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Application of the Spin-Flip Dispersion Relations to the Minami
Ambiguity for the Pion-Nucleon Scattering*
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The dispersion relations for the spin-Rip amplitude of the pion-nucleon scattering in the forward direction
have been applied to the Minami phase shifts obtained from the Fermi set in a calculation similar to that
of Davidon and Goldberger for the Fermi and Yang phase shifts. The Minami phase shifts were found to
be in disagreement with the requirements of the dispersion relations. The same calculation was also carried
out for a new set of phase shifts, which is obtained by applying the Minami transformation to the Yang
phase shifts. These phase shifts are also incomqatible with the dispersion relations.

I. INTRODUCTION and total angular momentum J are obtained from the
corresponding Fermi phase shifts by interchanging the
phase shifts for L=J——,

' and /=J+rs, where / is the
orbital angular momentum. In the following, the
Minami phase shifts will be denoted by primes (0'),
whereas the Fermi phase shifts will be unprimed (5).
Thus for the T=~ state, we have

' 'T has been recently shown by Davidon and Gold-
& - berger' and by Gilbert and Screaton' that the dis-
persion relations for the spin-Rip amplitude of the
pion-nucleon scattering can be used to show that the
Fermi set of phase shifts for the pion-nucleon scattering
is in agreement with the requirements of causality,
whereas the Yang set disagrees. In particular, it has
been shown in reference 1 that the Fermi set of phase
shifts satisfies a straight-line relationship involving the
spin-Rip amplitude which is required by the dispersion
relations, whereas the Yang phase shifts do not.
Furthermore this straight-line relationship can be
extrapolated to give the renormalized unrationalized
coupling constant f'. The Fermi set of phase shifts
yields f'=0.10, which is in reasonable agreement with
other determinations. 4 On the other hand, the Yang
set of phase shifts yields a negative value of f'= —0.11,
which is not physically meaningful.

It has been pointed out by Davidon and Goldberger'
that their calculation is essentially equivalent to the
polarization experiment proposed by Fermi' to dis-
criminate between the Fermi and the Yang phase
shifts.

Although the Yang set of phase shifts was therefore
essentially eliminated if one accepts the principle of
causality, another general ambiguity, namely the
Minami ambiguity in the phase shifts, remained. The
Minami phase shifts for a state of total isotopic spin T

5'('S;, T= ') =5('P;,-T= ,') =osr, - (1)

8'('P;, T=-', ) =8('S;, T= ', ) =8s, -(2)
5'(sD;, T=-;)=5('P;, T=-;)=&», (3)

where 5, is the usual (Fermi set) s-wave phase shift for
T=-,', and 8sr, ass are the Fermi p-wave phase shifts
for T=2, 'I'; and 'I';, respectively. The choice of the
absolute sign taken in Eqs. (1)-(3) preserves the sense
of the Coulomb interference for the transformed set
of phase shifts.

It has been pointed out by Hayakawa, Kawaguchi,
and Minami' that the only differences between the
predictions of the Minami phase shifts and those of the
original Fermi set appear in the polarization of the recoil
nucleon.

One may also expect that the spin-Rip dispersion
relations will in fact distinguish between the Minami
phase shifts and the Fermi phase shifts, since the
polarization depends on the spin-Rip amplitude.

Another possible set of phase shifts, which we will
call the n' set, can be obtained by applying the Minami
transformation to the Yang set.

In the present work, both the Minami phase shifts
and the n' phase shifts have been tested against the
requirements of the spin-Rip dispersion relations and
found to be in definite disagreement with them. There-
fore one can conclude that the only set of phase shifts
compatible with the causality requirements is the
Fermi set.

Of course, one might remark here that the Minami
phase shifts have been considered a physically less
plausible set than the Fermi set, due to the fact that
the momentum dependences of the various phase shifts
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at low energies were not the usual ones expected for a
short-range potential interaction, and also the fact that
a d-wave resonance was hard to understand physically,
whereas a p-wave resonance followed from general
strong-coupling meson theory.

by Anderson' was employed:

1+0.77rt' t'1.9427 —y ~
!g' cot8ss=

0.248 E 0.9427 )
(12)

where g is the pion momentum in the center-of-mass
system in units of ttc (tt =pion mass), 8t+ and 8t are the
phase shifts for orbital angular momentum l and total
angular momentum J= l+-', and / ——'„respectively; the
subscripts 3 and 1 refer to total isotopic spin T=-,' and —,',
respectively.

