry out in closed form the subse-
quent integration for J

t
see Eq. (24)]. In this limit

The 'Sp e—p scattering and absorption cross sections,
a, and o „are related to the parameters according to J = (u —1) '{1—(u' —1) '* tan '(u' —1)'). (38)

u2+ b2

a, =4m
(1+kb)'+ k'u'

(b) 1
~.=4~t —

t

E ki (1+kb)'+k'u'

(31)

(32)

Thus for b((a and a))1,J is inversely proportional to a.
As an example, for a=3 we find J=0.28.

It is evident from this brief discussion that for a large
range of possibilities concerning the 'Sp phase shift, the
integral J is appreciably larger than (G'/22r2) ', in which
case our result for the pion decay rate does not depend
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much on J.The actual low-energy behavior of the phase and p stands for p„+p„.The effective vector operator
shift should become known in time. B&,(x) is defined by

APPENDIX &i(x) =4.(*)iViV~4-(x). (A-4)
In the derivation of the dispersion relation for F(p )

which we have sketched in the text, explicit use was
made of the vanishing of the neutrino mass. In fact this
last condition is not required, as can easily be shown by
an extension of the discussion given in the text. Rather
than doing so, we indicate instead an alternate deriva-
tion in which the assumption is made at the outset that
the leptons emerge from a point, with axial vector
coupling.

We begin with Eq. (5), which we rewrite for ease of
reference:

and

Vi(p-) = (p-) iW(p-'), (A-5)

ifp
W(p ')= I dxe '&~ *

2 Q

X(0~ t p. B(x),J(0)j~0)8(x). (A-6)

Since there are no vectors other than p which enter
into (A-3), it is clear that Vi(p, ) may be written

where
mt = Vi(p.)u(p„)iyiys, (A-2)

Vi(p.) =ifp)t dx e
—'" '(0~ $8i(x),J(0)j~0)8(x), (A-3)

(p,o)
' dx e '"" *~(x)(

I Lf (x),S(0)g 0). (A-1)
E~„)

We now introduce the explicit assumption that f„ is
given by

f.(*)=fek.ivy f.iviv 0.(x).

The constant fe is the product of the unrenormalized
Fermi coupling constant and wave-function renormal-
ization constants. We now replace P„by a free-field
operator, since we work to lowest order in the weak
coupling. Then Eq. (A-1) may be written

Since we have to do here with the Fourier transform of
the vacuum expectation value of a completely retarded
commutator, it follows in the standard way that W(p ')
may be written in the form

~( ')
W(p ')= ' do'

~ o o'+P.'—if'e(P p)

(A-7)

where &~0+ and p(o') is evidently proportional to the
imaginary part of W( —o').

It is clear from our dehnitions that except for trivial
factors, W(p, ') is identical to F(p, ') defined in Eq. (6).
Having made the identification, we can of course
evaluate F(p ') by any method we choose; and the
procedure followed in the text seems to be the most
convenient for the present purposes.