In the following, we shall neglect the small and
unimportant contributions due to the T=~ state. For
the Minami phase shifts, the spin-Rip amplitude a3 is
given by

as(8') = (2irt') '[1—e'"'+3( —e""')) (5)

where we have used Eqs. (1)—(3), and it has been
assumed that the d-wave phase shifts for the Fermi set
are zero. For comparison with Eq. (5), tts for the Fermi
phase shifts is given by

its(8) = (2irts)
—i(esses —esaa&) (6)

It has been shown' that the dispersion relations lead
to the following equation:

y= f'+Cx,

where x, y, and C are dined by

x=—y(1+ytr/y) ',

y=—-', x(Re (as) —

&[Is�

(&)+-"s

Is�(

—&))},

(8)

where p is the laboratory total energy of the pion in
units ttc', ytt=tt/(2M) (M=nucleon mass), and Is(y)
is the following principal-value integral:

1 (
" Im(its)

Is(y) = Pdy'——
&'(v'-v)

The values of y have been calculated, using Eq. (5)
for as(5'). For the phase shift 8s, we used Orear's
formula, ' 83= —0.11'. For 633, the expression obtained

' J. Orear, Phys. Rev. 96, 176 (1954); 100, 288 (1955).

II. CALCULATIONS FOR THE MINAMI
PHASE SHIFTS

The derivative of the spin-Rip amplitude with re-
spect to sin8 at 8=0 (8= scattering angle in the center-
of-mass system) is given by (ttt/ttc)Ft'as, i, where

l(l+1)
tt3, 1 Q (e2@t+ sea t)s, 1 (4)4''

where p is the center-of-mass pion total energy in
units pc .

It is useful to write as(5') as the sum of two parts,
as (8') and ass(B'):

as. (5') =—(2irt') '(1—e' ),
ttse(5') —=3(2irt') '(1—e""&).

(13)

(14)

Re[as. (b')) =0 0727 (. y 1)——', (16)

Im[as (5'))= —0.0098(y —1) '. (17)

Since the divergence of Im[as (8')) is less strong than
(y —1) ', the integral Is(—y) is obviously convergent,
and a detailed argument shows that the principal-value
integral Is(y) is also convergent. However, y will,
of course, diverge as a result of the divergence of
Re[its, (5')). It may be noted that there is no divergence
for ass(5'), since ass ~ rt' as r)~.

The integrals Is(y) and Is(—y) were evaluated
by approximating the functions p 'Im[as (8')) and
p ' 1m[ate(5')) by a series of straight lines, generally
with intervals of 0.2 in y. However, in the region from
y=1.0 to 1.2, where y 'Im[as (8')) diverges, we used
an approximation of the form b(y —1) &, where ft is a
constant [see Eq. (17)).At &=2.2, 1m[ass(8')) has its
maximum and varies rapidly with p, corresponding to
the resonance behavior of 83~. For this reason, intervals
of p of 0.1 were used between y=2.0 and 2.4. The
integrals were extended up to y=3.2, corresponding to
T =300 Mev. Above 300 Mev, the phase shifts 63
and 533 are not well known at present. However, the
contribution of the region T„&300Mev is expected to
be small, since the integrand decreases essentially as
p ' for large values of p.

The upper curve in Fig. 1 shows the resulting values
of y as a function of x. As discussed above, y becomes
inhnite at y=1, which corresponds to x=0.930. Calcu-
lated values of y not shown in the 6gure are: y=0.074
at x =1.030 (&=1.1) and y=0.416 at x=0.980 (y =1.05).
It is clear that this curve cannot be extrapolated to
x=0 to give a finite value of f' Moreover, Eq.. ('7)
predicts a linear behavior of y, with constant slope C,
which is obviously not satisfied in Fig. 1. It can thus

' H. L. Anderson, Proceedirtgs of the Sixth ANNttal Rochester
Conference on High-Energy Physics (Interscience Publishers, Inc, ,
New York, 1956).

For zero kinetic energy T, both the real and imaginary
parts of as (8') diverge, as a result of the rt' denominator.
Thus for y—+1, g is given by

st=[2(v —1))~M/(M+tt) =1.230(y —1)'. (7~1) (15)

With' 53———0.11', one obtaIns
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FIG. 1. Plot of y vs x for the Minami phase shifts. The solid
curve represents y. The dashed curve marked yls») gives the
contribution to y due to the phase shift 833 alone.

be concluded that the Minami phase shifts are incom-
patible with the requirements of the dispersion re-
lations.

We note that the preceding results essentially depend
on the fact that the Minami set gives a P phase shift
8'('P;, T= ss) which behaves as rl for rl

—+0, instead of rl'

as is expected for a P wave scattered from a short-
range potential. Since the dispersion relations were not
derived from the assumption of a potential, it appears
that they essentially predict that a p phase shift must
increase at least as rapidly as p' at low energies.

Since the g dependence of 53 is the determining factor
in the preceding results, it is of interest to consider the
evidence in favor of the Orear expression for 83 which
has been used above. Several previous phase shift
analyses of the experimental data from low energies to

200 Mev have yielded values of 53 generally com-
patible with the Orear expression. "Recently two experi-
ments have also been performed at relatively low
energies (T 20 Mev; rl 0.47), one with 10—35 Mev
positive pions in a hydrogen di6usion cloud chamber,
by Alston et al."at Liverpool, the other with 19-Mev m.

in a hydrogen bubble chamber, by Nagle, Hildebrand,
and Piano" in Chicago. The Liverpool results" give
hs= —(0.13+0.035)rl, which is in good agreement with
Orear's prescription': b3 ———0.11'. The Chicago meas-
urements" yield a value of 25i+hs ——(0.23&0.04)rl,
which is also in good agreement with Orear's value
0.21' obtained by means of 8&=0.16'. From these

I See Mukhin, Ozerov, Pontekorvo, Grigoriev, and Mitin,
Proceedings of the CERÃ Symposium on High-Energy Accelerators
and Pion Physics, Geneva, 1956 (European Organization of
Nuclear Research, Geneva, 1956), Vol. II, p. 204, and J. Drear,
Proceedings of the CER& Symposium on High-Energy Accelerators
and Pion Physics, Geneva, 1956 (European Organization of
Nuclear Research, Geneva, 1956), Vol. II, p. 233.

'I Alston, Fidecaro, von Gierke, Evans, Newport, and Williams,
Proceedings of the CERÃ Symposium on High-Energy Accelerators
and Pion Physics, Geneva, 1956 (European Organization of
Nuclear Research, Geneva, 1956), Vol. II, p. 236.

"Nagle, Hildebrand, and Piano, Proceedings of the CERE'
Symposium on High-Energy Accelerators and Pion Physics, Geneva,
1956 (European Organization of Nuclear Research, Geneva, 1956),
Vol. II, p. 238.

Since C, I3, and y are directly proportional to a3, we
have

C'= —3C; Is'(+&) =—3Is(&p); y'= —3y, (20)

where the primed quantities refer to the Minami phase
shifts, while the unprimed quantities refer to the Fermi
set. Upon substituting (20) into Eq. (7), one obtains

fi2 — 3f2 (21)

which gives f"=—0.3.
The actual plot of y(8, s) es x is shown in Fig. 1

(dashed curve); here y(8») is the part of y which is
due to ass alone [ass(b')]. It is seen that y(ass) has a
considerable curvature and extrapolates to f'= —0.29,
as expected from the previous arguments. Of course,
it should be emphasized that y(5») is only a part of the
complete y, and therefore no definite general conclusions
can necessarily be drawn from y(5») alone. However,
it is obvious that at the higher energies, y is almost
entirely determined by the contribution of 8» alone
[i.e., y y(8») for p)2]. As we have already noted,
the high-energy part of y [which is y(8»)) has an
intercept yielding a negative f'. Hence it is clear that
even if one varies the possible momentum dependence

results, it appears that Orear's expressions for 83 and bi
have been adequately verified at low energies, at least
down to 20 Mev (rl 0.47). Nevertheless, it does not
seem to be absolutely ruled out that 83 couM be pro-
portional to p' at very low energies, while going over to
Orear's values at somewhat higher energies. From the
point of view of the dispersion relations, this would
have the consequence that Re[as (8')$ and hence y
remain finite at y=1 (x=0.930), and therefore the
curve of y vs x could be extrapolated to x=0 to yield a
finite value of f'. However, even if this were the case,
it is likely that the plot of y ~s x would have a strong
curvature and would not extrapolate to the correct
value of f' (=0.1). In this connection, since the
divergence of Re[as (5')) at y=1 masks the behavior
of the part of y which is due to asp(li') (arising from 5»),
it is of interest to obtain the y es x plot derived from
as'(8') alone (by setting 5s ——0). In this case, even with-
out any detailed calculations, it can be seen from the
following argument that Eq'. (7) would predict a nega-
tive value of f', of the order of —3 times that given by
the Fermi phase shifts.

The amplitude ass(8') is given by Eq. (14). The
phase shift 5si involved in the Fermi amplitude as(5) is
quite small. Thus for the expression obtaioed by
Anderson, '

rl' cotbsi = —(0.0415—0.00775tl') —',

~5si~ has a maximum of 5.5' at T =225 Mev. In the
approximation in which 83~ is neglected, a comparison
of Eqs, (6) and (14) shows that
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of the 53 phase shift, in a manner compatible with the
experimental data, one cannot obtain a straight line
with an intercept giving the correct value of f' A.s was
discussed above, with the use of the Orear phase shifts
for 5s, the resulting curve of y es x (see Fig. 1) is in very
marked disagreement with the dispersion relations.

In Fig. 1, the squares adjacent to the curve of y(5»)
indicate the order of magnitude of the uncertainties
introduced by the numerical calculations of ReLa»(5')$
and the integrals over Im[ase(5')j. The uncertainties
in the complete y (upper curve) are of the same order
of magnitude.

It may be noted that the eRect of the T=-,' state
(amplitude ut), which was neglected by Davidon and

Goldberger' in obtaining Eqs. (7)—(10), has been
evaluated for the Minami phase shifts, using Orear's
prescription of 5~=0.16'. The contribution of the Fermi
P-wave phase shift 5» was neglected, since it is probably
very small compared to that of 6&, and since there is
not much information on the values of 5~3. With the
inclusion' of a~, one still obtains an equation of the
form of (7) for y tts x, provided that C and y are re-
defined as follows:

i

3~ ~j

Im(as) —Im(ut)
(22)

Thus y differs from Eq. (9) by an extra term —sIt( —p)
in the square bracket. The integral I,(—y) of Eq. (24)
was evaluated both for y=1 and y=3. The resulting
change of y due to It(—y) is given by

(25)

and has the values +0.0015 at y=1 and +0.0080 at
y=3. These corrections are of the order of the accuracy
of the calculations (see Fig. 1) and can be safely
neglected.

III. e' PHASE SHEFTS

As mentioned in the introduction, there exists a set
of possible phase shifts which can be obtained by
applying the Minami transformation' to the usual
Yang phase shifts. These phase shifts will be called the
ri' set and are given by

~'('~: 2'= s) =~»=x —~»,

rr'('I b 2 = s) =rrs=~s)

tr ( Db T=s) =rrss=X

(26)

(27)

(28)

where o.3, n3I, and n33 are the Yang phase shifts, which
are in turn given in terms of the Fermi phase shifts,

y=—lx(«(~s) —vDsh)+sIs( —y)+sIt( —~)j), (23)

where
Im(at)
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FIG. 2. Plot of y vs x for the 0.' phase shifts. The solid curve
represents y. The dashed curve marked y(a») gives the contribu-
tion to y due to the phase shift n» alone.

83, 6», 5», and the angle g defined by

2 sin28ss+ sin25st
tang =

2 cos28ss+cos28st
(29)

as (n') =as (8'), (31)

where as (5') is given by Eq. (13). This result arises,
of course, from the fact that the s-wave phase shift
83 is the same for the Fermi and the Yang solutions.

Figure 2 shows the results of the calculations. As for
the Minami set, we have presented two curves. Using
the values of Orear for 53, one obtains the solid curve,
which represents the complete function y. Of course,
the divergence of y at x=0.930 (y =1) implies that the
a' phase shifts are in disagreement with the dispersion
relations. The dashed curve of Fig. 2 shows the part of y
due to n» alone Ly(n»)], which would extrapolate to a
negative value of f' (=—0.052). As in Fig. 1, the
squares adjacent to the curve of y(nss) indicate the
order of magnitude of the uncertainties of the numerical
calculations. Both curves have rapid variations (two
maxima and two minima) in the region of the scattering
resonance (x= 2.0 to 2.8). This behavior is in disagree-
ment with the straight-line relationship predicted by
the dispersion relations. As discussed above, the reason
for considering the part y(nss) is that the divergence of

where the sign of sinx is the same as that of 2 sin2833
+sin28st. Equation (26) shows that the large Yang
phase shift naI becomes an s-wave phase shift for the o.'
set, and n33 becomes a d-wave phase shift. Hence, in
this set, there are both s-wave and d-wave resonances.

In a calculation similar to that of Sec. II for the
Minami phase shifts, we have applied the spin-Rip
dispersion relations to the n set. In similarity to Eq. (5),
the spin-Qip amplitude for the n phase shifts is given by

as(rr') = (2iti') 'L1—e'"''+3(1 —e" '8)) (30)

which shows that the p-wave part (involving 8s) is the
same as for the Minami amplitude:



1178 S. J. LlNDENBAUM AND R. M. STERNHEIMER

the complete y at y = 1 is due to the phase shift 83 alone.
If 63 were proportional to g' in a narrow region near
ri=o (while going over to —0.11' at higher energies),
the divergence of y would be removed. However, as
Fig. 2 shows, the spin-Rip dispersion relations would
still be violated by the n' phase shifts, because of the
rapid variations of y near the resonance and the fact-
that a straight-line relationship with the correct coup-
ling constant could not be obtained. Thus it can be
concluded that the o.' phase shifts are inconsistent with
the spin-Rip dispersion relations.

IV. CONCLUSIONS

We have applied the spin-Rip dispersion relations for
the pion-nucleon scattering to the Minami phase shifts
derived from the Fermi set and to a set of phase shifts
(n ) obtained by applying the Minami transformation'
to the well-known Yang phase shifts. It has been shown

that the Minami and the 0.' phase shifts both give
a divergence (at y= 1) in the curve of y es x, in definite
disagreement with the straight-line behavior deduced
from the dispersion relations. The divergence of y at
y=1 arises from the fact that 83 is proportional to g
at low energies (83———0.11rl).' In addition to the di-

vergence, the curve of y ~s x for the o.' phase shifts
has rapid variations in the region of the resonance.
From these results, one can conclude that both the
Minami and the n' phase shifts are incompatible with
the dispersion relations.

The fact that the Yang, Minami, and n' phase shifts
are all in very marked disagreement with the require-
ments of the spin-Qip dispersion relations, while on the
other hand the Fermi set is in agreement, makes it
almost certain that the Fermi set is the only correct set
and is also the unique solution for the pion-nucleon
scattering at low energies up to 300 Mev.
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A quantitative study of 7t-—+p+v decay is presented using the techniques of dispersion theory. The dis-
cussion is based on a model in which the decay occurs through pion disintegration into a nucleon-antinucleon
pair, the latter annihilating via a Fermi interaction to produce the leptons. The weak vertex contains
effectively both axial vector and pseudoscalar couplings even if one adopts the point of view of a universal
axial vector and vector Fermi interaction. The pion-nucleon vertex which enters our model is also calculated
using dispersion techniques. Under the assumption that this vertex is damped for large momentum transfers,
we obtain a result for the pion lifetime largely independent of the detailed properties of the vertex and one
which is in very close agreement w'ith experiment. The precise prediction of our theory depends on the energy
dependence of the complex phase shift for nucleon-antinucleon scattering in the 'So isotopic triplet state.

I. INTRODUCTION

HE main interest in the problem of pion decay at
the present time concerns the experimental ab-

sence of the modes ~~e+v ' and ~~e+v+y. ' Beyond
this, however, one would also like to understand
quantitatively the mechanism of the observed decay
mode w—&@+v.

This process is customarily described in terms of
virtual dissociation of the pion into a nucleon-anti-
nucleon pair, the latter annihilating via the p-capture
Fermi interaction to produce the lepton pair. Only the
axial vector and pseudoscalar Fermi couplings can
contribute here. The former is of special relevance, since
it and the vector coupling now appear to dominate in
the other Fermi interactions: p and P decay. Further-
more, a universal axial vector coupling would imply a

' H. L. Anderson and C. M. G. Lattes, Nuovo cimento 6, 1356
(i957).

2 Cassels, Rigby, Wetherell, and Wormald, Proc. Phys. Soc.
(London) A70, 729 (j.957).

suppression of m.~e+ v decay relative to 7r—+++ v decay
by a factor of 10 '.

It is possible that the physical picture described above
has to be extended to include also Fermi couplings of
hyperon pairs with leptons, although at the present
time there is no experimental evidence for P decay of
hyperons. In any case, if only to sharpen the problem,
we want to see to what extent the simple picture based
on an axial vector p,-capture coupling can be reconciled
with the known rate for m —+@+v decay.

It is necessary here to make precise what is meant by
our assumption that the coupling is axial vector. What
we assume is that the Fermi interaction Lagrangian
contains only nonderivative axial vector (and vector)
covariants. In the p,-capture reaction, however, the
nucleons involved are surrounded by clouds of pions,
pairs, etc. This means that the 5-matrix element will in

general contain terms which simulate Fermi interactions
with derivative nucleon couplings. When reduced to the


